Shuyi Yang
email: shuyi.yang@unito.it

Dino Ienco
email: dino.ienco@inrae.fr

Roberto Esposito
email: roberto.esposito@unito.it

Ruggero G Pensa
email: ruggero.pensa@unito.it

ESA : A Generic Framework for Semi-supervised Inductive Learning

Keywords: semi-supervised learning, graph-based algorithms, inductive methods

A new inductive framework for graph-based semi-supervised classification is proposed.

• The proposed framework combines semi-supervised autoencoders and graph-based pseudo-labeling.

• Two variants based on confidence-aware label propagation and graph attention networks are proposed.

• The framework outperforms state-of-the-art competitors on data with very small amounts of labeled examples.

Introduction

Prediction is one of the most important outcomes of any machine learning algorithm. It supports many time-consuming and tedious tasks once performed by humans and, although classification performances are not yet (always) comparable to humans', especially in noisy domains [START_REF] Geirhos | Generalisation in humans and deep neural networks[END_REF], it is one of the most important tasks deployed throughout the industry. Prediction accuracy strongly depends on the amounts and quality of labeled instances and, unfortunately, labeling is a cost-intensive manual activity requiring time, money, and expertise. Often, labeling (or annotation) tasks are outsourced to external companies (e.g., Amazon Mechanical Turk) that recruit users on the web for doing the job. However, in some sensitive areas, such as X-ray images interpretation [START_REF] Rajaraman | Iteratively pruned deep learning ensembles for COVID-19 detection in chest x-rays[END_REF], experts cannot be replaced by the wisdom of the crowd. Hence, labeling often turns out to be unaffordable for many organizations and, consequently, only small amounts of labeled instances are available for training. This is a major issue, especially for models requiring large amounts of training data such those implementing deep learning architectures.

Semi-supervised learning aims at mitigating the above-mentioned problem by leveraging the so-called smoothness and cluster assumptions: if two data instances are close to each other or belong to the same cluster in the input distribution, then they are likely to belong to the same class [START_REF]Semi-Supervised Learning[END_REF]. Instead of using the few labeled instances to train a classifier, the idea is to propagate the information to other "close" and unlabeled data instances. If labels are of good quality, and clusters are well separated, semi-supervised approaches usually outperform their supervised counterparts.

Among the different algorithmic solutions proposed in literature, graphbased models constitute one of the main families of semi-supervised techniques [START_REF] Van Engelen | A survey on semi-supervised learning[END_REF]. Graph-based methods leverage the manifold assumption: the graphs, typically nearest neighbor graphs built upon the local similarity between data points, provide a lower-dimensional representation of the highdimensional input data. Graph-based semi-supervised learning algorithms typically involve two steps: in the first one, a nearest neighbor graph is constructed using all data points to capture the manifold of the data. Classification is then performed by propagating the information from labeled to unlabeled samples along the edges of the graph.

Unfortunately, graph-based methods are transductive [START_REF] Van Engelen | A survey on semi-supervised learning[END_REF], i.e., they do not construct any classification model and the prediction is limited to exactly those data instances that are already available during the training phase. Therefore, graph-based methods are unable to classify new data examples, unless they are trained again on the augmented dataset. A second limitation concerns the construction of the graph: in general, this phase is completely unsupervised even though, for some instances, labels are available. When the cluster assumption is not completely satisfied, this could lead to poor prediction results. Although some solutions exist [START_REF] Quiles | Label propagation through neuronal synchrony[END_REF][START_REF] Ienco | Enhancing graph-based semisupervised learning via knowledge-aware data embedding[END_REF], they only work in transductive settings. In this paper, we present a novel graph-based semisupervised framework, ESA , that improves in the areas mentioned above: it takes into account the information carried out by labeled instances during the graph construction and is designed to work properly in inductive settings.

Our approach -sketched graphically in Fig. 1 -first constructs a new representation using a semi-supervised autoencoder that takes all labeled and unlabeled training data as input. The representation learnt by the semisupervised autoencoder, for both labeled and unlabeled training data, are then processed by a graph-based semi-supervised algorithm that propagates the label information from labeled to unlabeled data instances. This procedure provides pseudo-labels for the set of unlabeled instances. To this purpose, we will experiment with two different approaches, leading to two variants of our framework: the first, ESA LP , is based on a graph-based label propagation algorithm that exploits homophily and heterophily, as well as the confidence of the inference results [START_REF] Yamaguchi | CAMLP: confidence-aware modulated label propagation[END_REF]; the second one, ESA GAT , exploits a graph convolutional neural network with masked self-attention layers [START_REF] Velickovic | Graph attention networks[END_REF]. All training instances (labeled and unlabeled with pseudo-labels) are then used to train a classification model, which can perform prediction for new unseen examples as well. We show that our approach outperforms state-of-the-art approaches (including ladder networks [START_REF] Rasmus | Semisupervised learning with ladder networks[END_REF] and ICT [START_REF] Verma | Interpolation consistency training for semi-supervised learning[END_REF]), even with extremely small amounts of labeled instances.

The remainder of the paper is organized as follows: a brief related literature review is reported in Section 2; the general framework is introduced in Section 3; the two variants of the label propagation steps are described in Section 3.1 and 3.2 respectively; the results of our experimental validation are discussed in Section 4; finally, we draw conclusions in Section 5.

Related work

Semi-supervised learning algorithms can be characterized, depending on whether they build a general model or not for the underlying data, between transductive and inductive methods.

