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Abstract 15 

Fast characterization of solid organic waste using near infrared spectrosco-16 

py has been successfully developed in the last decade. However, its adoption in 17 

biogas plants for monitoring the feeding substrates remains limited due to the lack 18 

of applicability and high costs. Recent evolutions in the technology have given rise 19 

to both more compact and more modular low-cost near infrared systems which 20 

could allow a larger scale deployment. The current study investigates the rele-21 

vance of these new systems by evaluating four different Fourier transform near-22 

infrared spectroscopic systems with different compactness (laboratory, portable, 23 

micro spectrometer) but also different measurement configurations (polarized light, 24 

at distance, in contact). Though the conventional laboratory spectrometer showed 25 

the best performance on the various biochemical parameters tested (carbohy-26 

drates, lipids, nitrogen, chemical oxygen demand, biochemical methane potential), 27 

the compact systems provided very close results. Prediction of the biochemical 28 

methane potential was possible using a low-cost micro spectrometer with an inde-29 

pendent validation set error of only 91 NmL(CH4).gTS-1 compared to 60 30 

NmL(CH4).gTS-1 for a laboratory spectrometer. The differences in performance 31 

were shown to result mainly from poorer spectral sampling; and not from instru-32 

ment characteristics such as spectral resolution. Regarding the measurement con-33 

figurations, none of the evaluated systems allowed a significant gain in robustness. 34 

In particular, the polarized light system provided better results when using its multi-35 
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scattered signal which brings further evidence of the importance of physical light-36 

scattering properties in the success of models built on solid organic waste. 37 

 38 

Keywords 39 

Near infrared spectroscopy; anaerobic digestion; 40 

 process monitoring; biochemical methane potential; compact systems; measure-41 

ment modes; 42 

1. Introduction 43 

In anaerobic digestion processes, different organic waste are often co-digested to 44 

enhance the production of both biogas and fertilizers (Hagos et al., 2017). A tre-45 

mendous diversity of waste is concerned by these bioprocesses such as agricul-46 

tural residues (animal manure, crop stems/stalks, silage), food industry waste 47 

(brewery, sugar refinery), urban solid waste, meat waste or catering waste. This 48 

implies that these waste cover a large range of biochemical composition and phys-49 

ical properties. Moreover, such properties may fluctuate according to factors such 50 

as crop seasonality, transport or storage. This brings important challenges for en-51 

suring the stability of the process and the efficiency of biogas production in digest-52 

ers (Wu et al., 2019). To answer this, online monitoring of the feeding substrate 53 

quality could allow the direct adaptation of the feeding strategy to the feeding sub-54 

strate quality (Jacobi et al., 2011). However, up to today, this has only been shown 55 
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to be possible on digesters fed with a single type of substrate (like maize silage), 56 

while the usefulness of such system appears greater with important variations of 57 

substrate type and quality (Jacobi et al., 2012). In light of this, for co-digestion 58 

plants, there is a need for the development of fast and reliable characterization 59 

methods that are applicable on highly diverse organic waste. 60 

 61 

Near infrared spectroscopy (NIRS), coupled with multivariate analysis techniques 62 

(Næs and Martens, 1984), has been successfully used as a fast and robust char-63 

acterization method of solid organic waste (Skvaril et al., 2017). In the composting 64 

process, NIRS was used to monitor the degradation phases of compost (Albrecht 65 

et al., 2008), or to predict biochemical characteristics such as the carbon/nitrogen 66 

ratio (Vergnoux et al., 2009). In the anaerobic digestion process, the technology 67 

was initially used for in-situ monitoring of dry solids (DS), volatile solids (VS), 68 

chemical oxygen demand (COD) and volatile fatty acids (VFA) in digesters (Jacobi 69 

et al., 2009; Lomborg et al., 2009; Stockl and Lichti, 2018; Wolf et al., 2011). NIRS 70 

was then proposed for the determination of biochemical methane potential (BMP) 71 

on municipal solid waste (Lesteur et al., 2011), and has since been extended to 72 

other types of waste (Doublet et al., 2013; Fitamo et al., 2017; Godin et al., 2015; 73 

Triolo et al., 2014; Yang et al., 2021). Today, NIRS appears the most suitable 74 

method for predicting BMP on various organic substrates (Rodrigues et al., 2019). 75 

More recently, NIRS was used to estimate complementary characteristics such as 76 

carbohydrates content, lipid content, nitrogen content, COD, and kinetic parame-77 

ters (Charnier et al., 2017). In terms of process monitoring, these developments 78 
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allow time-consuming reference measurements (which last typically one to two 79 

months for a characteristic like BMP) to be available in less than five days. Today, 80 

what limits the adoption of NIRS in full-scale biogas plants is its low applicability 81 

and high costs (Wu et al., 2019). Indeed, freeze-drying and grinding steps are nec-82 

essary to avoid water and particle size effects in NIRS (Mallet et al., 2021), which 83 

currently limits the online applicability of such system. Moreover, the high costs of 84 

the spectrometer and the logistics involved in sending the sample at the laboratory 85 

still limits a regular and exhaustive analysis of the feeding substrates. Whether 86 

