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ABSTRACT 

Data Warehouse (DW) and OLAP systems are first citizens of Business Intelligence tools. They are 

widely used in the academic and industrial communities for numerous different fields of application. 

Despite the maturity of DW and iOLAP systems, with the advent of Big Data, more and more sources 

of data are available, and warehousing this data can lead to important quality issues. In this work, we 

focus on missing numerical and categorical in presence of aggregated facts. Motivated by the lack of 

a formal approach for the imputation of this kind of data taking into account all type of aggregation 

functions (distributive, algebraic and holistic), we propose an new methodology based on linear 

programming. Our methodology allows dealing with the relaxed constraints over classical SQL 

aggregation functions. The proposed approach is tested on two well-known datasets. Experiments 

show the effectiveness of the proposed approach.  

1 Introduction
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A Data Warehouse (DW) is a “subject-oriented, integrated, time-variant and non-volatile collection 

of data to support the decision-making process” (Inmon, 1996). Warehoused data are analyzed using 

OLAP systems enabling online exploration of data stored according to the multidimensional model. 

Warehoused data are represented according to analysis different axes (dimensions) and facts. 

Dimensions are organized in hierarchies composed of levels. Facts represent the analysis subjects, 

and they are described by numerical measures. Measures are aggregated along dimensions hierarchies 

using aggregation functions (e.g. sum, min, max, etc.). However, complex multidimensional 

structures and aggregation functions are usually used in real applications. Measures can be collected 

on aggregated hierarchy levels, which are then aggregated and stored in the DW. This issue can be 

due to several reasons, for example when data sources are collected at different granularities (for 

example, a sensor can send hourly or daily data according to its battery level), when errors appear in 

the Extraction, Transformation and Loading (ETL) process (for example, detailed data is deleted), 

etc. Therefore, multi-granular facts have been studied in several works that provide conceptual 

(Boulil et al., 2015), logical and physical models (Iftikhar & Pedersen, 2010) to handle them in DW 

and OLAP systems. Multi-granular facts are strictly related to aggregation functions. A wide 

literature exists about aggregation functions in DW and OLAP systems. According to Gray et al. 

(1997), aggregation functions can be classified into three different groups. The first group 

corresponds to distributive functions (e.g.  sum, count, etc.), which calculate aggregated facts of the 

selected granularity level from the values already aggregated at the lower level (e.g. yearly amounts 

can be calculated by summing quarterly values). The second group corresponds to algebraic functions 

(for example the average) that calculate aggregated values from stored intermediate results (for 

example, the average of an amount per year can be calculated from the sum of measures and its count 

at quarter level).  The third group corresponds to holistic functions that cannot be calculated from 

intermediate results. In this case, the measure of aggregated facts must be calculated by using the 

measures of facts at the lowest granularity level (e.g. distinct count, rank, etc.).  
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In this work, we focus on the management of missing data considering multi-granular facts and 

most common distributive, algebraic, and holistic SQL aggregation functions. Indeed, incomplete 

data is endemic to real-world data (Dyreson et al., 2003). This statement is more relevant today in the 

context of big data with a variety of sources and data acquisition tools. As shown by several works, 

this quality issue can have important drawbacks on the result of analysis based on incomplete data, 

since such analysis may be inaccurate, and can lead to misleading decisions (Little et al., 2002). 

Therefore, motivated by the importance of the management of incomplete data, several studies have 

been done in the context of relational and statistical databases (Dyreson, 1997). There exist different 

approaches for handling incomplete data. Among them, imputation, which consists in using statistical 

processes to estimate missing data, is one of the most widely used approach in the context of DW 

(Rubin, 1987; Graham, Olchowski, and Gilreath 2007). However, to the best of our knowledge, 

existing works in the DW context do not take into account multi-granular facts in the imputation 

process, and they do not support holistic aggregation functions, such as distinct count. Indeed, 

estimation functions can output values that do not fit with multi-granular facts. Therefore, motivated 

by the lack of a formal framework for imputation of measures in multi-granular DW, we propose a 

generic approach, called adjustment, which enables to use detailed and aggregated facts in the 

imputation process solving the limitations of existing work. Our proposal considers the most common 

aggregation functions supported by Relational Database Management Systems (DBMS) (such as 

Postgresql, Oracle, etc.) and OLAP servers (such as Mondrian, Microsoft Analysis Server, etc.): sum, 

count, max and min as distributive functions, average as algebraic function, and distinct count as 

holistic function. Our approach is implemented as a linear programming problem. 

Let us note that, since the choice of the right imputation method depends on the particular used 

dataset, the estimation functions used by our adjustment approach are considered as input parameters. 

We classify them into two categories: 

- “Horizontal functions” that estimate the missing facts based on the relations of similarities, 

dissimilarities, correlations, etc. of the facts with the same dimensions levels. 
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- “Vertical functions” that use aggregated facts as the only parameter to estimate detailed 

missing facts.  

Our adjustment approach is generic since it does not provide any suggestion for the choice of the 

most appropriate vertical and horizontal methods, but it focuses on coupling these methods to 

improve the results of horizontal functions by means of aggregated facts. In this way, it improves 

the imputation performance for any warehoused dataset. Therefore, the choice of particular vertical 

and/or horizontal imputation functions is let to decision-makers and DW experts. 

Finally, its implementation and validation are also presented, by means of two commonly used 

datasets in DW and data mining academic research and industrial communities. 

Our approach is very similar to spatial, temporal and spatio-temporal disaggregation methods that 

have been widely studied in literature (Sax et al., 2013), (Plumejeaud et al., 2011). However, these 

methods are usually very complex, and they fit with a particular application domain. In the context of 

DW, decision-makers and DW experts are not always able to choose and implement the best 

disaggregation method for two main reasons. Firstly, warehoused data coming from different external 

sources (meteorological, retail, etc.) necessitate advanced skills for each of them. Secondly, they 

usually have not research profile skills to be able to understand complex disaggregation methods 

proposed in literature. Therefore, there is a need for an approach being able to work also with simple 

estimation methods. For example, let us consider some marketing decision-makers who want to 

analyze the impact of the weather on the sales of a retail company using OLAP systems. Then, 

external weather data are integrated in the DW with internal sales data. In the case of missing values 

in the weather dataset, decision-makers and DW experts of the retail company must estimate them, 

but they have not sufficient skills to select the best estimation or disaggregation method to use 

(Gagnon et al., 2017). However, they can easily apply some simple estimation like average, mean, 

etc. which do not provide the best estimation possible, but represent a simple base to handle with 

missing values. Therefore, once missing values have been estimated, they can explore the warehoused 
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data by means of OLAP operators, and keep in mind the values that have been estimated, and so pay 

more attention to these values in their analysis.  

The rest of this paper is organized as follows. Section 2 gives the motivation of this study with an 

analytical case study. Section 3 details related work, Section 4 and Section 5 present the 

multidimensional and multi-granular model used by our approach. Section 6 describes the proposed 

adjustment approach, and Section 7 presents experimental results. 

2 Motivation 

In this section, we present the motivation of our work using a retail case study. In particular, we use 

the FoodMart DW. It is a dataset supplied with some existing commercial Data Warehouse and 

OLAP systems, such as Pentaho Mondrian, Microsoft Analysis Services, etc. 

The multidimensional model of this case study is presented in Figure 1 using the UML profile for 

DW proposed by (Boulil et al. 2015). The FoodMart DW has been modified to fit with the research 

issues of this work by simplifying several dimensions, and introducing multi-granular facts. 

 

Figure 1. Sales DW schema 
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This DW consists of three dimensions: a spatial dimension (Location) representing cities stores 

grouped by region, a classical temporal dimension, and a thematic dimension representing products. 

Instances of dimensions (i.e. members) are detailed in Figure 2. The measures are the number of 

sales, which are summed together along all dimensions, and the distinct count of products.  

This DW allows analyzing the quantities of sold of products according to the spatial and temporal 

dimensions. For example, the DW allows decision-makers to understand the temporal periods where 

TVs are the most sold products. Moreover, the distinct count of products allows analyzing the range 

of sold products in order to improve the sales of some particular unsold product. For example, the 

decision-makers can discover that TVs are not sold during a particular period of the year in the shops 

of NY. The key objective of the multi-granular fact is to store both detail and aggregated data at 

different levels of granularity (Iftikhar & Pedersen, 2010).  The Time dimension allows storing 

factual data at level year and level quarter (i.e. multi-granular fact). In addition, the Product 

dimension is associated to the fact with the aggregated level. A sale can be associated to a particular 

product or to a product type. 