Transductive methods are mostly based on graphs, with the (dis)similarity between nodes coded as the weight of the graph edges. In these methods, once the graph has been constructed, an inference method is applied to make predictions on unlabeled nodes. For instance, in Confidence-Aware Modulated Label Propagation (CAMLP) [START_REF] Yamaguchi | CAMLP: confidence-aware modulated label propagation[END_REF], an iterative algorithm computes the probability distribution of each node over the classes by combining the prior belief and prediction confidence: a higher number of signals from the neighborhood implies higher confidence. In addition, signals from the neighbors are adjusted to manage both homophily and heterophily networks. Other semi-supervised transductive algorithms that are either confidence-aware or can handle homophily and heterophily networks exist: for instance, belief propagation (BP) [START_REF] Günnemann | Linearized and singlepass belief propagation[END_REF][START_REF] Sen | Collective classification in network data[END_REF] can handle homophily and heterophily networks but it does not include the confidence component, SocNL [START_REF] Yamaguchi | Socnl: Bayesian label propagation with confidence[END_REF], DGR [START_REF] Fang | Confidence-aware graph regularization with heterogeneous pairwise features[END_REF], TACO [START_REF] Orbach | Graph-based transduction with confidence[END_REF], and ReLISH [START_REF] Gong | Relish: Reliable label inference via smoothness hypothesis[END_REF] are confidence-aware but can handle only homophily networks.

Very different approaches have been proposed for inductive semi-supervised methods. Early research focused on wrapper [START_REF] Yarowsky | Unsupervised word sense disambiguation rivaling supervised methods[END_REF][START_REF] Alché-Buc | Semi-supervised marginboost[END_REF][START_REF] Bennett | Exploiting unlabeled data in ensemble methods[END_REF][START_REF] Mallapragada | Semiboost: Boosting for semi-supervised learning[END_REF][START_REF] Wang | A new analysis of co-training[END_REF][START_REF] Zhou | Semi-supervised learning by disagreement[END_REF] and unsupervised [START_REF] Goldberg | Multi-manifold semi-supervised learning[END_REF] preprocessing methods [START_REF] Van Engelen | A survey on semi-supervised learning[END_REF]. Unsupervised preprocessing is often used to provide a better initialization for the training parameters, effectively moving the weights of a neural network closer to the convergence region. For example, in a deep belief network, multiple restricted Boltzmann machines are stacked and trained with unlabeled data [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF], then an output layer is added to the network structure and the entire network is trained on labeled data.

Autoencoders (AE) [START_REF] Hinton | Autoencoders, minimum description length and helmholtz free energy[END_REF], instead, are trained to extract the latent representation of each instance with the goal of feeding the learning algorithm with representations that are conducive to learning better classifiers. Even though an autoencoder is designed to perform an unsupervised task, it can be extended to include a supervised component: in a semi-supervised autoencoder (SSAE) [START_REF] Gogna | Semi supervised autoencoder[END_REF] a further prediction layer is attached to the bottleneck layer. SSAE are then trained with a loss that combines a reconstruction component and a classification component. A significant number of other frameworks also propose to combine unsupervised and supervised components and this approach is neither totally new: in fact, semi-supervised extensions for support vector machines [START_REF] Vapnik | Statistical learning theory wiley[END_REF][START_REF] Chapelle | Optimization techniques for semi-supervised support vector machines[END_REF], probabilistic models based on Gaussian Processes [START_REF] Lawrence | Semi-supervised learning via gaussian processes[END_REF] and density regularization methods [START_REF] Corduneanu | On information regularization[END_REF] have already been developed in the past. What these models have in common is that they all try to maximize the margin by relying on a low-density assumption (i.e., in these models, the decision boundary is assumed to lay through regions of the instance space with low-density data).

In recent years, a particular formulation of the cluster assumption, called smoothness assumption (stating that close elements of an instance space should have similar target variables) has led to the development of a new set of inductive semi-supervised learning algorithms based on the idea of perturbation: predictions of instances that differ only for a small perturbation noise should be similar. A neural network based on this principle is the ladder network (LN) [START_REF] Rasmus | Semisupervised learning with ladder networks[END_REF]. Although, its structure has some similarities with the one of a SSAE, it differs from SSAE in the training process and the cost function. In ladder networks, the network tries simultaneously to reconstruct the input and to denoise the representations built at every layer of the network. In this model, then, the additional denoising autoencoders that are added layer-wise build models for the latent representations, which in turn, help the learning process in both supervised and semi-supervised settings.

Other perturbation-based approaches, instead of injecting the noise in the data, perturb the model itself [START_REF] Bachman | Learning with pseudo-ensembles[END_REF][START_REF] Laine | Temporal ensembling for semi-supervised learning[END_REF]. Another class of semi-supervised learning methods perturbs data by combining feature vectors linearly [START_REF] Zhang | mixup: Beyond empirical risk minimization[END_REF][START_REF] Berthelot | Mixmatch: A holistic approach to semi-supervised learning[END_REF]. In [START_REF] Verma | Interpolation consistency training for semi-supervised learning[END_REF], Verma et et al. presents Interpolation Consistency Training (ICT), which adopts the mean-teacher [START_REF] Tarvainen | Weight-averaged consistency targets improve semi-supervised deep learning results[END_REF] method in addition to feature vector mixup: during the training, the student network is optimized to get correct predictions on labeled samples (by reducing the supervised loss) and to preserve consistency over unlabeled instances. Its prediction on a linear combination of unlabeled samples is compared to the linear combination of predictions made by the teacher network on the same samples (via the consistency loss).