NIRS is applied directly on fresh waste or with a prior freeze-drying step, there is a 87 

need to develop cheap and reliable instruments which can be used on a wide 88 

range of substrate types in order to promote a greater adoption of NIRS in co-89 

digestion plants. This could be addressed by an at-site use of low-cost and com-90 

pact near infrared (NIR) systems. 91 

 92 

In the past few years, the use of NIRS has developed out of laboratories, 93 

thanks to important progress in the miniaturization of instruments. In particular, 94 

handheld Fourier transform near infrared (FT-NIR) micro spectrometers have ap-95 

peared in the market, and make use of a micro-electro-mechanical systems-based 96 

(MEMS) Michelson interferometer (Beć et al., 2021). While conventional Michelson 97 

interferometers are made of discrete elements (including the moving mirror ac-98 

tioned by a motor, the fixed mirror, and beam splitter), MEMS technology enables a 99 

monolithic integration of these elements on a single chip, with the particularity that 100 

the moving mirror is operated by an electrical signal. Amongst the spectrometers 101 
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making use of this technology, the NeoSpectra instrument has shown good analyt-102 

ical performance results for soil organic and total carbon content characterization 103 

(Sharififar et al., 2019; Tang et al., 2020), or authenticity screening in food (McVey 104 

et al., 2021). These compact spectrometers allow the measurements to be per-105 

formed on site, thanks to their compactness, robustness and cost. However, these 106 

compact portable spectrometers tend to have poorer instrument performances than 107 

laboratory spectrometer, with lower resolution, spectral range, and signal-to-noise 108 

ratio (Beć et al., 2020; Crocombe, 2018). Therefore, the suitability of such systems 109 

for the characterization of diverse organic waste still needs to be assessed. 110 

 111 

Another aspect of these compact systems concerns their modularity and the 112 

possibility of testing different measurement configurations, in order to enhance the 113 

measured signal. Indeed, in complex matter such as solid organic waste, the 114 

Bouguer-Beer-Lambert law does not hold due to important light scattering (Dahm 115 

and Dahm, 2004). To answer this, spectral pre-processing has been proposed to 116 

remove both additive and multiplicative effects (Rabatel et al., 2020; Rinnan et al., 117 

2009; Zeaiter et al., 2005) and thus, make the problem linear again. However, oth-118 

er developments have rather focused on enhancing the measured signal directly. A 119 

promising optical pre-processing method, based on polarized light spectroscopy 120 

(Backman et al., 1999) has been proposed to improve the absorbance signal 121 

measurement on such scattering samples (Bendoula et al., 2015; Gobrecht et al., 122 

2015; Xu et al., 2019). Such system has shown analytical performance improve-123 

ments for soils (Gobrecht et al., 2016), and more recently, for digestate (Awhangbo 124 
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et al., 2020), but has never been evaluated on solid organic waste. Still in the aim 125 

of enhancing the measured spectra, time-resolved spectroscopy shows a promis-126 

ing future : applied to pharmaceutical tablets, collected photons with a particular 127 

propagation time were shown to be most informative for quantification (Alayed and 128 

Deen, 2017; Johansson et al., 2002). However, the cost of this technology still re-129 

mains prohibitive for the organic waste management sector. Finally, the measure-130 

ment mode (at distance or in contact, in reflectance or in interactance) also plays 131 

an important role in the final accuracy for estimating biochemical properties 132 

(Hemrattrakun et al., 2021; Khodabakhshian et al., 2019; Schaare and Fraser, 133 

2000). Though current used laboratory spectrometers make use of a distance re-134 

flectance measurement, a contact immerged probe measurement has been shown 135 

to be useful for prediction of parameters on digestates (Awhangbo et al., 2020). 136 

Authors observe higher reflectance levels with less noise in the collected spectra, 137 

as well as new chemical features which were not apparent in a remote probe con-138 

figuration. In light of this, it appears that the use of different measurement configu-139 

rations could enable the calibration of more accurate and more robust NIRS mod-140 

els on diverse solid organic waste. 141 

 142 

As mentioned, the applicability of compact and low-cost spectroscopic systems 143 

remains to be assessed for biochemical characterization of highly diverse solid or-144 

ganic waste. Moreover, the modularity offered by such compact systems is a 145 

unique opportunity to evaluate whether the use of different measurement configu-146 

rations can help build more robust models. This study aims to assess these two 147 
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matters by comparing the analytical performances of four different NIRS systems: 148 

a standard laboratory spectrometer, a portable spectrometer with two measure-149 

ment configurations (contact mode and polarized mode), and a micro-150 

spectrometer. For this purpose, measurements were acquired with each system on 151 

a selection of solid organic waste. Then, for each spectroscopic system, prediction 152 

models for five biochemical characteristics (carbohydrates, lipids, nitrogen, COD 153 

and BMP) were calibrated and their performances were compared. 154 

2. Materials and Methods 155 

2.1. Sample preparation and reference analyses 156 

Thirty-three substrates were selected amongst various waste types that have been 157 

collected in rural, territorial and industrial anaerobic digestion plants in France. 158 

These substrates cover a wide range of biochemical and physical properties: solid 159 

cellulosic waste (like silage, cereals and corn cobs), liquid cellulosic suspensions 160 