 

Figure 2. Members of dimensions 



7 

 

Moreover, some missing values are present in the warehoused data due to some communication 

problems with the data server or some errors in the ETL. Missing values can concern measures and 

dimensions members. Therefore, data could be stored at different granularities in the DW.  

An example of factual data is shown in table 1. Measure values could be associated to the lowest 

dimension level (for example, row1: [Bellingham; milk; Quarter 1-1997; 20;milk]),  or to coarser 

levels (for example, row6: [Bellingham; Drink; 1997; 90;Drink]) (i.e. multi-granular facts).  
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Query Id row Dimensions Measure + Aggregation functions 

Measure Agg. functions Measure Agg. functions 

Location Product Time Quantity SUM Sum Avg Product Distinct count 

Q3 1 Bellingham Milk Quarter 1-1997 20     Milk   

2 Bellingham Milk Quarter 2-1997 46     Milk   

3 Bellingham Milk Quarter 3-1997 ?     Milk   

4 Bellingham Milk Quarter 4-1997 ?     Cola   

5 Bellingham Cola Quarter 4-1996 10     Milk   

6 Bellingham Milk 1997   90   Milk   

Q4 7 France Drink Quarter 4-1998   166   Drink 1 

8 Carrefor ? Quarter 4-1998 30     ?   

9 Carrefor Milk Quarter 3-1998 15     Milk   

10 Carrefor Gyn Quarter 2-1998 56     Gyn   

11 Carrefor ? Quarter 1-1998 65     ?   

Q1 12 Standa Bananes Quarter 3-1998 20     Bananes   

13 Standa Bananes Quarter 2-1998 10     Bananes   

14 Standa Bananes Quarter 1-1998 ?     Bananes   

  15 Upim Bananes Quarter 1-1998 30     Bananes   

Q1b 16 JollyColor Pen 1998 10     Pen   

17 JollyColor Pen Quarter 3-1998 ?     Pen   

Q2 18 Bene ? Quarter 1-1998 10     ?   

19 Bene Sparklin Quarter 2-1998 11     Sparklin   

20 Bene Tonic Quarter 3-1998 13     Tonic   

21 Bene ? Quarter 4-1998 12     ?   

12 France Drink Quarter 1-1998 7     Drink 2 

22 Bene Drink 1998 36     Drink 4 

 

Table 1. Multi-granular facts with missing values 
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Missing values could be: 

- measures values (for example, the sales value associated to [Bellingham; Milk; Quarter 3-1997] 

(row 3) is missing), and  

- dimensions members. Let us consider the fact associated to [Carrefor; ?; Quarter 4-1998] (row 8). 

30 products have been sold, but the sold of products in detail for the 4h quarter of 1998 is not 

known. 

Different OLAP queries can be answered using this DW, as shown in table 2. 

Id Query Used data Issue 

Q1 What is the total of banana sold in 1998 by Standa? Rows 12-13-

14 

Numerical measure “quantity” is missing for row 14 

Q1b What is the quantity of pen sold in Quarter 3 of 1998 by 

JollyColor? 

Row 17 Numerical measure “quantity” is missing for row 17 

Q2 What is the product sold by Bene in Quarter1-1998? Row 18 Alphanumeric measure “Product” (member) is missing 

for row 18 

Q3 What is the quantity of milk sold per quarter in 1997 by 

Bellingham? 

Rows 1-2-3-4 Numerical measure “quantity” is missing for rows 3-4 

Q4 What is the product sold per quarter in 1998 by 

Carrefor? 

Rows 8-9-10-

11 

Alphanumeric measure “Product” (member) is missing 

for row 8 

Table 2.Examples of OLAP queries 
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Queries Q1, Q1b and Q3 use a numerical measure with the distributive aggregation function SUM. 

They involve some missing numerical measures.  

Queries Q2 and Q4 use the distinct count (i.e. holistic aggregation) on the members of the Product 

dimension. They also involve some missing alphanumeric measures.  

Let us analyze the possible solutions for the previously described queries. 

For the query Q1, the measure of the row 14 is missing. It is possible to use a simple estimation 

function such as the nearest on the spatial dimension or on the temporal dimension.  In the case of the 

spatial dimension, all factual data of the Upim shop (the nearest to Standa) in the first quarter of 1998 

will be used. In the case of the temporal dimension, all factual data concerning the Standa store on 

sales of bananas in the nearest quarter of 1998 will be used. The results are shown in table 3. Let us 

note that, since there are not aggregated facts for missing values, then other methods using aggregated 

data cannot be applied. The main problem of this approach is that the result depends on the used 

estimation function, and on data used by the estimation function.  

Let us consider the query Q1b. Only the aggregated data (annual sales) is given and the detailed 

data needs to be estimated (quarterly sales). In this case, the yearly measure could be divided into the 

quarter level using the Denton-Cholette method (Table 3). 

These approaches are different according to data used for the estimation. As described in the 

introduction, we can consider the first one as a horizontal function, since it uses only factual data at 

the most detailed levels. The second one can be considered as a vertical function since it uses 

exclusively aggregated facts. 

The query Q2 concerns a missing member, since the product name is missing for rows 18 and 21. 

For this kind of estimation, classification algorithms like C4.5 can be used (Table 3). 

Id Solution Problem 

Example Used data Result 

Q1 Temporal interpolation 

function 

Nearest Row 13 10 No 

Spatial interpolation 

function 

Nearest Row 15 30 No 

 The choice of data used for 

estimation can affect the 

result 
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Q1b Multi-granular function Denton-Cholette Row  16 2.5 No 

Q2 Classification method C4.5 Rows 19-20 Soda No 

Q3 Temporal interpolation 

function 

Denton-Cholette Row 2 46 

 

46 

 

 

The aggregation with SUM 

of Rows 1-2-3-4 does not 

respect the aggregated value 

of row 6 

20+46+46+46 ≠ 90 

Q4 Classification method C4.5 Rows 9-10-11 Milk The aggregation with 

distinct count (product) of  

Rows 8-9-10-11 does not 

respect the aggregated value 

of row 7 

Table 3. Solutions and problems of OLAP queries of table 2 

 

Finally, queries Q3 and Q4 raise a particular problem related to the estimation function and the 

aggregated facts. Indeed, for query Q3 a numerical horizontal estimation function can be applied. In 

the same way, a machine learning algorithm can be used for query Q4. The problem is that, once the 

measures are estimated, their aggregation using the sum and the distinct count are different from 

aggregated facts (Table 3). The usage of vertical method does not also represent an effective solution, 

since it does not take into account the values of the most detailed facts.  

3 Related work

Some works investigate the representation of measures at different granularities in DW. Motivated by 

the lack of conceptual spatio-multidimensional models based on standard languages and supporting 

such complex modeling requirements, and in particular multi-granular facts, (Bimonte et al., 2014) 

present a new UML profile for complex spatial DW. They also propose an implementation in a 

classical Relational OLAP architecture. In the same line, (Damiani et al., 2006) propose a formal 

model for spatial DW, where measures are represented at different granularities via a new OLAP 

operator called measure climbing that allows to move to a coarser granularity of the measures. 

(Gascueña et al., 2009) also propose a conceptual model with a multi-representation of spatial 

members, and a logical implementation in Relational DBMSs. (McGuire et al., 2008) define a 

snowflake schema for environmental applications, where three dimensions represent the same spatial 

members at different resolutions. (Malinowski et al., 2007) provide a complete framework for spatial 
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DW using complex multidimensional structures, such as complex hierarchies and multi-granular 

facts. They propose a conceptual model and its implementation in a relational DBMS. (Atigui et al., 

2015) study the reduction of data warehouse proposing a constellation schema, where detailed 

measures of a DW are aggregated and stored into another DW. (Iftikhar & Pedersen, 2010) propose 

different logical models, extending the classical multidimensional schemata for measures at different 

temporal granularities. All the above-described works mainly study conceptual and logical 

representation and querying of DW with multi-granular facts, but they do not provide any methods to 

use aggregated measures for the estimation of detailed measures. 