In our work, differently from the reported literature, we propose a framework to tackle the inductive graph-based semi-supervised classification task by combining an ensemble of semi-supervised autoencoders with a graphbased pseudo-labeling process in order to feed a final classifier both with originally labeled instances and pseudo-labeled ones. The pseudo-labeling process provides labels for unlabeled instances and it can be implemented with two different strategies: the first one is based on the confidence-aware label propagation [START_REF] Yamaguchi | CAMLP: confidence-aware modulated label propagation[END_REF], while the second one adopts graph attention networks [START_REF] Velickovic | Graph attention networks[END_REF] to perform convolution operations on graph nodes representing both labeled and unlabeled instances.

X l {x l , y l } X u {x u } X t {x t , y t } Φ {Φ(x l), y l } {Φ(x u)} {Φ(x u),

Inductive graph-based semi-supervised learning

In a semi-supervised learning setting, in addition to labeled instances, unlabeled ones are introduced as part of available data during the training phase: let X l ∈ R n l ×f be the matrix of n l labeled samples each with f predictors and y l be the corresponding labels, then a supplementary matrix X u ∈ R nu×f representing n u unlabeled instances is also provided without the corresponding y u labels. Generally, the number n l of labeled instances is limited and much smaller than the number n u of unlabeled instances.

Our framework aims to provide an inductive semi-supervised learning algorithm by leveraging graph-based semi-supervised learning in order to augment the amount of labeled instances to train a supervised classifier.

As shown in Figure 1, our framework consists of different parts: embedding computation, pseudo-labeling of unlabeled instances, and classification. In the embedding computation part, we train an ensemble of neural networks to extract a latent representation for each instance. These representations are used to build a graph over labeled and unlabeled instances so that a graph-based model can be employed to provide a pseudo-label for each unlabeled instance. Finally, labeled instances and pseudo-labeled ones are both used to train a supervised classification model.

In order to extract the data embeddings, an Ensemble of Semi-supervised Autoencoders (ESA) [START_REF] Gogna | Semi supervised autoencoder[END_REF][START_REF] Ienco | Enhancing graph-based semisupervised learning via knowledge-aware data embedding[END_REF] is trained on both labeled and unlabeled data.

An autoencoder (AE) is a neural network that employs a series of fully connected layers which constitute the encoder E : R f → R e . An encoder transforms each instance in a e-dimensional latent representation. When the dimension of the representation layer is smaller than the dimension of the input layer, the representation layer is called bottleneck layer and the autoencoder is defined under-complete [START_REF] Goodfellow | Deep learning book[END_REF]. The bottleneck layer is attached to a second series of fully connected layers (decoder layers) in order to reconstruct the original instance D : R e → R f . Given an instance x r of X l or X u we expect that x r is similar to its reconstructed version via the encoding/decoding process D(E(x r)) and therefore the bottleneck layer provides a latent representation containing all relevant information needed to recover the input despite having much fewer dimensions. Besides the reconstruction task, if we add a classification layer CL : R e → R |C| to the bottleneck one, we can also train the network to learn a bottleneck representation tailored to the custom classification task we are undertaking. The output of the classification layer is a probability distribution over all possible labels in the label set C.

The loss function we use to learn the internal parameters of the SSAE is a combination of reconstruction and classification loss. More formally:

L SSAE = L AE + λL CL (1)
where

L AE = 1 n l + n u x i ∈X l ∪Xu ||x i -D(E(x i |θ E)|θ D)|| 2 , (2)

Algorithm 1 SSAE -Training

Require: X l : set of labeled instances, y l : labels of X l , X u : set of unlabeled instances, f : number of input features, size hidden : size of the hidden layers of Update θ E , θ D and θ CL by descending the gradient of the total loss

∇ θ E ,θ D ,θCL {L AE + λL CL } 6: counter++ 7: end while 8: return θ E , θ D , θ CL L CL = - 1 n l x i ∈X l |C| c=1 y lic • log(CL(E(x i |θ E)|θ CL) c), (3)
and θ E , θ D and θ CL are respectively the set of parameters of the encoder, decoder and classification layer, y lic is the c-th element of the i-th row of y l , CL(•) c is the c-th element of the output vector of CL and λ is a parameter that controls the importance of the classification loss. See Algorithm 1 for the training details.

In our architecture (see Figure 2) the encoder has an input layer followed by other two hidden layers; the decoder has one hidden layer of the same size of the first hidden layer of the encoder and an output layer. The size of the input layer, the output layer and the classification layer are respectively fixed to f , f and |C|, while size hidden and size bottleneck (respectively, the size of the hidden layer and that of the bottleneck one) can be varied. In order to get diverse and multi-resolution representations, similarly as in [START_REF] Ienco | Enhancing graph-based semisupervised learning via knowledge-aware data embedding[END_REF], we train K independent SSAEs, each with the sizes of the layers extracted randomly from the intervals f 2 ≤ size hidden < f and f 4 ≤ size hidden < f 2 . Once the ensemble is trained we obtain the new representations Φ(X l), Φ(X u) of X l and X u by concatenating the embeddings of these K SSAEs: Given the latent representations, a kNN graph structure can be derived from the data points of X l ∪ X u : embedding representations are nodes and two of them can be considered connected if both of them belong to the top k nearest neighbors of each other, respectively.