(such as manure), liquid fat suspensions (catering waste or biowaste), sweet emul-161 

sions (such as lactoserum), or protein and fat solid pastes (such as egg waste or 162 

cacao butter). The visual aspect of some of these substrates in raw form is pre-163 

sented in Appendix A. 164 

For spectral measurements, each substrate sample was freeze-dried and ground 165 

to 1 mm. The dataset is fully described in a data paper [On-site substrate charac-166 

terization in the anaerobic digestion context: a dataset of NIR spectra acquired with 167 
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four different optical systems on freeze-dried and ground organic waste – this data 168 

paper is submitted jointly with this article, reference will need an update after re-169 

viewing] and available online [https://doi.org/10.15454/SQQTUU]. 170 

Biochemical characterization of substrates was obtained by using a NIRS calibrat-171 

ed model (Charnier et al., 2017), with errors on independent test sets of 53 172 

mg(O2).gTS-1 for carbohydrates content, 3.2*10-2 g.gTS-1 for lipids content, 8.6 173 

mg.gTS-1 for nitrogen content, and 83 mg(O2).gTS-1 for COD. The histograms of 174 

obtained prediction values are presented in Figure 1. 175 

2.2. Spectroscopic systems 176 

The four spectroscopic systems compared in this study are presented below. In 177 

addition, spectral measurement protocols are compared in Table 1. 178 

2.2.1. Laboratory spectroscopic system 179 

The laboratory spectroscopic system consists of a NIR-Flex N-500 solids FT-NIR 180 

spectrophotometer with a vial accessory (Buchi, Flawil, Switzerland), scanning in 181 

reflectance mode with a spectral range of 4 000 cm-1 to 10 000 cm-1 (1000-2500 182 

nm) and a resolution of 4 cm-1. An external white reference (Spectralon®) signal 183 

����� is automatically taken every 10 minutes. For each sample, an intensity signal 184 

���� was collected, and the pseudo-absorbance signal ��	
��� was computed: 185 

 186 

 ��	
��� =  −�������	
����  =  −���� � ����
������. (Eq. 1) 
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 187 

2.2.2. Portable spectrometer with immersed contact probe 188 

The immersed contact probe system consists of a FT-NIR Rocket spectrometer 189 

(Arcoptix, Neuchatel, Switzerland) scanning in reflectance mode with a spectral 190 

range of 3 800 cm-1 to 11 000 cm-1 (900-2500 nm) and a resolution of 4 cm-1. The 191 

spectrometer was connected to two optical fibers (for illumination and signal collec-192 

tion) of 1000 μm core diameter and numerical aperture of 0.39 (BFY1000, 193 

Thorlabs). A tungsten-halogen source (Ocean Optics HL-200-FHSA) was used for 194 

illumination. For each sample, the intensity ���� was collected. A white reference 195 

(SRS99, Spectralon®) was scanned every hour during the measurements resulting 196 

in �����. Finally, a dark current signal ����� corresponding to the instrumental noise 197 

was recorded and subtracted to all spectra. A pseudo-absorbance signal ������ 198 

was thus calculated: 199 

 200 

 ������ =  −���� ��������  =  −���� � ���� − �����
����� − ������. (Eq. 2) 

 201 

2.2.3. Portable spectrometer with polarized light spectroscopy 202 

 203 

The polarized light system consists of the same elements (spectrometer, light 204 

source, optical fibers) as the immersed contact probe system, however, measure-205 
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ments were made at a distance of 5 cm from the samples, and a polarized light 206 

component (Awhangbo et al., 2020) was connected to the spectrometer. This 207 

component consisted in a wire-grid polarizer (Thorlabs WP25L-UB) to s-polarize 208 

the incident light; and a calcite Wolaston polarizer (Thorlabs WP10P) to split the 209 

reflected light in an s-polarized and p-polarized image, corresponding to parallel 210 

�∥��� and perpendicular ����� light signals. As in the previous system, both the dark 211 

current signal �����, and a white reference signal ����� = �∥���� +  ������ were col-212 

lected. Three signals were then calculated following Bendoula et al. (2015) formula 213 

(Bendoula et al., 2015): the single scattering reflectance Rss���, the multiple scat-214 

tering reflectance Rms���, and the total backscattering reflectance Rbs���: 215 

������ =  ��∥��� − ������ −  ������ − ������ 
����� − ����� . (Eq. 3) 

� ���� =  2������ −  ������
����� −  ����� . (Eq. 4) 

�
���� =  ��∥��� −  ������ + ������ − ������
����� −  ����� . (Eq. 5) 

 216 

2.2.4. Handheld micro spectrometer 217 

The micro spectrometer system consists of a MEMS FT-NIR NeoSpectra spec-218 

trometer (Si-Ware, Cairo, Egypt) scanning in reflectance mode with a spectral 219 

range of 3 921 cm-1 to 7 407 cm-1 (1350-2550 nm) and a resolution of 66 cm-1. A 220 

white reference (SRS99, Spectralon®) signal ����� was collected before each 221 
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measurement. For each sample, an intensity signal ���� was collected and the 222 

pseudo-absorbance signal �"��� was computed: 223 

 �"��� =  −���� ��"����  = −���� � ����
������. (Eq. 6) 

