
HAL Id: hal-03204391
https://hal.inrae.fr/hal-03204391

Submitted on 21 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ESA�: A generic framework for semi-supervised
inductive learning

Shuyi Yang, Dino Ienco, Roberto Esposito, Ruggero Pensa

To cite this version:
Shuyi Yang, Dino Ienco, Roberto Esposito, Ruggero Pensa. ESA�: A generic frame-
work for semi-supervised inductive learning. Neurocomputing, 2021, 447, pp.102-117.
�10.1016/j.neucom.2021.03.051�. �hal-03204391�

https://hal.inrae.fr/hal-03204391
https://hal.archives-ouvertes.fr

21 January 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

ESA*: A Generic Framework for Semi-supervised Inductive Learning

Published version:

DOI:10.1016/j.neucom.2021.03.051

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1781701 since 2021-06-18T13:09:00Z

Highlights

ESA?: A Generic Framework for Semi-supervised Inductive Learn-
ing

Shuyi Yang, Dino Ienco, Roberto Esposito, Ruggero G. Pensa

• A new inductive framework for graph-based semi-supervised classifica-
tion is proposed.

• The proposed framework combines semi-supervised autoencoders and
graph-based pseudo-labeling.

• Two variants based on confidence-aware label propagation and graph
attention networks are proposed.

• The framework outperforms state-of-the-art competitors on data with
very small amounts of labeled examples.

• The framework is generic as it is designed to work on data of any kind.

ESA?: A Generic Framework for Semi-supervised

Inductive Learning

Shuyi Yanga,b, Dino Iencoc, Roberto Espositoa, Ruggero G. Pensaa,∗

aUniversity of Turin – Computer Science Department
C.so Svizzera, 185 – I-10149 Torino, ITALY

bIntesa Sanpaolo, Turin, Italy
cINRAE, UMR TETIS, Montpellier, France

Abstract

Semi-supervised learning is crucial in many applications where accessing
class labels is unaffordable or costly. The most promising approaches are
graph-based but they are transductive and they do not provide a generalized
model working on inductive scenarios. To address this problem, we propose
a generic framework, ESA?, for inductive semi-supervised learning based on
three components: an ensemble of semi-supervised autoencoders providing
a new data representation that leverages the knowledge supplied by the re-
duced amount of available labels; a graph-based step that helps augmenting
the training set with pseudo-labeled instances and, finally, a classifier trained
with labeled and pseudo-labeled instances. Additionally, we also introduce
two variants of our framework adopting different graph-based pseudo-labeling
strategies: the first, ESALP, is based on a confidence-aware label propaga-
tion algorithm, while the second, ESAGAT, on a graph convolutional attention
network. The experimental results show that our framework outperforms
state-of-the-art inductive semi-supervised methods.

Keywords: semi-supervised learning, graph-based algorithms, inductive
methods

∗Corresponding author
Email addresses: shuyi.yang@unito.it (Shuyi Yang), dino.ienco@inrae.fr (Dino

Ienco), roberto.esposito@unito.it (Roberto Esposito), ruggero.pensa@unito.it
(Ruggero G. Pensa)

Preprint submitted to Neurocomputing March 21, 2021

1. Introduction

Prediction is one of the most important outcomes of any machine learn-
ing algorithm. It supports many time-consuming and tedious tasks once
performed by humans and, although classification performances are not yet
(always) comparable to humans’, especially in noisy domains [1], it is one
of the most important tasks deployed throughout the industry. Prediction
accuracy strongly depends on the amounts and quality of labeled instances
and, unfortunately, labeling is a cost-intensive manual activity requiring time,
money, and expertise. Often, labeling (or annotation) tasks are outsourced to
external companies (e.g., Amazon Mechanical Turk) that recruit users on the
web for doing the job. However, in some sensitive areas, such as X-ray images
interpretation [2], experts cannot be replaced by the wisdom of the crowd.
Hence, labeling often turns out to be unaffordable for many organizations
and, consequently, only small amounts of labeled instances are available for
training. This is a major issue, especially for models requiring large amounts
of training data such those implementing deep learning architectures.