Φ(•) = || k=K k=1 E k (•|θ E k) (4) x1 x2 xn … … … … … ESA x x x L ESA = n i=1 [L AE (x, xi) + λL CL (y, ỹi)] ỹ1 ỹ2 ỹn X l {x l , y l } X u {x u }
At this point we perform graph-based pseudo-labeling (GBPL) to assign pseudo class labels to unlabeled instances. To this purpose, any graph-based semi-supervised learning algorithm (GBSSL) can be applied to infer the labels of the unlabeled portion of data ỹu by propagating the class information from the labeled data y l over the graph constructed on the embeddings. Successively, a supervised classifier (SC) can be trained leveraging the union of the labeled data (Φ(X l), y l) with the pseudo-labeled one (Φ(X u), ỹu) as training set. In prediction, we first compute the latent representation of unseen data Φ(X t) with the trained ESA, then we make predictions with the supervised classifier SC. It is worth pointing out that during the entire process, the transductive GBSSL process is used only during the training phase to provide pseudo-labels of the unlabeled data (as in wrapper methods) in order to help the supervised classifier to generalize better. Therefore, our approach, hereinafter referred as ESA , is inductive1 . See Algorithm 3 and Algorithm 4 for the training and prediction details of the overall framework. In the next two sections, we present two variants adopting different strategies to perform pseudo-labeling based on different graph-based semi-supervised learning approaches.

Pseudo-labeling based on confidence-aware label propagation

In this section we introduce the first variant of our framework for semisupervised learning (see Figure 3). The adopted strategy consists in instantiating the graph-based pseudo-labeling (GBPL) part with a confidence-aware label propagation algorithm working on both homophily and heterophily networks [START_REF] Yamaguchi | CAMLP: confidence-aware modulated label propagation[END_REF]. In the following we provide the details of this strategy, which we name ESA LP .

Given the adjacency matrix A, ESA LP computes the probability distribution over the classes as the solution of:

F iϕ = 1 Z i y iϕ + β j A ij s ji (ϕ) (5)

Algorithm 3 ESA -Training

Require: X l : set of labeled instances, y l : labels of X l , X u : set of unlabeled instances, f : number of input features, |C|: number of classes, epochs: number of training epochs, K: number of SSAEs to be trained, SC: a classifier to be trained Ensure: K SSAEs' encoder weights, parameters of the classifier SC 1: Learn the weights θ E1 , θ E2 , ...,

θ E K of ESA (Algorithm 2) 2: For each instance x i ∈ X l ∪ X u compute the bottleneck representation of each SSAE E 1 (x i |θ E1), E 2 (x i |θ E2), ..., E K (x i |θ E K) 3: Stack the K embedding representations of each x i by forming one unique array of real numbers Φ(x i) = || k=K k=1 E k (x i |θ E k) 4:
For each Φ(x i) compute its 20-nearest neighbors in the euclidean space 5: Construct an adjacency matrix A where the (i, j)-element is equal to 1 if and only if Φ(X i) is in the top 20-nearest neighbors of Φ(X j) and vice versa 6: Feed a GBSSL algorithm with A, (Φ(X l), y l) and Φ(X u) in order to infer the labels of unlabeled instances ỹu 7: Train a classifier SC(•|θ SC) with the labeled embeddings (Φ(X l), y l) and the pseudolabeled ones (Φ(X u), ỹu) 8: where F iϕ is the probability that i-th instance has label ϕ, Z i is a normalization term, y iϕ is the prior belief of i-th instance having label ϕ, 0 < β represents the importance of the neighborhood's influence, A ij is the i, j entry of the adjacency matrix and s ji (ϕ) represents how intense the node j believes that the node i has class ϕ. More formally:

return θ E1 , θ E2 , ..., θ E K , θ SC Algorithm 4 ESA -Prediction Require: θ E1 , θ E2 , ...,
s ji (ϕ) = l F jl H lϕ (6
)
where H is the modulation matrix. If H lϕ is low then class l has a low correlation with the class ϕ, on the contrary, if it is high these two classes have a strong correlation. On homophily networks, H is the identity matrix, while on heterophily networks it can be designed empirically. In our experiments we assume that the graph obtained by the embeddings of ESA is a homophily network. We can rewrite the Equation 5 in matrix form and in an iterative way:

Adj matrix

   A 11 . . . A 1n A n1 . . . A nn    F iϕ = 1 Z i   y iϕ + β j A ij s jϕ (ϕ)   num iter    F r 11 F r 1ϕ . . . F r iϕ F r n1 F r nϕ    = F r F numiter {Φ(x u), ỹu } {Φ(x l), y l } GBPL-LP
F r+1 = Z -1 (Y + βAF r H) (7)
where Z = I +βD and D is the node degrees diagonal matrix. Once obtained the adjacency matrix A of labeled and unlabeled instances, as described in the previous section, we initialize F 0 as a (n l +n u)×|C| matrix of zeros. Then we apply the Equation 7 num iter times to obtain F num iter , which represents the probability distributions of the instances over the classes. From F num iter we extract only the predictions of X u and keep the original labels for X l . They are then used to feed a classifier SC.

Since the algorithm of our generic framework is already detailed previously, in Algorithm 5 we only report the details of the label propagation phase (Step 6 of Algorithm 3).