 224 

2.3. Data analysis: model calibration 225 

All the data analysis was performed using Python 3.6.5: data wrangling with Pan-226 

das 0.25.1, NumPy 1.17.3, SciPy 1.3.1, Scikit-learn 0.21.3, and plotting with Mat-227 

plotlib 2.2.2 (Harris et al., 2020; Hunter, 2007; McKinney, 2010; Pedregosa et al., 228 

2015; van Rossum and Drake, 2009; Virtanen et al., 2020). 229 

Measurements of the 33 substrates on the four spectroscopic configurations 230 

yielded six different matrices : the absorbance signal ��	
 from the laboratory spec-231 

trometer, the absorbance signal ��� from the immerged contact probe system, the 232 

three reflectance signals ���, � � and �
� (respectively single scattered, multiple 233 

scattered, total back-scattered) from the polarized system, and finally the absorb-234 

ance signal �" from the micro spectrometer system. 235 

For noise reduction and baseline correction, a selection of seven pretreatments 236 

that have proven to be efficient in previous studies on organic waste (Charnier et 237 

al., 2017; Lesteur et al., 2011) have been used: the standard normal variate 238 

(Barnes et al., 1989) (SNV), the first-order detrend (Barnes et al., 1989) (DT1), the 239 

first-order Savitzky-Golay (Savitzky and Golay, 1964) derivation (SG1), the sec-240 
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ond-order Savitzky-Golay derivation (SG2), combinations of SNV and first-order 241 

Savitzky-Golay derivation (SNV+SG1 or SG1+SNV) and finally, a weighted EMSC 242 

with variable sorting for normalization (VSN) (Rabatel et al., 2020). The raw signal 243 

was used directly as well, which resulted overall in testing eight different prepro-244 

cessing conditions. 245 

In order to evaluate the models built on each spectroscopic system, a validation 246 

test set was constituted. With the aim of producing a representative validation test 247 

set, the Duplex algorithm (Snee, 1977) was run for each reference characteristic 248 

(carbohydrates content, lipid content, total nitrogen content, COD, BMP). This re-249 

sulted in a training set of 22 substrates, and a validation test set of 11 substrates. 250 

To assess the representativeness of the validation test set in terms of spectral var-251 

iability, a principal components analysis (Cordella, 2012) was done, and obtained 252 

scores were plot in Figure 2 and Appendix C. 253 

Models were built using a partial least squares regression (PLS1-R)  with NI-254 

PALS algorithm (Næs and Martens, 1984; WOLD, 1973). To determine the number 255 

of latent variables, a cross-validation was done using a repeated randomized 256 

group-k-fold cross-validation with # = 5 the fold number and %_'()(*+, = 30 the 257 

repetition number. Sample triplicates were always kept within one fold to ensure 258 

independence. For each cross-validation run, various metrics were then calculated: 259 

the root-mean-square error (RMSE), the mean absolute error (MAE) (Willmott and 260 

Matsuura, 2005), the coefficient of determination (R2), and B-coefficients metrics 261 

which are the Durbin-Watson statistic (DW) and the variance (Rutledge and 262 

Barros, 2002). The choice of the number of latent variables was made by analyzing 263 



 

14 
 

all these metrics together (i.e. choosing the minimal number of latent variables 264 

while minimizing RMSE and MAE, maximizing R2, and detecting rate increase of 265 

DW and variance of B-coefficients). 266 

Spectral range was also optimized for each of the signal types. This was done 267 

by calibrating a first model, analyzing its B-coefficients (available in Appendix E), 268 

and shrinking the spectral range adequately before recalibrating the model. 269 

The final performances of the obtained models were evaluated on the validation 270 

test set, based on the root-mean-square error (RMSE) and the coefficient of de-271 

termination (R2). 272 

To assess prediction repeatability of a given model, the variance of each sam-273 

ple’s triplicate spectra predictions was calculated: 274 

 275 

 ,/0 = ∑ �23� − 234�05�6� , (Eq. 7) 

 276 

and the global prediction repeatability standard deviation was calculated as the 277 

quadratic mean of each ,/: 278 

 279 

 7/ = 8∑ ,/0��_9:�9_�	 ��:��6� . (Eq. 8) 

 280 
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3. Results & Discussion 281 

3.1. Data overview 282 

3.1.1. Training set and validation test set 283 

For each reference characteristic, train and test set distributions (respectively in 284 

blue and orange) are presented as histograms in Figure 1. Very similar distribu-285 

tions (same mean, same standard deviation) for all characteristics show that the 286 

Duplex algorithm succeeded in obtaining a representative test set in terms of bio-287 

chemical composition. To complete this analysis, the representativeness in terms 288 

of signal is assessed by looking at the scores of train and test sets for each signal 289 

type in Figure 2 (only the first and second component scores are displayed, but 290 

scores up to the tenth component were checked). As shown, the test set signals (in 291 

orange) cover most of the range covered by train set signals. However, in some 292 

cases, the variability of train set signals is not fully well represented in the test set. 293 

For example, in the upper left score plot representing the laboratory spectrometer 294 

configuration signal Alab, no test set signal (orange square) is found in the far right 295 

plot where there are two train set signals (blue triangles). This is consistent with the 296 

fact that the Duplex algorithm was run on the reference values and not on the 297 

spectral values, so there is no guarantee for test set spectral representativeness. 298 