Semi-supervised learning aims at mitigating the above-mentioned prob-
lem by leveraging the so-called smoothness and cluster assumptions: if two
data instances are close to each other or belong to the same cluster in the
input distribution, then they are likely to belong to the same class [3]. In-
stead of using the few labeled instances to train a classifier, the idea is to
propagate the information to other “close” and unlabeled data instances. If
labels are of good quality, and clusters are well separated, semi-supervised
approaches usually outperform their supervised counterparts.

Among the different algorithmic solutions proposed in literature, graph-
based models constitute one of the main families of semi-supervised tech-
niques [4]. Graph-based methods leverage the manifold assumption: the
graphs, typically nearest neighbor graphs built upon the local similarity be-
tween data points, provide a lower-dimensional representation of the high-
dimensional input data. Graph-based semi-supervised learning algorithms
typically involve two steps: in the first one, a nearest neighbor graph is
constructed using all data points to capture the manifold of the data. Clas-
sification is then performed by propagating the information from labeled to
unlabeled samples along the edges of the graph.

Unfortunately, graph-based methods are transductive [4], i.e., they do not
construct any classification model and the prediction is limited to exactly
those data instances that are already available during the training phase.

2

Therefore, graph-based methods are unable to classify new data examples,
unless they are trained again on the augmented dataset. A second limitation
concerns the construction of the graph: in general, this phase is completely
unsupervised even though, for some instances, labels are available. When
the cluster assumption is not completely satisfied, this could lead to poor
prediction results. Although some solutions exist [5, 6], they only work in
transductive settings. In this paper, we present a novel graph-based semi-
supervised framework, ESA?, that improves in the areas mentioned above: it
takes into account the information carried out by labeled instances during
the graph construction and is designed to work properly in inductive settings.

Our approach – sketched graphically in Fig. 1 – first constructs a new
representation using a semi-supervised autoencoder that takes all labeled
and unlabeled training data as input. The representation learnt by the semi-
supervised autoencoder, for both labeled and unlabeled training data, are
then processed by a graph-based semi-supervised algorithm that propagates
the label information from labeled to unlabeled data instances. This pro-
cedure provides pseudo-labels for the set of unlabeled instances. To this
purpose, we will experiment with two different approaches, leading to two
variants of our framework: the first, ESALP, is based on a graph-based label
propagation algorithm that exploits homophily and heterophily, as well as
the confidence of the inference results [7]; the second one, ESAGAT, exploits a
graph convolutional neural network with masked self-attention layers [8]. All
training instances (labeled and unlabeled with pseudo-labels) are then used
to train a classification model, which can perform prediction for new unseen
examples as well. We show that our approach outperforms state-of-the-art
approaches (including ladder networks [9] and ICT [10]), even with extremely
small amounts of labeled instances.

The remainder of the paper is organized as follows: a brief related litera-
ture review is reported in Section 2; the general framework is introduced in
Section 3; the two variants of the label propagation steps are described in
Section 3.1 and 3.2 respectively; the results of our experimental validation
are discussed in Section 4; finally, we draw conclusions in Section 5.

2. Related work

Semi-supervised learning algorithms can be characterized, depending on
whether they build a general model or not for the underlying data, between
transductive and inductive methods.

3

Transductive methods are mostly based on graphs, with the (dis)similarity
between nodes coded as the weight of the graph edges. In these methods,
once the graph has been constructed, an inference method is applied to make
predictions on unlabeled nodes. For instance, in Confidence-Aware Modu-
lated Label Propagation (CAMLP) [7], an iterative algorithm computes the
probability distribution of each node over the classes by combining the prior
belief and prediction confidence: a higher number of signals from the neigh-
borhood implies higher confidence. In addition, signals from the neighbors
are adjusted to manage both homophily and heterophily networks. Other
semi-supervised transductive algorithms that are either confidence-aware or
can handle homophily and heterophily networks exist: for instance, belief
propagation (BP) [11, 12] can handle homophily and heterophily networks
but it does not include the confidence component, SocNL [13], DGR [14],
TACO [15], and ReLISH [16] are confidence-aware but can handle only ho-
mophily networks.