Pseudo-labeling based on graph attention networks

For the second variant, we consider a completely different approach leveraging the convolution operation. Many recent works employ the spectral representation of the graph and perform convolution by computing the eigendecomposition of the Laplacian associated to the graph [START_REF] Estrach | Spectral networks and deep locally connected networks on graphs[END_REF][START_REF] Henaff | Deep convolutional networks on graphstructured data[END_REF][START_REF] Defferrard | Convolutional neural networks on graphs with fast localized spectral filtering[END_REF][START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF]. However, since the Laplacian eigenbasis depends on the graph structure, Algorithm 5 GBPL -LP Require: X l : the set of n l labeled instances, y l : labels of X l , X u : the set of n u unlabeled instances, |C|: number of classes, H: modulation matrix, A: adjacency matrix, β: importance of the neighborhood's influence, D: the diagonal matrix of node degrees, num iter : number of iterations Ensure: probability distribution of instances of X l ∪ X u over the classes 1: Initialize F 0 as a (n l + n u) × |C| matrix with zeros as its entries 2: Initialize Y as a (n l + n u) × |C| matrix where

Y ij = 1 if the i-th instances of X l ∪ X u has j-th label, Y ij = 0 if the i-th instances of X l ∪ X u is labeled but has not j-th label, Y ij = 1 |C| if the i-th instances of X l ∪ X u is unlabeled 3: Initialize Z = I + βD 4: r = 0 5: while r < num iter do 6: compute F r+1 = z -1 (Y + βAF r H) 7:
r + + 8: end while 9: return F numiter these methods, once trained, can hardly be applied to graphs with different structures. On the other hand, non-spectral methods perform feature extraction from the neighborhood nodes while still maintaining shared weights [START_REF] Duvenaud | Convolutional networks on graphs for learning molecular fingerprints[END_REF][START_REF] Atwood | Diffusion-convolutional neural networks[END_REF][START_REF] Niepert | Learning convolutional neural networks for graphs[END_REF][START_REF] Monti | Geometric deep learning on graphs and manifolds using mixture model cnns[END_REF]. For instance, in [START_REF] Hamilton | Inductive representation learning on large graphs[END_REF] the weights are optimized to output similar representations for nearby nodes and once learned, they can be applied to graphs with different structures. In this models, each neighbor contributes equally to a node's embedded representation. Graph attention networks (GAT) [START_REF] Velickovic | Graph attention networks[END_REF], instead, overcome this limitation by adding a multihead attention mechanism to each embedding layer so that nodes of the same neighborhood can assume different importance. Moreover, the weights of the feature transformation and the multi-head attention are shared and this method can be either transductive or inductive. Hence, GATs are good candidates for our pseudo-labeling process, as they are able to capture different levels of importance of features of neighborhood nodes in the kNN graph built upon the embeddings computed by ESA. We call this strategy ESA GAT and provide the details below (a graphical representation is given in Figure 4).

Given the set of nodes, each represented by a b-dimensional real numbers array obtained from the ESA embedding process or as a result of a previous convolutional layer, we can compute the self-attention on nodes as where h i , h j ∈ R b are the embeddings of instance i and j, W is a b × b shared linear transformation matrix, and a : R b × R b → R is the attentional mechanism consisting in a feedforward layer with weights ℵ and LeakyReLU activation [START_REF] Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF]. Each e ij is computed only for connected nodes (masked attention) so that the graph structure is embedded into the coefficients. The attention coefficients are then normalized using the softmax function:

e ij = a(W h i , W h j |ℵ) (8)
α ij = exp e ij ι∈N (i) exp e iι (9)
with N (i) representing the nodes connected to the node i. The new representation of the node i through the attention layer is then computed as

h i = σ   j∈N (i) α ij W h j   (10)
with σ a non linear transformation. As in ESA, we can concatenate the outputs of different independent attention layers in order to employ a multi-head

Algorithm 6 GBPL -GAT

Require: X l : the set of n l labeled instances, y l : labels of X l , X u : the set of n u unlabeled instances, A: adjacency matrix, num heads : number of heades, h 1 , ..., h n l +nu : ESA embeddings of labeled and unlabeled instances, epochs: number of epochs, a: attentional mechanism, σ, σ : non linear functions Ensure: weights of the GAT 1: Initialize random matrices W 1 , W 2 , ..., W num heads , ℵ 1 , ℵ 2 , .., ℵ num heads , W , ℵ 2: counter = 1 3: while counter ≤ epochs do 4: = 1 5:

while ≤ num heads do 6:

For each couple of instances (i, j) compute e ij = a(W h i , W h j |ℵ) 7:

For each couple of instances (i, j) compute the attention coefficients αij = exp e ij ι∈N (i) exp e iι

8:

For each instance i compute its new representation h i = σ j∈N (i) α ij W h j 9:

+ + 10:

end while 11:

For each instance i concatenate its representations

h i = || k=num heads =1 h i 12:
For each couple of instances (i, j) compute e ij = a(W h i , W h j |ℵ) 13:

For each couple of instances (i, j) compute the attention coefficients α ij = exp e ij ι∈N (i) exp e iι

14:

For each instance i compute its new representation h i = σ j∈N (i) α ij W h j 15:

Compute the negative log-likehood loss for the labeled instances L(h i , y l) 16:

Update W 1 , W 2 , ..., W num heads , ℵ 1 , ℵ 2 , ..., ℵ numheads , W , ℵ by descending the gradient ∇L 17: end while 18: return W 1 , W 2 , ..., W num heads , ℵ 1 , ℵ 2 , ..., ℵ num heads , W , ℵ attention mechanism. To do that, once the ESA embeddings are obtained, we can apply the Equation 10 multiple times: from the point of view of the neural network structure, the mechanism is realized by adding additional convolutional layers, each with its own weights to be trained and the number of nodes of the last layer should be equal to the number of classes. See Algorithm 6 for the training details of a 2-layers GAT.