Although this is not optimal for evaluating calibration models alone, such method-299 
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ology appeared to be the best to compare different spectroscopic systems on iden-300 

tical samples without bias. 301 

 302 

3.1.2. Raw spectra analysis 303 

 304 

Figure 3 presents the raw reflectance signals obtained with each spectroscopic 305 

system. In all signals, the main peaks found in organic waste were apparent: the 306 

CH, CH2 and CH3 combination bands particularly present in fat (1731 nm, 1764 307 

nm, 2310 nm, 2350 nm), the OH bands present in simple sugars (1436 nm, 1932 308 

nm), the OH combination bands in starch or cellulose (2092 nm), and the NH com-309 

bination bands present in proteins (2180 nm) (Williams and Antoniszyn, 2019; 310 

Workman Jr. and Weyer, 2012). However, the relative amplitude of these peaks 311 

seems to differ. For example, in the micro spectrometer signal (Rμ) the CH2 combi-312 

nation bands at 2310 nm and 2350 nm seem much less sharp than in the laborato-313 

ry spectrometer signal (Rlab). This can be well explained by the lower resolution of 314 

the micro-spectrometer (66 cm-1) compared to the laboratory spectrometer (4 cm-315 

1). A consequence of this is that the models built on compact systems such as the 316 

micro spectrometer will be based on more simple features, which could lead them 317 

to be less accurate models but potentially also more robust. 318 

In addition, the sensitivity with respect to the spectral range appears to differ from 319 

one spectrometer to another. For the micro spectrometer, the measured signal be-320 

low 1600 nm seems much noisier than in other systems. Such sharp peaks are 321 
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not, a priori, expected in NIR spectra of complex matter. Similarly, for the im-322 

mersed probe contact (Rip) or polarized signals (Rss, Rms, Rbs), it seems the meas-323 

ured signals below 1200 nm and over 2240 nm are as well very noisy. For this rea-324 

son, these spectral regions were later removed from the calibration of the built 325 

models. 326 

Another point of comparison concerns the observed reflectance levels (Figure 4). 327 

The reflectance levels of Rlab, Rbs, and Rμ are much higher (with 75% of the values 328 

that range respectively between 0.46 and 0.73, 0.43 and 0.66, and 0.60 and 0.90), 329 

than the reflectance levels of Rip (with 75% of the values that range between 0.15 330 

and 0.35). This is mostly related to the way the signal is acquired (i.e. the meas-331 

urement configuration). Indeed, reflectance levels are the result of both the absorp-332 

tion level (dependent of chemical composition) and the scattering level (modifica-333 

tions of light optical path-length, and photon leakage (Gobrecht et al., 2014)). 334 

Therefore, the chosen measurement configuration might favour one or the other, 335 

leading to differences in the measured reflectance levels. Results show here that 336 

the distant mode systems (i.e. Rlab, Rbs, and Rμ) collect much more scattering pho-337 

tons than the contact mode system (i.e. Rip). Regarding the advantage of one 338 

measurement mode over the other, this will mostly be dependent on the character-339 

istic to be predicted, and its dependency on physical properties. 340 

In the polarized light system, a clear difference of reflectance level can also be ob-341 

served: 75% of the values of the multiple scattering signal Rms range between 0.52 342 

and 0.76, against 0.05 and 0.11 for the single scattering signal Rss. This is con-343 
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sistent with the sole principle of polarized spectroscopy where Rss corresponds to 344 

single scattering photons with low penetration in the media while Rms corresponds 345 

to multiple scattering photons with a longer optical path length in the media due to 346 

refraction events. This further confirms the efficiency of polarized spectroscopy as 347 

an optical method to remove the scattering effects in the measured signal 348 

(Bendoula et al., 2015; Gobrecht et al., 2016). However, the impacts on the subse-349 

quent models built on such signals remain to be studied. 350 

3.2. Model performances 351 

For the five reference characteristics that were studied, the best selected models 352 

obtained on each of the six signals are presented in Table 2.  353 

For prediction models built using the laboratory spectrometer system, the errors 354 

obtained on the test set (RMSEP) were of 0.108 g.gTS-1 for carbohydrates content, 355 

5.8 mg.gTS-1 for nitrogen content, 0.034 g.gTS-1 for lipids content, 0.060 356 

NL(CH4).gTS-1  for BMP, and 136.4 mg(O2).gTS-1 for COD. These are all con-357 

sistent to the performances of reference models (Charnier et al., 2017). The slightly 358 

lower performances obtained can be explained by the more limited number of 359 

samples on which these models were built (22 samples) compared to the original 360 

models (about 80 samples). 361 

For all predicted characteristics, the laboratory system (Alab) showed better analyti-362 

cal performance results than the compact systems (Aip, Aμ, Rss, Rms, Rbs). Howev-363 

er, in many cases, these latter systems showed similar performances to the labora-364 
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tory system. For example, for BMP prediction, the prediction error (RMSEP) of the 365 

model obtained with the laboratory spectrometer signal Alab was 60 mL(CH4).gTS-1. 366 