Multi-granular database’s models have been also proposed, and they can be considered quite similar 

to DW models, since they aim to represent data at different granularities such as hierarchies’ levels of 

DW. Bertino et al. (2010) propose a multi-granular model for spatio-temporal data. The authors 

define two refinement/estimating functions (restr/split). However, these operators do not take into 

account existing data at the most detailed granularity. (Hegner et al., 2017) introduce integrity 

constraints into multi-granular database models. The authors define a set of formal constraints for the 

definition of hierarchy of granularities. This work can be considered very similar to our proposal, 

where the coarser granularity can be considered as a constraint for the detailed granularity. However, 

the authors focus more on the formalization of the constraints than on their implementation. (Zhuang 

et al., 2016) present a multi-granular database model, and an algorithm implemented in the Hadoop 

framework to solve queries over large datasets using data at different granularities. However, works 

on multi-granular database’s models are not well adapted to OLAP analysis, since they do not 

explicitly define the concepts of dimensions and facts. 

Several works try to “estimate” missing data. The presence of missing or incomplete data is 

commonplace in large real-world databases (Rubin, 1976). This problem is addressed in many fields 

such as statistics, databases, data mining etc. and many solutions are proposed (Wohlrab and 

Fürnkranz, 2011; Eekhout et al., 2012) focusing on imputation (Graham, Olchowski, and Gilreath 

2007) to estimate missing values. Other works study the disaggregation of time series (Sax et al., 

2013), spatial and spatio-temporal data (Plumejeaud et al., 2011). Disaggregation is defined as the 

process to impute detailed values from coarser values respecting some mathematical constraints (sum, 
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average, first and last values) (Sax et al., 2013). These methods use aggregated values, and some 

existing detailed values. A wide literature exists about disaggregation, but to the best of our 

knowledge, most of these works provide ad-hoc methods adapted to particular datasets, such as soil 

data (Odgers et al., 2014), meteorological data (Gagnon et al., 2017), census data ((Li et al., 2007) for 

spatial data and (Monteiro et al., 2019) for spatio-temporal data)), etc. Some generic methods have 

also been proposed, such as symmetric disaggregation, stochastic allocation (Gallego et al., 2001) for 

spatial disaggregation, Denton-Cholette (Dagum et al., 2006) and Chow-Lin (Chow and Lin, 1971) 

for temporal disaggregation (a survey of temporal disaggregation can be found in (Buono et al., 

2018)). To the best of our knowledge, these methods are the most similar to our proposal, but present 

some limitations:  

(i) the distinct count constraint is not taken into account,  

(ii) they cannot be applied to non-spatial, non-temporal or non-spatio-temporal data,  

(iii) they are conceived for particular dataset and they are usually complex, and 

(iv) they must be applied to particular well identified dataset. In other terms, contrary to DW (where 

data is organized in dimensions, and hierarchies with members, children, descendants and ancestors), 

the extraction of the used dataset has to be manually done, which is difficult in a complex huge 

dataset.  

Finally, in the context of DW, (Abdelbaki et al., 2015) and (Sair et al., 2012) integrate OLAP with 

data mining, to take advantage of predictive methods available. In (Wu et al., 2002), log-linear and 

logistic models are combined to estimate missing facts from known values. In the context of spatial 

DW, (Ahmed and Miquel, 2005) and (Zaamoune, 2012) use spatial and temporal interpolation 

functions to estimate the missing facts. These prediction methods are horizontal functions, since they 

do not take into account the presence of aggregated measures. (Wu et al., 2002) transform the 

problem of estimating detailed facts from aggregate measures into a linear system. (Palpanas et al., 

2005) estimate the detailed facts from aggregate measures using the principle of maximum entropy 

and iterative proportional fitting algorithm. (Amanzougarene et al., 2014) try to combine the two 

approaches, except that their strategy is limited to a single horizontal function, in addition their 

method is applicable only on non-numeric measures.  Table 4 presents some works related to OLAP 
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context that involve estimation of missing detailed facts. Contrary to disaggregation works, table 4 

shows that all existing works in DW and OLAP context do not take into account aggregated 

measures. 

 Method of  

Estimation 

Type of Measure Estimation Approach Aggregation 

constraint  

Sarawagi et al [2] Log linear modeling Numeric Horizontal No 

Wu et al. 2002 Linear system Numeric Vertical Yes 

Palpanas et al. 2005 Maximum  

Entropy  

Information 

Numeric Vertical Yes 

Chen et al. 2005 Linear regression Numeric Horizontal No 

Sair et al. 2012 Regression tree Numeric Horizontal No 

Amanzougarene et al, 2014 Constraint Programming and 

KNN 

Non-numeric Horizontal/ Vertical Yes 

Abdelbaki et al., 2015 Modular neural network Numeric  Horizontal No 

Table 4: Existing work on imputation of missing values in DW context

4 Multidimensional and multi-granular model 

In this section, we formalize the main concepts used by our adjustment approach. In particular, we 

define main concepts for multidimensional and multi-granular models. 

Dimensions and levels. A dimension, noted ��, is composed of a set of levels (���). Levels are 

organized into hierarchies using a partial order  ≤.  

The lowest level of the dimension is called “detailed level”, while other levels are noted “aggregated 

levels”. 

Example 1.  Considering the dimension ���	 of figure 1, levels are {Year, Quarter}, and there is the 

hierarchy 
��
�	
 ≤ �	�
. 
��
�	
 is the detailed level, and �	�
 is an aggregated level for the 

dimension ���	.□ 

Member: Given a level of  ���, the set of instances, called members are organized as a tree. 

A dimension is called spatial or temporal if members represent spatial or temporal data, respectively. 

Example 2. The level 
��
�	
 has: {“Quarter 1-1990”, “Quarter 2-1900”, “Quarter 3-1990”, 

“Quarter 4-1990”} as members (Figure 2). □ 

Ancestor and descendants:  The ancestor of a member m and a level DLi, denoted as ancestor(m, 

DLi), is the ancestor member of m that belongs to the level DLi.  
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The descendants of a member m, descendants(m), are all members belonging to the most detailed 

level and having m as ancestor. 

Example 3.  ancestor(Quarter 1-1990, year) = 1990; descendants(1990) = {Quarter 1-1990, Quarter 

2-1900, Quarter 3-1990, Quarter 4-1990} □ 

Fact: A fact f is composed of its coordinates and measures: 

- The coordinates of f  denoted as cf consist of the members of the different dimensions. �� =
���, . . , ���, �� ∈  �������, for � ∈ �1, ��  

- Measures are numeric or alphanumeric values {meas1….measm} 

Example  4. �� = ��	  �!ℎ��, �� #, 
��
�	
 3 − 1997� is set of coordinates of the fact f and the 

related measure is 20 (row 1 of Table 1).□ 

Detailed fact: A fact (� is a detailed fact if its coordinates are members of detailed levels. 

We denote Fd the set of detailed facts. 

Example 5. �� = ��	  �!ℎ��, �� #, 
��
�	
 3 − 1997� belongs to a detailed fact because 

“Bellingham” is a detailed member of the dimension “Location”, “Milk” is a detailed member of the 

dimension “Product”, and “Quarter 3−1997” is a detailed member of the dimension “Time” (figure 

2). □ 

Same levels facts: Let a fact f with coordinates  �����, . . , ���, same levels facts of f over �� , . . , �) 

(denoted *��	 	+(���*(��, ��, . . , ��)) are all facts fi with coordinates ������, . �′� … �′., ��� 
where m’l  is member of the same level of ml with  ∈ �� , .�. 
Let us note that we do not consider spatial facts (i.e. fact with spatial measures represented as 

geometrical objects or numerical results of spatial operators), as proposed by (Malinowsky et al., 

2007), since our linear programming-based proposal (Section 6) does not support geometrical objects. 

Example 6. *��	 	+(���* ���	  �!ℎ��, �� #, 
��
�	
 3 − 1997�, 
��
�	
3 −
1997� ={��	  �!ℎ��, �� #, 
��
�	
 1 − 1997�, ��	  �!ℎ��, �� #, 
��
�	
 2 − 1997�, 
��	  �!ℎ��, �� #, 
��
�	
 4 − 1997�}.□ 
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Ancestor fact: Let a fact f with coordinates �����, . . , ���, ancestor fact of f over ��  to DLi (denoted 

ancestorFact(cfi, DLi)) is the fact fi with coordinates ������, . �′�, ��� where m’i = ancestor(��, DLi) 

with � ∈ �1 , ��. 
Example 7. �1�	*��
2��� ���	  �!ℎ��, �� #, 
��
�	
 3 − 1997�, �	�
� =
 {��	  �!ℎ��, �� #, 1997�.□ 

Descendants facts: Let a fact f with coordinates �����, . . , ���, descendants fact of f over �� 
(denoted descendantsFacts(cfi, ��)) are facts fi with coordinates ������, �′�, ��� where mi = 

descendants(��) with � ∈ �1 , ��  
Example 8. �	*�	1��1�*2��� ���	  �!ℎ��, �� #, 1997�, �	�
� =
 {��	  �!ℎ��, �� #, 
��
�	
 1 − 1997�, ��	  �!ℎ��, �� #, 
��
�	
 2 −
1997�, ��	  �!ℎ��, �� #, 
��
�	
 3 − 1997�,   ��	  �!ℎ��, �� #, 
��
�	
 3 −  1997�} □ 

In the proposed approach, we consider a multidimensional and multi-granular model, where a fact can 

be represented using lowest levels, but also using aggregated levels. We formalize multi-granular 

facts using the following definitions. 