Even though there are some similarities between the attention mechanism in ESA GAT and the modulation matrix in ESA LP , it is worth noting that while ESA GAT operates on the latent representation of the nodes, ESA LP regards the relationships among classes.

Experiments

To assess the behavior of our framework under different settings and configurations, we conduct four experiments.

In the first experiment, we compare the two versions of our framework: ESA LP and ESA GAT . Our objective is twofold: on the one hand, we want to measure the impact of varying the different components of our framework, on the other hand, we aim at identifying the best combination(s). To this purpose, both ESA LP and ESA GAT variants of our framework are combined with four different classifiers: random forest (RF), multilayer perceptron (MLP), support vector machine (SVM) and discriminative ridge machine (DRM [START_REF] Peng | Discriminative ridge machine: A classifier for highdimensional data or imbalanced data[END_REF]). We name all possible combinations as follows: ESA LP +RF, ESA LP +MLP, ESA LP +SVM, ESA LP +DRM, ESA GAT +RF, ESA GAT +MLP, ESA GAT +SVM and ESA GAT +DRM.

In the second experiment, we compare the two best performing configurations of our framework to four well-known supervised methods (RF, MLP, SVM and DRM) and two recent state-of-the-art semi-supervised approaches: interpolation consistency training (ICT) [START_REF] Verma | Interpolation consistency training for semi-supervised learning[END_REF] and ladder networks (LN) [START_REF] Rasmus | Semisupervised learning with ladder networks[END_REF]. In our experiments, ICT is coupled with fully connected layers, instead of convolutional layers, to deal with tabular shaped dataset, as we do not specifically target image datasets. Our objective is to understand both the strengths and the limitations of our framework and to study under which conditions it outperforms (or is outperformed by) the other approaches.

In the third experiment, we conduct an ablation study for inspecting the contribution of the different components of our framework on the prediction accuracy. We compare the performances of three different inductive semisupervised methods: i) a semi-supervised autoencoder (SSAE), ii) a semisupervised autoencoder ensemble coupled with a classifier (ESA+RF), iii) our complete framework (including the graph-based semi-supervised component).

In the last experiment, we compare the two best performing configurations of our framework to two state-of-the-art transductive semi-supervised approaches: structured graph learning with multiple kernel (SGMK) [START_REF] Kang | Structured graph learning for clustering and semi-supervised classification[END_REF] and robust graph construction (RGC) [START_REF] Kang | Robust graph learning from noisy data[END_REF].

The remainder of the section is organized as follows: we first present the datasets used in our experiments (Section 4.1); then, in Section 4.2 we give the details of our experimental protocol; finally, we report and discuss the results of our four experiments in Section 4.3.

Dataset

Datasets

As shown in Table 1, thirteen publicly available real-world classification datasets, encompassing a wide variety of application scenarios, have been considered in our experiments. They exhibits different sizes (from 178 to 70 000 instances) and dimensionality (from 12 to 1087 features). The datasets include 4 well-known image datasets (USPS [START_REF] Hull | A database for handwritten text recognition research[END_REF], MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], FMNIST [START_REF] Xiao | Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms[END_REF], COIL20 [START_REF] Nene | Columbia object image library[END_REF]). However, to be fair when comparing with competing approaches, we do not consider any convolutional filter and handle the images as numeric vectors.

Experiments settings

Each dataset is randomly split into three parts: labeled instances (p% of the dataset), unlabeled instances ((70-p)% of the dataset), and test instances (30% of the dataset). The random split is stratified so that each dataset maintains the same proportion of labels as in the original datasets. Every supervised model (RF, MLP, SVM, DRM) is trained on labeled instances only and evaluated on test instances, while all semi-supervised models are trained both on labeled instances and unlabeled ones and evaluated on the test instances.

During the experiments we vary the percentage p of labeled instances to study how the performances change when the portion of labeled instances increases in both supervised and semi-supervised models. More in details, p takes one of the following values: 0.1, 0.5, 1, 2, 3, 4 or 5. Therefore, in the most adverse situation, the percentage of labeled instances is only 0.1% of the entire dataset while the remaining 69.9% is unlabeled. In any case, we consider at least one labeled instance per class.

To obtain more robust performance indicators, for each combination of dataset, percentage p and model, we evaluate 25 different random splits as described above and then take the average performances. The model is retrained for each of the 25 different splits and new predictions are made on every different test set. For any given percentage p and random split, all models are trained on the same labeled/unlabeled set, and compared on the same test set. As performance index, we consider the micro-averaged F1score computed on the test set.

In Table 2 we report the structures and the hyper-parameters of the models used in our experiments. We have not performed a grid search to find the best combination of hyper-parameters for each model since this would be infeasible for the huge number of experiments required. Instead, when available, we used the default values reported in the original papers of models. When defaults values were unavailable, we made an educated guess based on the considerations found in the papers introducing the algorithms. It is worth pointing out that, in any case, the performances are always measured on an independent test set.

Results and discussion

In all evaluations of the experiments, we compute detailed performance results for each dataset (Figures 6, 7, 8, 9) and a summary of the results (Figure 5). The latter is obtained as follows: for a given percentage p of labeled instances, we compute the average ranks across all the dataset for each algorithm, according to the micro-averaged F1 score, and then we plot them for increasing values of p% (lower ranks are plotted higher in the pictures and mean better performances). This allows us to obtain an overall picture of the relative performances of all competitors considered in our study. In the following, we present and discuss the results for each experiment.