In comparison, for the polarized system signals Rss, Rms, Rbs, the model prediction 367 

errors were of respectively 115 mL(CH4).gTS-1, 111 mL(CH4).gTS-1 and 100 368 

mL(CH4).gTS-1 , while for the micro spectrometer signal Aμ the model’s error was of 369 

only 91 mL(CH4).gTS-1. Similarly, for carbohydrates content prediction, while the 370 

prediction error for the laboratory spectrometer was 0.108 g.gTS-1, the errors for 371 

the micro-spectrometer and the immersed probe system were of only 0.134 g.gTS-372 

1 and 0.104 g.gTS-1. Such observation can be made for all the other characteristics 373 

studied. This is very promising because these models have acceptable errors 374 

compared to the laboratory spectrometer. This means that the models built on or-375 

ganic waste rely on sufficiently simple features so that the lower spectral resolution 376 

of compact spectrometers does not affect too much the performances. Such result 377 

is consistent with similar studies on low-cost compact NIR spectrometers with lim-378 

ited spectral range that are applied to herbaceous feedstock such as corn stover or 379 

sorghum (Wolfrum et al., 2020). Knowing that these spectrometers are low-cost 380 

(while the laboratory spectrometer costs about 50 000€, the immersed contact 381 

probe and polarized systems each cost about 20 000€ and the micro spectrometer 382 

only costs about 3 000 €), and can be used at-site, this holds great promises re-383 

garding an increased adoption of NIRS for robust solid organic waste characteriza-384 

tion in anaerobic digestion plants. 385 

 386 
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Models built on the three signals Rss, Rms, Rbs obtained using the polarized spec-387 

troscopy system show different performances. While Rbs is a signal very similar to 388 

those obtained from the other set-ups because it includes information from all the 389 

backscattering light, Rss and Rms differ in terms of type of photons that are captured 390 

by the spectrometer (respectively single scattering photons, and multiple scattering 391 

photons). For all characteristics, models built on Rbs signal show better perfor-392 

mances than models built on the Rss and Rms signals. For example, for COD pre-393 

diction, while the prediction error (RMSEP) of the model using the total back-394 

scattering signal (Rbs) is of 129.2 mg(O2).gTS-1, it is of 147.8 mg(O2).gTS-1 using 395 

Rms and 273.9 mg(O2).gTS-1 using Rss. This suggests that the use of polarized 396 

spectroscopy for predicting these characteristics on organic waste may not be par-397 

ticularly recommended.  398 

In fact, for lipids content, COD and nitrogen content, the models built with Rss sig-399 

nals show much greater errors than models built with Rms signals (respectively 400 

0.124 g.gTS-1 greater than 0.068 g.gTS-1, 273.9 mg(O2).gTS-1 greater than 147.8 401 

mg(O2).gTS-1, and 21.4 mg.gTS-1 greater than 12.1 mg.gTS-1). This came as a 402 

surprise, as the single scattering signal is theoretically supposed to be more relat-403 

ed to absorbing constituents and less impacted by scattering effects (Gobrecht et 404 

al., 2015). This can be explained by the fact that for a dataset with such diverse 405 

solid organic substrates, the biochemical composition is closely related to the phys-406 

ical properties. For example, high lipid content substrates (which also correspond 407 

to substrates with high COD) tend to form liquid transparent solutions (like oil), 408 

which transmit light much more than low lipid content substrates which usually form 409 
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highly scattering porous media. This relatively poor performance obtained with the 410 

single scattering signal is consistent with results obtained on digestates where 411 

physical structure appeared determinant (Awhangbo et al., 2020). One additional 412 

reason can be found in the measurement technique itself: the intensity captured for 413 

the single scattering signal is much more limited than a classical total backscatter-414 

ing signal, leading to higher signal-to-noise ratios. Further investigations could 415 

concentrate on the use of a multi-block approach combining these three comple-416 

mentary signals, as proposed on digestates (Awhangbo et al., 2020). 417 

 418 

Apart from the single scattering signal, all signals allowed to build satisfactory 419 

models for the biochemical characterization of organic waste. However, no spec-420 

troscopic system allowed to surpass the analytical performance of the laboratory 421 

spectrometer system. Figure 5 presents the observed and prediction plots for each 422 

signal for the prediction of biochemical potential. In Alab (upper left subplot), the 423 

predictions for each of the three replicate spectra do not differ (for one observed 424 

value, the prediction values are overlaid on the graph); while for the other spectro-425 

scopic systems, the predictions for each of the three replicate spectra are very dif-426 

ferent. For example, the sample with a BMP of 0.63 NL(CH4)g.TS-1 has predictions 427 

that vary for Alab between 0.869 NL(CH4)g.TS-1 and 0.870 NL(CH4)g.TS-1, while the 428 

predictions for Aip and Aμ vary respectively between 0.863 NL(CH4)g.TS-1 and 429 

0.940 NL(CH4)g.TS-1 and between 0.709 NL(CH4)g.TS-1 and 0.771 NL(CH4)g.TS-1. 430 

This is observed for all the other characteristics as shown in Appendix D. It ap-431 

pears that in all the compact systems, the replicate spectra vary much more from 432 
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each other than with the laboratory spectrometer. This could explain the greater 433 

errors obtained using the compact systems. The following result may be investi-434 

gated more quantitatively by calculating the global repeatability standard deviations 435 

as presented in Figure 6. Indeed, for all characteristics, the compact systems show 436 

much higher repeatability standard deviations than the laboratory spectrometer (in 437 

red). Such differences are due to the way the spectral measurements are acquired. 438 