Aggregated fact: A fact (4 is an aggregated fact on the dimension Di, if there is a coordinate 

member that belongs to an aggregated level of Di.  

We denote Fa the set of aggregated facts.  

Example 9. ��	  �!ℎ��, �� #, 1997� belongs to an aggregated fact because “1997” is member of 

the aggregated level “Year”.□ 

Finally, we introduce missing facts that will be calculated by our approach using detailed and 

aggregated facts. 

Missing fact: A missing fact, noted (5, is a detailed fact with at least one unknown measure value. 

We denote Fm the set of missing facts. 

Example 10. The measure related to  ��6 = ��	  �!ℎ��, �� #, 
��
�	
 2 − 1997� is unknown then 

(5 is a missing fact.  □ 
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Figure 3 shows a graphical representation of facts: aggregated, detailed and missing.  

 

Figure 3.Graphical representation of facts 

5 Horizontal and vertical imputation functions 

In this section, we propose a formalization of horizontal and vertical categories of imputation 

functions using the multidimensional and multi-granular model described in Section 4. These 

definitions are generic since they are exclusively based on the DW elements used, and they do not 

refer to any particular dataset. In other terms, an imputation function is classified according to the 

warehoused data used for its computation (its domain).  Therefore, the formalization of horizontal and 

vertical functions does not reflect the computational logic of the particular imputation function.  

5.1 Horizontal functions 

Imputation functions that belong to the horizontal category use the measures of same levels facts to 

estimate the missing fact.  

Horizontal Estimation function: An horizontal estimation function is a function Eh: �2, (�) -> 

Dom,  where: 

- F is the set of same levels facts 

- fm is the missing fact 

- Dom is the domain of a measure of fm. 

Let measm the measure of the missing fact fm, we define three classes of estimation functions 

according to the used same levels facts:  
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- Spatial horizontal functions use same levels facts over the spatial dimension, 

- Temporal horizontal functions use same levels facts over the temporal dimension, and  

- Spatio-temporal horizontal functions use same levels facts over the spatial and temporal 

dimensions. 

Example 11. The spatial horizontal estimation function of table 3 used by the query Q1 is: 

ESpatialNearest(F,fm)->N. 

The temporal horizontal estimation function of table 3 used by the query Q1 is: 

ETemporalNearest(F,fm)->N.□ 

5.2 Vertical functions 

In this section, we formalize vertical functions used in our multi-granular and multidimensional 

model. Vertical functions use the measures of the ancestor to estimate the missing fact fm.   

Vertical Estimation function: Let DLi a dimension level, 

A vertical estimation function is a function Ev: �2, (�, ���� �) -> Dom,  where: 

- F is the set of facts 

- fm is the missing fact 

- Dom is the domain of measm 

- DomDli is the domain of DLi 

- the result is calculated  using the measure of the ancestor(fm, DLi). 

Example 12. The vertical estimation function temporal Denton-Cholette of table 3 used by the query 

Q1b is: ETDentot-Cholet(F, fm, Dom(Year))->N. □ 

6 Adjustment approach 

As defined in Section 5, vertical functions are useful when there are not detailed facts that can be 

used by horizontal functions. Indeed, horizontals functions give more accurate results than vertical 

functions, since they use more values in the estimation process, contrary to the vertical functions that 
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use only one aggregated value. However, as described in section 2, horizontal functions do not take 

into account aggregated values.  

Therefore, in this section based on formalization of the multidimensional and multi-granular model, 

and vertical and horizontal functions proposed in sections 4 and 5 respectively, we present our 

adjustment approach that overcomes the above-described limits. For the sake of readability, we 

reconsider the example of table 1 with only data used in the case of the adjustment (queries Q3 and 

Q4). Then, we propose to work with data of table 5 for numerical measures, and table 6 for 

alphanumeric measures. 

Dimensions Measure Aggregation du 

Location Product Time Sales SUM 

Bellingham Milk Quarter 1-1997 20  

Bellingham Milk Quarter 2-1997 46  

Bellingham Milk Quarter 3-1997 ?  

Bellingham Milk Quarter 4-1997 ?  

Bellingham Milk 1997  90 

Bellingham Cola Quarter 1-1997 ?  

Bellingham Cola Quarter 2-1997 ?  

Bellingham Cola Quarter 3-1997 10  

Bellingham Cola Quarter 4-1997 10  

Bellingham Drink Quarter 1-1997  35 

Bellingham Drink Quarter 2-1997  40 

Table 5.  Facts with missing numerical values. 

Dimensions Measure Aggregation 

function 

Location Time Product Distinct count 

(product) 

Carrefor Quarter1-1998 ?  

Carrefor Quarter2-1998 Milk  

Carrefor Quarter3-1998 Gyn  

Carrefor Quarter4-1998 ?  

Carrefor 1998  3 

CA Quarter 1-1998  2 

Bene Quarter1-1998 ?  

Bene Quarter2-1998 Sparklin  

Bene Quarter3-1998 Tonic  

Bene Quarter4-1998 ?  

CA Quarter4-1998  1 

Bene 1998  4 

                                  Table 6. Facts with missing alphanumerical values.  

6.1 Preliminaries 

To use the multidimensional dataset represented by the warehoused data in a linear programming 

approach (Sec 6.2), its formalization as uni-dimensional array is needed.  
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Uni-dimensional-array of facts: Let d dimensions, 178 the number of members of the level DLk of 

the dimension Dk,  mk
i
   the i-th member of DLk  and the position of mk

i  noted as ik, then the position 

uni-dimensional array of the fact f with cf (m1
i
 , …, md

i) is: 

        9
�

8:�
; <

�

=:8>�
17=? �8            �1�   

Example 13. Let the position of the members: “Bellingham” = 0,  “Milk” = 0, “Cola”=1, and 

“Quarter 1-1997” =0, “Quarter 2-1997”=1, “Quarter 3-1997”=2, “Quarter 4-1997”=3, then, position 

of cf=��	  �!ℎ��, @� �, 
��
�	
 2 − 1997� in the uni-dimensional array is 5 (0*2*4+1*4+1) 

(Figure 4). 

 

Figure 4. Uni-dimensional array of table 5 

Figure 4 shows two views of table 5: a multidimensional representation (on the left), where each cell 

has a unique index that corresponds to its address in a uni-dimensional array, and a uni-dimensional 

array (right) that is the projection of the multidimensional representation. 

6.2 Adjustment approach 

In this section, we formalize the problem of missing values imputation in our multidimensional and 

multi-granular model represented using a uni-dimensional array (Sec 5.2.1). We propose a linear 

programming solution in Section 6.2.2 

6.2.1 Overview of the adjustment approach 

Our generic imputation process for multi-granular DW is described in the pseudo-algorithm of figure 

5.  
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Figure 5.  Pseudo-algorithm of imputation process 

The adjustment algorithm takes as input: the missing detailed fact (fm), a particular imputation 

function (VEfunc) belonging to the vertical category, and a particular imputation function (HEfunc) 

belonging the horizontal category. Data experts according to the characteristics of the warehoused 

data choose VEfunc and HEfunc. The impact of particular computations of VEfunc and HEfunc is 

transparent for our approach.  