Experiment 1: analysis of the variants

This experiment aims to study different variants of our framework and select two of them as reference for further analysis (Experiments 2 and 3). To this purpose, we compare both ESA LP and ESA GAT variants with a different choice of final classifier (RF, MLP, SVM and DRM). The detailed results are provided in Figure 6 while a summary is presented in Figure 5(a). It can be noticed that, in general, when both variants are coupled with RF, on average, they outperform all other combinations, for all percentages of labeled samples. From the plots it is also evident that ESA GAT +RF performs slightly better than ESA LP +RF when p ≥ 1. Apart from the variants with DRM (which perform poorly on some datasets, probably due to their particularities), it is worth noting that, the overall behavior is similar for the remaining algorithms and all datasets (see Figure 6) except for small datasets (SONAR and WINE) and for COIL20 (the dataset with the largest number of classes). This first batch of experiments suggests that ESA LP +RF and ESA GAT +RF are the best combination for our technique on the chosen datasets, and we shall use these two models for the comparative analysis in the next experiments.

Experiment 2: comparative analysis

In this analysis the objective is to compare our framework to other supervised and semi-supervised methods. From the obtained results (Figure 5(b)), it emerges that, for every percentage of labeled examples, on average, the two variants of our framework outperform all other methods, including the four fully supervised classifiers considered in this study (RF, MLP, SVM and DRM). It is worth noting that, in contrast, the two competing semisupervised methods (ICT and LN) are not able to outperform the supervised competitors with the same consistency. The micro-averaged F1 score of ICT is below the one of RF, for any given value of p. Ladder networks (LN) are ranked third with less than 2% of labeled samples, but RF is still competitive w.r.t. LN despite the fact that it does not take advantage of unlabeled instances. From the Figure [START_REF] Yamaguchi | CAMLP: confidence-aware modulated label propagation[END_REF], we can point out that LN performs well on some datasets (ANTIVIRUS, LANDSAT, PARKINSON, MNIST, FMNIST, USPS), but achieves relatively low accuracy in all other cases. Furthermore, both ICT and LN are ineffective on COIL20: the reason for such deceiving performances could be in the high number of classes of such a dataset. In this case, our methods are the only two capable to exceed the 0.7 threshold of micro-averaged F1 score. Finally, it is worth pointing out that, not surprisingly, when the number of labeled instances increases, the differences between semi-supervised methods and fully supervised ones decrease.

Experiment 3: ablation study

With this evaluation we measure the impact of every individual component of our framework in an inductive setting. In this case, we focus on ESA LP +RF (the variant that considers label propagation and random forest) and analyze RF (the supervised counterpart), ESA+RF (an ensemble of semi-supervised autoencoders coupled with RF), and a simple semisupervised autoencoder. Figure 5(c) summarizes the results by presenting the average rank of each competitor. From this plot, it turns out that using have still comparable overall performances and only the overall framework (in this case, ESA LP +RF) enable us to substantially outperform RF. Hence, providing pseudo-labels for unlabeled instances via the graph-based semisupervised learning step is crucial. Notice that, in this study, we can not consider the graph-based semi-supervised learning step alone, since it is a transductive approach and it does not provide a model that can be deployed on the test data.

Experiment 4: comparative analysis w.r.t. transductive methods

In the last experiment the objective is to compare our inductive framework to recent semi-supervised transductive methods. It is worth pointing out that, while the transductive setting has potential liabilities in terms of applicability, it has advantages in the possibility of leveraging more information than its inductive counterparts (since it can leverage the test set distribution when propagating the labels). As we shall see, while our method is at a disadvantage here, it works quite well nonetheless and we believe that this comparison further clarifies the strength and the weaknesses of the proposed approach.

We compare the variants ESA LP +RF and ESA GAT +RF to the structured graph learning with multiple kernel (SGMK) [START_REF] Kang | Structured graph learning for clustering and semi-supervised classification[END_REF] and to the robust graph construction (RGC) [START_REF] Kang | Robust graph learning from noisy data[END_REF]. Due to computational limitations, the experiments are performed only on a subset of the available datasets, namely: ANTIVIRUS, SONAR, PARKINSON and WINE. From the results shown in Figure 9, our methods outperform the competing ones on ANTIVIRUS and PARKINSON. However, in SONAR and in WINE, RGC has better performances. Overall, with the Figure 5(d), we can conclude that, within our experimental settings, ESA LP +RF and ESA GAT +RF are able to reach competitive performances compared to SOTA transductive methods (i.e. RGC), and, in some cases, even outperform them (i.e. SGMK).

Conclusion

In this paper, we have presented a new inductive semi-supervised learning framework that take the most of two successful approaches: semi-supervised autoencoders and graph-based semi-supervised learning. While the former supports the generation of new data representations improved by labeled instances, the latter spread the label information to unlabeled instances in the new representation space. Thanks to an extensive experimental study, we

Figure 2 :

 2 Figure 2: A graphical representation of ESA (ensemble of semi-supervised autoencoders) step of our framework.

Figure 3 :

 3 Figure 3: A graphical representation of the label propagation strategy of ESA LP .

Figure 4 :