As detailed in Table 1, the systems do not have the same number of scans and 439 

sampling surface. While for one measurement, the laboratory spectrometer collects 440 

scans during a full rotation of the sampling cup, the other systems only collect 441 

scans on a fixed point of the sample’s surface. This means that in  442 

compact systems the spectral measurement is much less representative of the to-443 

tal sample. It appears that the performance of compact systems could be en-444 

hanced by optimizing the way the spectra are taken: increasing the number of 445 

scans and the number of replicates to ensure a better stability of the measure-446 

ments.  447 

 448 

While the suitability of the compact and low-cost spectrometers has been demon-449 

strated, some challenges remain. Though models could be calibrated on the com-450 

pact systems’ signals directly as in this study, it is most probable that models will 451 

remain being built and maintained on standard laboratory spectrometers, with 452 

transfer functions being built between the laboratory spectrometer (referred as the 453 

“master” spectrometer) and the compact spectrometers (referred as the “slave” 454 

spectrometers). This transfer approach has already been proven to be successful 455 
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between a laboratory spectrometer and an online spectrometer for in situ monitor-456 

ing of anaerobic digestion (Krapf et al., 2013). However, the robustness of these 457 

transfer functions applied to compact systems still needs to be assessed. 458 

4. Conclusions 459 

Results have shown that compact and low-cost systems including a hand-held mi-460 

cro spectrometer are suitable for online characterization of diverse solid organic 461 

waste. However, the use of new measurement configurations such as the polarized 462 

mode was not shown to be an effective way to enhance the quality of predictive 463 

models. This suggests that the physical scattering properties of the substrates are 464 

the main determinant of analytical performance of NIRS calibration models built on 465 

such highly diverse solid organic waste. Keys for the improvement of the compact 466 

systems appear to lie in further optimization of the sampling protocol. These results 467 

set the path to a new era of low-cost and on-site NIRS analysis of the feeding sub-468 

strates in co-digestion plants. 469 
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Tables 694 

Table 1. Spectral measurement protocol characteristics. 695 

 Laboratory 

spectrometer 

Immersed 

contact 

probe 

Polarization 

system 

Micro spec-

trometer 

Measurement rep-

licates 

3 3 3 3 

Number of scans 

per measurement 

96 scans 10 scans 10 scans 28s scan time 

Measurement 

sampling method 

(measured area 

per scan) 

360° rotation 

(~5 cm2) 

Fixed point 

(~0.05 cm2) 

Fixed point 

(~1 cm2) 

Fixed point 

(~25 cm2) 

Protocol between 

replicates 

Mix the whole 

sample 

Change the 

measured 

surface posi-

tion 

Change the 

measured 

surface posi-

tion 

Change the 

measured 

surface posi-

tion 

 696 
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Table 2. Descriptive statistics of the calibrated models. For each predicted refer-698 
ence measurement (carbohydrates, nitrogen, lipids, BMP, COD), the retained 699 
model for each spectroscopic system signal (Alab, Aip, Aμ, Rss, Rms, Rbs) is presented. 700 
The optimized parameters are provided (the spectral range, the pretreatment and 701 
the number of latent variables) along with the different performance metrics 702 
(RMSEC, RMSECV, RMSEP, R2C, R2P). 703 

Experiment Optimized parameters Performance metrics 

Reference 
Sig

nal 

Spectral 

range (nm) 

Pretreat-

ment 
#LV RMSEC RMSECV RMSEP R2

C
 R2

P
 

Carbohydrates 

g.gTS-1 

Alab 1400-2240 SNV+SG1 2 0.143 0.192 0.108 0.78 0.83 

Aip 1450-2240 SNV 2 0.188 0.169 0.104 0.82 0.84 

Au 1400-2500 SNV+SG1 3 0.146 0.137 0.134 0.75 0.88 

Rss 1200-2240 SNV 2 0.259 0.296 0.207 0.28 0.37 

Rms 1200-2240 Raw 4 0.121 0.185 0.112 0.82 0.82 

Rbs 1300-2300 SNV+SG1 3 0.119 0.158 0.130 0.74 0.91 

Nitrogen 

mg.gTS-1 

Alab 1200-2240 SNV+SG1 10 3.6 15.0 5.8 0.98 0.89 

Aip 1200-2240 SNV+SG1 5 9.9 18.4 7.5 0.87 0.83 

Au 1400-2500 SNV 5 10.1 20.7 13.1 0.85 0.51 

Rss 1200-2240 SG2 3 17.2 23.1 21.4 0.62 -0.4 

Rms 1200-2240 SNV+SG1 5 12.6 22.6 12.1 0.80 0.54 

Rbs 1300-2300 SG1+SNV 4 10.7 17.6 11.7 0.83 0.61 

Lipids 

g.gTS-1 

Alab 1400-2240 SNV 6 0.025 0.056 0.034 0.99 0.98 

Aip 1200-2240 VSN 9 0.057 0.066 0.066 0.99 0.93 

Au 1400-2500 SG1+SNV 6 0.039 0.081 0.067 0.98 0.92 

Rss 1200-2240 Raw 5 0.084 0.110 0.124 0.91 0.74 

Rms 1200-2240 SG2 5 0.029 0.059 0.068 0.99 0.92 
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Rbs 1200-2480 SG2 6 0.029 0.066 0.066 0.99 0.93 