Then, the proposed method first checks the possibility to use aggregated facts (line 1). Otherwise, 

only the horizontal function HEfunc can be applied (lines 11-33). If an aggregated fact and same 

levels facts exist over the spatial and/or temporal dimensions, and the aggregation function used is not 

the distinct count, then the algorithm let the decision-makers use an existing disaggregation method 

(when it exists) (lines 3-10). Otherwise, our approach is used: the horizontal function HEfunc is used 

for estimation, and then the adjustment method is used (lines 7-10). Otherwise, the vertical method 
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(VEfunc) is applied (line 22). In the case when no aggregated facts and same levels facts exist, then 

two cases are possible: if the measures are Missing at Random (MAR) or Missing Completely at 

Random (MCAR), then the fact is deleted; if measures are Missing not at Random (MNAR), then the 

fact is kept but a special visualization in the OLAP client is provided. MAR, NMAR and MCAR 

characterize the missingness of the values. In particular (Little et al., 2002): 

- Missing at Random (MAR): Missing at random means that the propensity for a data point to be 

missing is not related to the missing data, but it is related to some of the observed data. 

- Missing Completely at Random (MCAR): The fact that a certain value is missing has nothing to 

do with its hypothetical value and with the values of other variables. 

- Missing not at Random (MNAR): Two possible reasons are that the missing value depends on 

the hypothetical value (e.g. people with high salaries generally do not want to reveal their 

incomes in surveys) or missing value is dependent on some other variable’s value. 

In the first two cases, it is safe to remove the facts with missing values depending upon their 

occurrences, while in the third case removing facts with missing values can produce a bias in the 

OLAP analysis. 

6.2.2 Problem formalization 

Let us consider that missing facts, which have not aggregated values, have been estimated using 

horizontal or vertical functions. Therefore, in the rest of the section, we denote: 

- Fd the uni-dimensional array composed of detailed facts, 

- Fe the uni-dimensional array of missing facts, and  

- Ai the uni-dimensional array of aggregated facts on the dimension Di. 

Example 14. Let table 7 representing data of table 5 with estimated values. 

Dimensions Measure Aggregation func 

Location Product Time Quantity SUM 

Bellingham Milk Quarter 1-1997 20  

Bellingham Milk Quarter 2-1997 46  

Bellingham Milk Quarter 3-1997 33  
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Bellingham Milk Quarter 4-1997 33  

Bellingham Milk 1997  90 

Bellingham Cola Quarter 1-1997 10  

Bellingham Cola Quarter 2-1997 10  

Bellingham Cola Quarter 3-1997 10  

Bellingham Cola Quarter 4-1997 10  

Bellingham Drink Quarter 1-1997  35 

Bellingham Drink Quarter 2-1997  40 

Table 7. Facts with estimated values 

Examples of the vector Fd and Ai using a sample of the data of our case study are shown in figure 6 

and figure 7. 

 

Figure 6. Uni-dimensional representation of facts of table 5 

□ 

Figure 7. Uni-dimensional representation of facts of table 6 

The main idea of the proposed adjustment method is to modify the estimated values, so that 

they comply with the aggregated fact.  

Adjustment: Let an estimated value (	8, the adjusted fact (�8 is a detailed fact such as: (�8 =
(	8 ∓ ∆8 .  
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Then, we can define a global adjustment as finding C such that: 

C= 9
8

|(�8 − (	8| �2� 
6.2.3 Linear programming formulation 

The adjustment step is defined as a linear programming model that minimizes a linear function with 

some constraints. The constraints may be equalities or inequalities.  

Objective Function: Adjusted values consist of minimizing (2) and can be considered as the 

objective function of a linear program. Formally: 

         Minimize ∑8 |(�8 − (	8| (3) 

Constraints: Aggregated facts can be considered as a constraint as follows:  

    F!!G�	*�	1��1�*2���*�F)��, F)�H ≤  F)�     ∀� = 1, … , �, ∀. = 1, . . , J��� (4) 

where Agg is a generic aggregation function that takes as inputs the detailed facts and the aggregated 

fact, J��� is the number of aggregated facts of the i-th dimension.. 

In order to solve it, we have to define: 

- the objective function as a linear function, and  

- the aggregation constraint for the different aggregation functions. 

6.2.3.1 Linearization of the objective function 

As previously defined, the objective function Minimize ∑8 |(�8 − (	8| is not linear since the 

absolute value function is not a linear function. However, it is possible to reformulate it as linear 

equations.  

The linearization of the objective function consists of using binaries variables �� and adding 

variables K�L as follows: 

Minimize ∑8 |(�8 − (	8| = Minimize ∑8 K8L  

with the following constraints:  

 (�8 − (	8  M  ð ∗  78  P=  K8L                        −(�8 M (	8 M  ð ∗  �1 − 78� P= K8L      �5� (�8 − (	8  R=  K8L                                        



25 

 

−(�8 M (	8 R=  K8L                                            
where ð is a big integer, and 78 is a Boolean variable 

Example 16. Let us consider figure 4, missing fact are (�S, (�T, (�U and (�V. Let suppose their 

estimated values are (	S, (	T, (	U and (	V, respectively  Then, the objective function is: Minimize 

KSL M KTL M KUL M KVL   with the following constraints:  

   (�S: ? −(	S ∶ 33 M  ð ∗  7S  P=  KSL            −(�S: ? M(	S: 33 M  ð ∗  �1 − 7S� P= KSL                 
(�S: ? −(	S ∶ 33 R=  KSL            − (�S∶: ? M(	S: 33 R=  KS                           L                                            (�T: ? −(	T ∶ 33 M  ð ∗  7T  P=  KTL              −(�T: ? M(	T: 33 M  ð ∗  �1 − 7T� P= KTL               (�T: ? −(	T ∶ 33 R=  KTL            − (�T: ? M(	T: 33 R=  KTL                                                                    (�U: ? −(	U ∶ 10 M  ð ∗  7U  P=  KUL         −(�U: ? M(	U: 10 M  ð ∗  �1 − 7U� P= KSL                    (�U: ? −(	U ∶ 10 R=  KUL        − (�U: ? M(	U: 10 R=  KUL                                         (�V: ? −(�	V ∶ 10 M  ð ∗  7V  P=  KVL         −(�V: ? M(	V: 10 M  ð ∗  �1 −  7V� P= KVL                (�V: ? −(	V ∶ 10 R=  KVL          − (�V: ? M(	V: 10 R=  KVL                               [                                         

6.2.4 Aggregation constraints 

The aggregation constraint depends on the used aggregation function. Indeed, the linearity of the 

aggregation constraints of distributive aggregation functions (i.e. sum, count and average) is not the 

same for holistic function such as the distinct count. 

Therefore, in this section we present the linearity of the sum, min, max and count functions (Section 

6.2.4.1), since they are representative of SQL distributive aggregation functions, the average for 

algebraic aggregation functions (Section 6.2.4.2), and the distinct count for holistic functions (Section 

6.2.4.3). 

6.2.4.1 Distributive aggregation functions: SUM, MIN, MAX and COUNT 

In the above problem formalization, the aggregation function is generic. Therefore, in the following 

we specify it for the different aggregation functions. 

For the aggregation function SUM, we can define it as described in the following. Let us note that the 

COUNT aggregation function is represented in the same way. 

Aggregation constraint for SUM and COUNT. 

The sum aggregation constraint can be defined as: 

9 �	*�	1��1�*2���* \F.�] R F.�   ∀� = 1, … , �, ∀. = 1, . . , J���          �6� 



26 

 

              where J��� is the number of aggregated facts of the i-th dimension. 

Example 17. Let consider figure 4. F�_: 90 is a known aggregate and his constraint can be defined 

as follows: (��: 10 M (�2: 46 M (�3: 33 M (	T: 33 ≤ F�_: 90     
For the count, we suppose a function ONE that assigns the value “1” to a fact. 

Then,  

∑ `ab��	*�	1��1�*2���* \F.�]� R F.�   ∀� = 1, … , �, ∀. = 1, . . , J��� �7� 

Aggregation constraint for MIN and MAX. 

The aggregation constraint for MAX and MIN can be defined as: 

MAX: ∀ fact f of �	*�	1��1�*2���*GF)�H  ( ≤ F)�    ∀� = 1, … , �, ∀. = 1, . . , J���          �8� 
MIN: ∀ fact f of �	*�	1��1�*2���*GF)�H 

( d F)�    ∀� = 1, … , �, ∀. = 1, . . , J���          �9� 
6.2.4.2 AVERAGE algebraic aggregation function 

Constraints of AVERAGE is defined by combining distributive constraints as follows:   

∑ �	*�	1��1�*2���*GF)�H∑ `ab��	*�	1��1�*2���*GF)�H ≤ F)�     
∀� = 1, … , �, ∀. = 1, . . , J���          �10� 

6.2.4.3 DISTINCT COUNT holistic function 

Let us consider the distinct count as holistic aggregation function for the aggregation constraint 

(F!!). As shown in section 2, the distinct count is usually applied to dimensions members that are 

alphanumeric values.  Then, we will replace members’ names with identifying integers. This choice 

does not affect the linear programming based approach that we propose as shown in the rest of the 

section. 