 4 Figure 4: a graphical representation of the graph attention mechanism of ESA GAT .

1 SSAE- 2

 12 layers of sizes 64 and 32; -default values for the rest. SVM -Kernel: Nystroem approximation of an RBF kernel with gamma = 0.2, and number of components = 300 (as in the example given by the authors), -Optimization: Stochastic Gradient Descent; -default values for the rest. DRM -the DRM algorithm based on PPA (DRM-PPA [47]) is used in our experiments; -linear DRM-PPA is used for the datasets MNIST and FMNIST; -alpha = 0.1; -beta = 0.hidden layers of sizes 64 and 32; -autoencoder batch size = 64; -semi-supervised autoencoder batch size = 8; -epochs = 100 ESA 10 SSAEs each one having: -the first hidden layer of size in the interval f 2 , f -the second hidden layer of size in the interval f 4 , f 4 ; these intervals are reduced to f 5 , f 2.5 and f 10 , layers of sizes 128, 64, 32 and 32; -noise standard deviation = 0.3 -denoising cost = [1000, 10, 0.1, 0.1, 0.1, 0.1] -epochs = 100 -default values for the rest.ICT-mixup consistency = 10; -consistency rampup starts = 0; -consistency rampup ends = 100; -mixup sup alpha = 0.2; mixup usup alpha=0.2; -mixup hidden = False; -num mix layer = 2 -in the base model convolutional layers are substituted by full dense layers of sizes 64 and 32; -default values for the rest. for the rest.

Figure 5 :

 5 Figure 5: Average rank according to micro-averaged F1-measure in the experiments.

Figure 6 :

 6 Figure 6: Micro-averaged F1-measure for increasing percentage of labeled instances and for different datasets and variants of our algorithm (Experiment 1).

Figure 7 :

 7 Figure 7: Micro-averaged F1-measure for increasing percentage of labeled instances and for different datasets and competitors (Experiment 2).

 SSAE, size bottleneck : size of the bottleneck layer, |C|: number of classes, epochs: number of training epochs Ensure: weights of the encoder, decoder and classification layers θ E , θ D , θ CL 1: Initialize a SSAE with • the encoder layers of sizes [f, size hidden , size bottleneck]

• decoder layers of sizes [size hidden , f]

• the classification layer of size |C| 2: counter = 1 3: while counter ≤ epochs do 4:

Update θ E and θ D by descending the gradient of the autoencoder loss ∇ θ E ,θ D L AE 5:

 E1 , θ E2 , ..., θ E K where || is the stack (concatenation) operator and E k and θ E k are respectively the encoder of the k-th SSAE and its weights. See Algorithm 2 for the training details of ESA.

		(Algorithm 1)
	6:	k + +
	7: end while
	8: return θ

Algorithm 2 ESA -Training Require: X l : set of labeled instances, y l : labels of X l , X u : set of unlabeled instances, f : number of input features, |C|: number of classes, epochs: number of training epochs, K: number of SSAEs to be trained Ensure: K SSAEs' encoder weights 1: k = 1 2: while k ≤ K do 3: sample an integer size hidden in the range f 2 , f 4: sample an integer size bottleneck in the range f 4 , f 2 5: initialize and train the k-th SSAE in order to learn its weights θ E k , θ D k , θ CL k

 θ E K : learned weights of ESA, θ SC : learned parameters of the classifier SC, x new : a new instance Ensure: class prediction of x new 1: Given the weights of ESA (Algorithm 2), compute the embedding representation as Φ(x new) = || k=K k=1 E k (x new |θ E k) 2: return SC(Φ(X new)|θ SC)

Table 1 :

 1 List of datasets used during our experiments. This table contains the number of instances and the number of classes of each of them.

		# instances # classes # features
	ANTIVIRUS [54]	373	2	513
	COIL20 [53]	1440	20	576
	FMNIST [52]	70000	10	784
	LANDSAT [54]	6435	6	36
	MADELON [54]	2600	2	500
	MALWARE [54]	6248	2	1087
	MNIST [51]	70000	10	784
	PARKINSON [54]	756	2	753
	SONAR [54]	208	2	60
	SPAMBASE [54]	4601	2	57
	USPS [50]	9298	10	256
	WAVEFORM [54]	5000	3	40
	WINE [54]	178	3	12

Table 2 :

 2 The structures and the hyperparameters of the models used in the experiments. The hyper-parameters are maintained unchanged for the models used in different parts of our experiments: for instance, RF, which is a standalone classifier, is also used as part of ESA LP +RF and ESA GAT +RF.

	RF	ESALP+RF	ESAGAT+RF	ICT	ESA+RF
	MLP	ESALP+MLP	ESAGAT+MLP	LN	SGMK
	SVM	ESALP+SVM	ESAGAT+SVM	SSAE	RGC
	DRM	ESALP+DRM	ESAGAT+DRM		
	0.1 0.5 1.0 Percentage of labeled instances (%) 2.0 3.0 4.0	5.0		

In the paper, we will use ESA to indicate the block consisting of the ensemble of semi-supervised autoencoders in our framework, while ESA stands for the overall semisupervised learning approach.

The authors wish to thank Mattia Cerrato for stimulating discussions and its critical review of the paper.

counterpart trained only on labeled instances, and also outperforms stateof-the-art semi-supervised competitors. Additionally, we have proposed two variants of our framework: the first one, based on a graph-based confidenceaware label propagation approach, is more effective with very few labeled instances; the second one, leveraging graph attention networks, outperforms the first one when more labeled instances are available.

As possible future work, we will introduce a variant of our framework especially tailored for image data by including convolutional layers in the first stages of the pipeline. Moreover, we will design an end-to-end inductive semi-supervised deep neural network process to strengthen the interaction among the different components of the proposed framework.