BMP 

NL(CH4).gTS-1 

Alab 1400-2240 SNV+SG1 9 0.020 0.078 0.060 0.99 0.90 

Aip 1200-2240 SG1 2 0.088 0.115 0.110 0.77 0.73 

Au 1600-2500 SG2 2 0.102 0.109 0.091 0.74 0.82 

Rss 1200-2240 SG1 4 0.085 0.115 0.115 0.79 0.71 

Rms 1350-2240 SG1 3 0.087 0.115 0.111 0.78 0.73 

Rbs 1300-2300 SG1 6 0.046 0.120 0.100 0.94 0.78 

COD 

mg(O2).gTS-1 

Alab 1400-2240 SNV 6 63.0 186.8 136.4 0.97 0.94 

Aip 1450-2240 SNV+SG1 7 106.2 228.3 160.2 0.93 0.90 

Au 1400-2500 SG1+SNV 3 180.4 303.1 196.9 0.81 0.85 

Rss 1200-2240 SG2 4 192.0 247.4 273.9 0.78 0.72 

Rms 1350-2240 SG1 3 112.5 151.4 147.8 0.92 0.92 

Rbs 1200-2480 SG1+SNV 4 128.1 237.6 129.2 0.90 0.94 

  704 
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Figures 705 

 706 

Figure 1. Histograms of reference characteristics. Both train and test sets (respectively in 707 

blue and in orange) obtained by a Duplex split are presented. Respective mean (labeled 708 

as μ) and standard deviation (labeled as σ) are presented for train and test sets (respec-709 

tively in blue, and in orange). Dotted lines represent respective mean values. 710 

  711 
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 712 
Figure 2. Principal component analysis (PCA) score plots of train and test sets (respective-713 

ly in blue triangles, and in orange squares) for each signal type (from the four spectroscop-714 

ic configurations). Each subplot represents the scores of the first and second principal 715 

components (PC1 and PC2). The percentage of explained variance is provided in the la-716 

bels. The train and test split was obtained by a Duplex split based on the carbohydrates 717 

content levels. Score plots for other reference characteristics are shown in Appendix C. 718 

  719 
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 720 

Figure 3. Raw reflectance spectra of each spectroscopic system (Rlab: laboratory spec-721 

trometer, Rip: immersed probe system, Rμ: micro-spectrometer, Rss: single scattered signal 722 

of polarized system, Rms: multiple scattered signal of polarized system, Rbs: total back-723 

scattered signal of polarized system). Each spectrum corresponds to the mean of the trip-724 

licate measurements. 725 

  726 
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 727 

Figure 4. Boxplots of raw reflectance spectra values for each signal type (Rlab: laboratory 728 

spectrometer, Rip: immersed probe system, Rμ: micro-spectrometer, Rss: single scattered 729 

signal of polarized system, Rms: multiple scattered signal of polarized system, Rbs: total 730 

back-scattered signal of polarized system). Each boxplot was obtained on the flattened 731 

matrix (reflectance values for all samples and for all wavelengths). Median values are pre-732 

sented with orange lines. The box limits represent the first and third quartile values (re-733 

spectively ;1 and ;3), and the lines that extend from the box show the lowest and largest 734 

data points excluding any outliers (respectively ;1 − 1.5 × �;3 − ;1� and ;1 − 1.5 × �;3 −735 

;1�). Outliers are presented in empty black circles. 736 

  737 
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 738 

Figure 5. Scatter plots of predicted and observed values for the selected prediction models 739 

of biochemical methane potential (BMP). Each subplot corresponds to the best model se-740 

lected for a signal type (from the four spectroscopic configurations). Values for train and 741 

test sets are respectively presented in blue triangles and orange squares. The spectral 742 

range, pre-processing type and latent variable number (lv) of the models are provided in 743 

the titles. Results for other reference characteristics are provided in Appendix D. 744 

  745 
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 746 

Figure 6. Global prediction repeatability standard deviations as calculated with (Eq. 7) and 747 

(Eq. 8). For each reference characteristic (carbohydrates, nitrogen, lipids, BMP, COD), a 748 

bar plot colored by signal type is provided (Alab in red, Aip in blue, Aμ in green, Rss in violet, 749 

Rms in orange, and Rbs in yellow). 750 
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Graphical Abstract - Various organic wastes substrates were collected (1), and spectra 3 

were acquired on four different spectroscopic systems (2) with different compactness 4 

and measurement types. Then, calibration models were built on each of these spectro-5 

scopic systems (3) to predict five different biochemical characteristics (BMP, DCO, 6 

Sugar, Nitrogen, Lipids). The spectroscopic systems were compared and evaluated 7 

based on the performances of these models. 8 
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