Example 18. Figure 8 shows how members of figure 7 are replaced by integer identifiers. 

Then, to translate the distinct count into a summative function we introduce Boolean variables e8 

instead of f8. 

Example 19. Let us consider figure 8, the following constraints are expressed using the variable  e8,  
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e� M e_ M eS M eT R F�_               eU M eV M eg M eh R F__: 4                              e� M eU R F��: 2     

eT M eh R FT�: 1                                                      

                                                       3 =  F�_     iℎ	
	               e8 ∈ �0,1�                                                           
 □ 

 

Figure 8. Members of figure 8 are replaced with integer identifiers. 

To solve e8 , we introduce new binaries variables j8k such that:  

                                                      { j#� = 1 �(  2�# ≠ 2��         j#� = 0 �( �( 2�# = 2��                                                 
(11)  

Where:      e8 = ∏k j8k                                                                                                            (12) 

Then, the relaxation technique helps to approximate (12) as follows: 

                                                  
|o�p,qo�r|

ð ≤ j8k ≤ |2�8, − 2�k| ∗ ð                            (13) 

where ð is a big number.  

From (11) and (12), we can deduce the constraints of e8 with respect to j8k as follow: 

                                                        e8 ≤ j8k ∀� = 1, . . , # − 1                                            (14)  

Moreover, let us note that (13) must also be linearized, since it has absolute values. Then, we can 

rewrite (13) as:   

�2�8 − 2�k� ∗  ð M s8 ≤ j8k  

�−2�8 M 2�k� ∗ ð M s8 ≤ j8k     # = 1, . . , a, � = 1, . . , # − 1                                             (15) 

�2�8 − 2�k�/ð M ð ∗ 78 M  s8 d j8k             
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�−2�8 M 2�k�/ð M ð ∗ 78Ms8 ≤ ð − j8k  

78 , s8 ∈ {0,1}  

Let us note that 2�8 − 2�k allows to know if 2�8 is different from 2�k. 

Example 20. Let us consider the variable of e� of example 19. According to (14), the following 

constraints are defined: 

�� ≤ j�_             �� ≤ j�S           �� ≤ j�T             �� ≤ j�U       �� ≤ j�V        �� ≤ j�g         �� ≤ j�h 
Moreover, for example for j�T, the following constraints are defined according to (13): 

�2�� − 2�T: 11� ∗ ð M s� ≤ j�T  

2�� = 9 �−2��: 9 M 2�T: 11� ∗ ð M u� ≤ j�T     # = 1, . . , a, � = 1, . . , # − 1 

�2��: 9 − 2�T: 11�/ð M ð ∗ �� Mu� d j�T             

�−2��: 9 M 2�T: 11�/ð M ð ∗ ��Mu� ≤ ð − j�T  

�8 , u8 ∈ {0,1}  

We formally define linear constraints of distinct count. 

Aggregation constraint for distinct count. 

∑ e R F.�  ∀� = 1, … , �, ∀. = 1 
  e8 ≤ j8k ∀� = 1, . . , # − 1 

�2�8 − 2�k� ∗  ð M s8 ≤ j8k  

�−2�8 M 2�k� ∗ ð M s8 ≤ j8k     # = 1, . . , a, � = 1, . . , # − 1                                             (16) 

�2�8 − 2�k�/ð M ð ∗ 78 M  s8 d j8k             

�−2�8 M 2�k�/ð M ð ∗ 78Ms8 ≤ ð − j8k  

78 , s8 ∈ {0,1}  

Using our approach and the constraints for all yk and j�Tvariables, one of the solutions is shown in 

table 8. We can note that estimated data of table 8 respect the distinct count aggregation constraint. 

Dimensions Measure Aggregation function 

Location Time Product Distinct count (product) 

Carrefor Quarter1-1998 Water  

Carrefor Quarter2-1998 Milk  

Carrefor Quarter3-1998 Gyn  

Carrefor Quarter4-1998 Water  

Carrefor 1998  3 

France Quarter 1-1998  2 

Bene Quarter1-1998 Milk  
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Bene Quarter2-1998 Sparklin  

Bene Quarter3-1998 Tonic  

Bene Quarter4-1998  Water  

France Quarter4-1998  1 

Bene 1998  4 

Table 8. Possible estimated solutions for table 6 

7 Experiments and validation 

This section describes the experiments that we have carried out using the proposed adjustment 

approach on two datasets: 

- FoodMart is a multidimensional dataset issued with many OLAP servers as described in 

section 2. 

- Car Evaluation consists of six dimensions: Buying (buying price), Maint (price of the 

maintenance), Doors (number of doors), Persons (capacity in terms of persons to carry), 

Lug_boot (the size of luggage boot), and Safety (estimated safety). The measure is the 

acceptability of the car (Good, Not Good, Average, etc.). 

DW and data mining research and industrial communities to evaluate our proposal commonly use 

these two datasets. Other academic benchmarks also exist (such as SSB, TPC-DS, etc.), but they are 

more complex and very similar to the ones used in this work.  

The proposed approach is evaluated in terms of quality and computational time. The obtained results 

are compared to other approaches in the section 7.1, and the computation time is presented in section 

7.2. 

The experiments have been conducted on a laptop with an Intel Core-i5 CPU (2.3 GHz) with 

Windows 7 (64 bits). Horizontal and vertical functions have been implemented in C++.  The 

proposed approach is implemented in C++ using IBM Cplex 12.6 libraries. Data are stored in the 

Postgresql.   

7.1 Quality evaluation 

Since aggregation constraints are related to the nature of aggregation function, we evaluate the quality 

of our adjustment method over three different aggregation functions, each belonging to a different 
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category of aggregation function: sum (distributive), average (algebraic) and distinct count (holistic). 

Then, we compare our methodology to some horizontal and vertical functions. For the horizontal 

function, we evaluate if these methods violate or not the aggregation constraints. 

Then, we evaluate the vertical function, which does not violate aggregation constraints, and we 

compare it to our proposal. This comparison is based on “Mean Absolute Error” defined as vFb =
�
w ∑w�:� |(�� − (	�| 

We also study the dependence of the number of missing facts and the quality of the results.  

7.1.1 Distributive aggregation functions: SUM 

We consider the case of sum that is a distributive function. For its evaluation, we use only the 

FoodMart dataset, since it comes with numeric measures. Some measures are aggregated facts per 

year. 

For the horizontal estimation function, we have used the following methods: 

- “mean”, which consists of using the average of known values, and 

- “most frequent”, which replaces the missing value by the most frequent known value. 

As shown in figure 9, these two horizontal functions lead to conflicts with the aggregation 

constraints. All constraints are violated in the case of “most frequent”, 

whatever the percentage of values missing. Constraints are also violated for the “mean”. Then, it 

makes no sense to compare horizontal functions with our method, since our adjustment proposal 

always respects aggregation constraints.  
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Figure 9. FoodMart and SUM as aggregation constraint: constraints violation of “mean” and “most 

frequent” horizontal functions  

Figure 10 shows the comparison among our proposal and some common vertical functions: “Min”, 

“Max” and “Split” (Bertino et al., 2010).  These methods have not conflicts with aggregation 

constraints. Figure 10 shows that our proposal has a fewer MAE value compared to the three vertical 

functions. Moreover, the MAE value of the adjustment increases quasi linearly according to the 

number of missing values.  

 

Figure 10. FoodMart and SUM as aggregation constraint: quality of estimation of vertical functions 

(min, max, split) and our adjustment approach 

7.1.2 Algebraic aggregation functions: AVG 

In this section, we consider the average as aggregation function.  We observed that the violation of 

the aggregation constraints are the same of the sum (figure 10). This is obvious since the aggregated 

value is not used by the horizontal estimation functions. 

To test the quality of the adjustment, approach we compare it with vertical functions Max, Min and 

Split. The results are shown in figure 11. Our proposal outperforms all the vertical functions. Like the 

case of sum, the MAE value of our adjustment approach grows quasi linearly with the number of 

missing data. 
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Figure 11. FoodMart and AVG as aggregation constraint: quality of estimation of Vertical functions 

(min, max, split) and our adjustment approach 

7.1.3 Holistic aggregation functions: Distinct Count 

To evaluate the case of “distinct count”, we consider the two datasets “Car evaluation” (Sec 7.1.3.1) 

and “FoodMart” (7.3.1.2) since they provide very different results, which are discussed in section 

7.3.1.3. 

7.1.3.1 Car Evaluation 

The Car Evaluation Database is created (Bohanec & Rajkovic, 1990) has six dimensions and the 

measure is the car evaluation value. The problem consists of estimating unfilled “Evaluation” 

measure. An example of the Car Evaluation dataset is shown in table 9. 

Dimension Measure + Aggregation functions 

Measure Agg. 

Functions 

Buying Maint Doors Persons Lug_boot Safety Evaluation Distinc count 

Vhigh Vhigh 3 4 Big high ?  

Vhigh High 3 4 Big high ?  

Vhigh Med 3 4 Big high Acc  

Vhigh Low 3 4 Big high Acc  

High Vhigh 3 4 Big high Unacc  

High High 3 4 Big high Acc  

High Med 3 4 Big high Acc  

High Low 3 4 Big high ?  

Med Vhigh 3 4 Big high ?  

Med High 3 4 Big high Good  

Med Med 3 4 Big high Vgood  

Med Low 3 4 Big high Vgood  

Low Vhigh 3 4 Big high Acc  

Low High 3 4 Big high Vgood  

Low Med 3 4 Big high Vgood  

Low Low 3 4 Big high Vgood  

All Vhigh 3 4 Big high  2 

All High 3 4 Big high  4 

All Med 3 4 Big high  2 

All Low 3 4 Big high  2 
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Vhigh All 3 4 Big high  2 

High All 3 4 Big high  2 

Med All 3 4 Big high  3 

Low All 3 4 Big High  2 

Table 9. Car Evaluation: instances of the multi-granular facts with missing value 

We use the popular machine learning algorithms J48 and Random Forest (RF) supported by Weka.   

We first randomly generate 20%, 25%, 30% and 35% of missing measure using the WEKA 

methods. Let us note that this experiment concerns the usage of our approach to estimate missing 

values. The MAR, MCAR and MNAR characterization of simulated measure values is not taken into 

account in this experiment, since we use them only when the estimation is not possible to delete or 

highlight measures (lines 30-35 of algorithm of Figure 5). Then, we estimate of missing “Evaluation” 

with J48 and RF, and we found that all constraints are violated with J48 and RF, as shown in figure 

12.  

We apply the adjustment algorithm to help respect constraints, as shown in figure 13. 

 

Figure 12. Car Evaluation and distinct count as aggregation constraint: constraints violation of 

“RF” and “J48” horizontal functions 

Concerning the quality of estimation after adjustment, figure 14 shows the curve of the two methods 

in term of percentage of well-estimated elements using J48 and RF algorithms.  

After adjustment, J48 has better result than RF. The quality of the result after the adjustment depends 

on the horizontal function used.  
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Figure 13. Car Evaluation and distinct count as aggregation constraint: constraints violation of 

“RF” and “J48” horizontal functions after our adjustment approach 

 

Figure 14. Car Evaluation and distinct count as aggregation constraint:  quality of estimation of 

missing value with J48 and RF with our adjustment approach 

7.1.3.2 FoodMart  

We used for this experiment FoodMart that has been described in section 2. The problem is to 

estimate missing products. Estimation of missing products is important for stock management 

analysis. This case involves an alphanumerical measure, and its associated aggregation function is 

distinct count.  
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  We use the machine learning algorithm J48 and RF for the estimation. To evaluate the quality of 

the estimation, we first randomly generate 20%, 25%, 30% and 35% of missing measure. After the 

estimation, as shown in figure 15, all constraints are violated with J48 and RF. 

We apply the adjustment algorithm to help respect constraints as detailed in figure 15. 

 

Figure 15.  FoodMart and distinct count as aggregation constraint: constraints violation of RF and 

J48 horizontal functions 

 

Figure 16. FoodMart and distinct count as aggregation constraint: constraints violation of RF and 

J48 horizontal methods after our adjustment approach 

Concerning the quality of estimation after adjustment, figure 17 shows the curve of the two cases in 

terms of percentage of well-estimated elements using J48 and RF algorithms.  The case of J48 is 

better than RF. However, both give bad results since the two algorithms are not adapted for this data. 

The result of the estimation after the adjustment depends on the case. The quality of the result 

degrades when the number of missing values increases. 
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Figure 17. FoodMart and distinct count as aggregation constraint:  quality of estimation of missing 

value with J48 and RF with adjustment 

7.1.3.3 Discussion 

In this section, we provide a discussion of previous described experiments. The performed tests 

highlight that the case of SUM and AVG of our proposal provides good results in terms of quality 

estimation. In other terms, the usage of simple estimation functions coupled with the adjustment 

approach allows to respect aggregation constraints coupled with a good estimation of missing values.  

The case of Distinct Count is more complicated since it is a holistic function. In all cases, horizontal 

function should be correctly chosen to have a good estimation quality. Indeed, for the FoodMart 

dataset the RF and J48 machine learning algorithms do not provide good estimation. Instead, the 

same functions for the Car Evaluation dataset seems to be effective. 

Although, the choice of the horizontal estimation functions depends on the dataset used and the 

decision-makers skills, these experiments validate the generic aspect of our adjustment approach. 

Indeed, it can be applied to any aggregation function and horizontal estimation function. 

7.2 Computational time 

For the time performance evaluation, we have used FoodMart since it contains more data than Car 

Evaluation. We have tested three different sizes of the fact table: 5000, 10000 and 20000 tuples.  
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Figure 18 shows the execution time curves of the three cases related to aggregation constraint “sum”. 

Execution time seems feasible for an off-line process. 

Figure 18.  Execution time of adjustment: cases of sum and average 

Figure 19 presents the execution time of the adjustment when the aggregation constraint is the 

“distinct count”.  Also for this case, the execution time rests feasible. 

Figure 19.  Execution time of adjustment: case of distinct count 

8 Conclusion and Future work 

Data Warehouse (DW) and OLAP systems are first citizens of Business Intelligence tools. They are 

widely used in the academic and industrial communities for numerous different application domains. 

In despite of the maturity of DW and OLAP systems, with the advent of Big Data more and more 

source of data are available and warehousing this data can lead to important quality issues.  In this 

paper, we describe an approach of missing data estimation in multi-granular data warehouse. We first 

classify estimation methods in two approaches: horizontal approaches, which consist of using facts of 

the same level of granularity in the estimation and vertical approaches that estimate from known 
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aggregated values. Our method first checks the possibility to use aggregated values, otherwise only 

horizontal functions can be applied. If an aggregated fact and same levels facts exist, then one 

horizontal method is used for estimation, and then our adjustment method is used. Otherwise, a 

vertical method is applied.  For the adjustment, we consider aggregated values as constraints to be 

satisfied, by minimizing the adjustment of result of estimation issuing from horizontal method.  We 

use linear programming techniques to address the constraints problem. For this, we have investigated 

distributive and algebraic aggregation functions, for holistic case, we investigated only “distinct 

count” which is a standard function. Experiments results done over FoodMart claim good quality of 

estimation when all constraints are satisfied.   



39 

 

Some aspects of this paper merit our future work. We plan to investigate the linearization of 

constraints for other common holistic and algebraic functions (such as median, rank, etc.), and 

investigate scalability issue for our adjustment approach concerning holistic constraints.  

Moreover, we also plan to investigate spatial facts with measures resulting from spatial metric 

operators such as distance, area, etc. In order to tackle this issue, a formal and explicit representation 

of spatial data (i.e. geometrical objects) must be introduced in our formal multidimensional model, 

and then the linear programming algorithm must be adapted with the particular aggregation functions 

associated to those measures. 

Finally, to validate our approach it is also necessary to test it over different real datasets, with 

advanced estimation functions defined by decision-makers, in order to evaluate the quality 

improvement provided by our adjustment approach over these functions. 

Acknowledgement 

This work was supported by the French National Research Agency as part of the “Investissements d’Avenir” through 

the IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001), and the ANR project ANR-17-CE04-0012 VGI4bio. 

References 

Abdelbaki W.,Yahia, B. S., Messaoud, B. R.(2015). Modular Neural Networks for Extending OLAP 

to Prediction. Trans. Large-Scale Data- and Knowledge-Centered Systems, (pp. 73-93).  

 Ahmed T. et Miquel M. (2005). Multidimensional Structures Dedicated to Continuous 

Spatiotemporal Phenomena. In : JACKSON et al. 22th British National Conference on Databases, 

Sunderland, UK. Berlin Heidelberg : Springer, (pp. 29-40), LNCS 3567. 

Amanzougarene, F., Zeitouni, K., Chachoua, M., (2014). Predicting Missing Values in a Data 

Warehouse by Combining Constraint Programming and KNN, In proceedings of  EDA’14, (pp.145-

154).  



40 

 

Faten Atigui, Franck Ravat, Jiefu Song, Olivier Teste, Gilles Zurfluh: Facilitate Effective Decision-

Making by Warehousing Reduced Data: Is It Feasible? IJDSST 7(3): 36-64 (2015) 

Bimonte, S., Pradel, M., Boffety, D., Tailleur, A., Andre, G., Bzikaha, R. & Chanet, JP.  (2013). A 

new sensor-based Spatial OLAP architecture centered on an agricultural farm energy-use 

diagnosis. International Journal of Decision Support System Technology, 5(4), 1-20. 

Bimonte S. (2015). Spatial OLAP for agri-environmental data and analysis: Lessons learned. 38th 

International Convention on Information and Communication Technology, Electronics and 

Microelectronics,{MIPRO}, (pp. 1393-1398). 

Bohanec, M.  and Rajkovic, V. (1990). Expert system for decision making. Sistemica 1, (pp. 145-

157). 

Boulil, K., Bimonte, S., Pinet, F. (2015). Conceptual model for spatial data cubes: A UML profile and 

its automatic implementation. Computer Standards & Interfaces, 38,  113-132. 

Camossi E., Bertolotto M. et Bertino E. (2006). A multigranular object-oriented framework 

supporting spatio-temporal granularity conversions. International Journal of Geographical 

Information Science, 20(5), 511-534. 

Chen, B. C., Chen, L., Lin, Yi., Ramakrishnan, R. (2005). Prediction cubes In VLDB 

Endowment,   31st international conference on Very large data bases (pp. 982-993). 

E. B. Dagum and P. A. Cholette. Benchmarking, Temporal Distribution, and Reconciliation Methods 

for Time Series. Lecture Notes in Statistics. Springer-Verlag, New York, 2006. 

Damiani, Maria Luisa, and Stefano Spaccapietra. "Spatial data warehouse modelling." Data 

Warehousing and Mining: Concepts, Methodologies, Tools, and Applications. IGI Global, 2008. 659-

678. 

 

F. T. Denton. Adjustment of monthly or quarterly series to annual totals: An approach based on 

quadratic minimization. Journal of the American Statistical Association, 66:99–102, Mar. 1971 



41 

 

Dyreson C. E., Pedersen T. B. & Jensen C. S. (2003). Incomplete information in multidimensional 

databases. In  M. Rafanelli (ed.), Multidimensional Databases (pp. 282-309). Idea Group Publishing. 

Hershey, PA: Information Science Publishing. 

Eekhout I., Boer M. R.,Twisk JosW. R., Vet Henrica C.W. & Heymans M. W. (2012). Missing data : 

a systematic review of how they are reported and handled. Epidemiology, 23(5), 729-32. 

Gagnon, Patrick, et al. "The added value of stochastic spatial disaggregation for short-term rainfall 

forecasts currently available in Canada." Journal of hydrology 554 (2017): 507-516. 

Gallego J. and Peedell S. 2001 Using CORINE land cover to map population density. In Towards 

agri-environmental indicators. Integrated statistical and administrative data with land cover 

information. Copenhagen: European Environment Agency, pp. 94-105. 

Graham, J.W., Olchowski, A.E. & Gilreath, T.D. (2007). How Many Imputations are Really Needed? 

Some Practical Clarifications of Multiple Imputation Theory. Prev Sci, 8 , 206-213.  

Gray, J., Chaudhuri, S., Bosworth, A. et al. (1997). Data Cube: A Relational Aggregation Operator 

Generalizing Group-By, Cross-Tab, and Sub-Totals.  Data Mining and Knowledge Discovery, 1, 29-

53.  

Gascueña, C. & Guadalupe, R. (2009). A Multidimensional Methodology with Support for Spatio-

Temporal Multigranularity in the Conceptual and Logical Phases. In Progressive Methods in Data 

Warehousing and Business Intelligence: Concepts and Competitive Analytics (pp. 194-230). Hershey, 

PA, USA: IDEA Group Publishing. 

Hegner, Stephen J., and M. Andrea Rodríguez. "A model for multigranular data and its integrity." 

Informatica 28.1 (2017): 45-78. 



42 

 

Iftikhar, N., Pedersen, B. T. (2010). Schema Design Alternatives for Multi-granular Data 

Warehousing.  Database and Expert Systems Applications, 21th International Conference DEXA (pp. 

111-125). 

R.J.A Little and D.B Rubin. Statistical Analysis with Missing Data, Second Edition. John Wiley, 

New York, 2002, p. 491 

Li, Tiebei, et al. "A comparison of spatial disaggregation techniques as applied to population 

estimation for South East Queensland (SEQ), Australia." Applied GIS 3.9 (2007): 1-16. 

 

 

Malinowski, Elzbieta, and Esteban Zimányi. "Logical representation of a conceptual model for spatial data 

warehouses." GeoInformatica 11.4 (2007): 431-457.  

M. McGuire, A., Gangopadhyay, A., Komlodi, C., & Swan (2008). A user-centered design for a spatial 

data warehouse for data exploration in environmental research. Ecological Informatics 3(4-5), 273-285 

Monteiro, João, et al. "Spatial Disaggregation of Historical Census Data Leveraging Multiple Sources of 

Ancillary Information." ISPRS International Journal of Geo-Information 8.8 (2019): 327. 

Odgers, Nathan P., et al. "Disaggregating and harmonising soil map units through resampled classification 

trees." Geoderma 214 (2014): 91-100. 

Plumejeaud, C., Mathian,  H., Gensel, J.,  Grasland, C., (2011). Spatio-temporal analysis of territorial 

changes from a multi-scale perspective. International Journal of Geographical Information Science, 

25(10), 1597-1612. 

Quinlan, J. R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings of the 

Tenth International Conference on International Conference on Machine Learning (pp. 236-243).   

Rubin, D. B. (1976). Inference and Missing Data. Biometrika, 29, 159-183. 

Sair, A., Erraha, B., Elkyal, M., Loudcher, S. (2012). Prediction in OLAP cube. In International  

Journal of Computer Science, 9(3). 



43 

 

Sarawagi, S., Agrawal, R., Megiddo, N. (1998). Discovery-driven Exploration of OLAP Data Cubes. 

In: Proceedings of the 6th International Conference on Extending Database Technology 

(EDBT’1998), Valencia, Spain, Springer (pp. 168–182)  

Palpanas, T., Koudas, T., Mendelzon, A., (2005). Using datacube aggregates for approximate 

querying and deviation detection. IEEE Transactions on Knowledge and Data Engineering, 17(11), 

1465-1477. 

Truong, T. M., Amblard, F., Gaudou, B. & Sibertin-Blanc, C. (2014). To calibrate & validate an 

agent-based simulation model, an application of the combination framework of BI solution & Multi-

agent platform. In: Proceedings of 6th International Conference on Agents and Artificial Intelligence 

(ICAART), Angers, France. 

Witten, I.H., Frank, E., Trigg, L., Hall, M., Holmes, G. & Cunningham, S.J. (1999). Weka: Practical 

machine learning tools and techniques with Java implementations. (Working paper 99/11). Hamilton, 

New Zealand: University of Waikato, Department of Computer Science. 

Wohlrab L. et Furnkranz J. (2011). A review and comparison of strategies for handling missing 

values in separate-and-conquer rule learning. J. of Intelligent Information Systems, 36(1) :73-98. 

Wu X. et Barbara D. (2002). Learning missing values from summary constraints, SIGKDD 

Explorations, 4(1). 

Zaamoune, M.,  Bimonte, S.,  Pinet, F., Beaune, P. (2013). A New Relational Spatial OLAP 

Approach for Multi-resolution and Spatio-multidimensional Analysis of Incomplete Field Data. In: 

Proceedings of the 15th International Conference on Enterprise Information Systems, Angers, 

France.  

                                                           
i  