Very different approaches have been proposed for inductive semi-supervised
methods. Early research focused on wrapper [17, 18, 19, 20, 21, 22] and unsu-
pervised [23] preprocessing methods [4]. Unsupervised preprocessing is often
used to provide a better initialization for the training parameters, effectively
moving the weights of a neural network closer to the convergence region. For
example, in a deep belief network, multiple restricted Boltzmann machines
are stacked and trained with unlabeled data [24], then an output layer is
added to the network structure and the entire network is trained on labeled
data.

Autoencoders (AE) [25], instead, are trained to extract the latent rep-
resentation of each instance with the goal of feeding the learning algorithm
with representations that are conducive to learning better classifiers. Even
though an autoencoder is designed to perform an unsupervised task, it can be
extended to include a supervised component: in a semi-supervised autoen-
coder (SSAE) [26] a further prediction layer is attached to the bottleneck
layer. SSAE are then trained with a loss that combines a reconstruction
component and a classification component. A significant number of other
frameworks also propose to combine unsupervised and supervised compo-
nents and this approach is neither totally new: in fact, semi-supervised ex-
tensions for support vector machines [27, 28], probabilistic models based on
Gaussian Processes [29] and density regularization methods [30] have already
been developed in the past. What these models have in common is that they
all try to maximize the margin by relying on a low-density assumption (i.e.,

4

in these models, the decision boundary is assumed to lay through regions of
the instance space with low-density data).

In recent years, a particular formulation of the cluster assumption, called
smoothness assumption (stating that close elements of an instance space
should have similar target variables) has led to the development of a new
set of inductive semi-supervised learning algorithms based on the idea of
perturbation: predictions of instances that differ only for a small perturbation
noise should be similar. A neural network based on this principle is the ladder
network (LN) [9]. Although, its structure has some similarities with the one
of a SSAE, it differs from SSAE in the training process and the cost function.
In ladder networks, the network tries simultaneously to reconstruct the input
and to denoise the representations built at every layer of the network. In this
model, then, the additional denoising autoencoders that are added layer-wise
build models for the latent representations, which in turn, help the learning
process in both supervised and semi-supervised settings.

Other perturbation-based approaches, instead of injecting the noise in
the data, perturb the model itself [31, 32]. Another class of semi-supervised
learning methods perturbs data by combining feature vectors linearly [33,
34]. In [10], Verma et et al. presents Interpolation Consistency Training
(ICT), which adopts the mean-teacher [35] method in addition to feature
vector mixup: during the training, the student network is optimized to get
correct predictions on labeled samples (by reducing the supervised loss) and
to preserve consistency over unlabeled instances. Its prediction on a linear
combination of unlabeled samples is compared to the linear combination
of predictions made by the teacher network on the same samples (via the
consistency loss).

In our work, differently from the reported literature, we propose a frame-
work to tackle the inductive graph-based semi-supervised classification task
by combining an ensemble of semi-supervised autoencoders with a graph-
based pseudo-labeling process in order to feed a final classifier both with
originally labeled instances and pseudo-labeled ones. The pseudo-labeling
process provides labels for unlabeled instances and it can be implemented
with two different strategies: the first one is based on the confidence-aware
label propagation [7], while the second one adopts graph attention networks
[8] to perform convolution operations on graph nodes representing both la-
beled and unlabeled instances.

5

Xl {xl, yl}
Xu {xu}

Xt {xt, yt}

Φ

{Φ(xl), yl} {Φ(xu)}

{Φ(xu), ỹu}

{Φ(xt), ỹt}

B
u
il
d
s
th
e

em
b
ed
d
in
g

m
o
d
el

C
om

p
u
tes

em
b
ed
d
in
gs

F
in
d
s
la
b
el
s

fo
r
X

u

B
u
il
d
s

cl
as
si
fi
ca
ti
on

m
o
d
el Learning

Algorithm

Classifier

{Φ(xt), yt}

ESA

GBPL

Figure 1: The proposed framework. The real labels of the test set instances are represented
in the figure because they are used to assess the performance. The supervised classifier is
trained only on labeled and pseudo-labeled instances.

3. Inductive graph-based semi-supervised learning

In a semi-supervised learning setting, in addition to labeled instances,
unlabeled ones are introduced as part of available data during the training
phase: let Xl ∈ Rnl×f be the matrix of nl labeled samples each with f
predictors and yl be the corresponding labels, then a supplementary matrix
Xu ∈ Rnu×f representing nu unlabeled instances is also provided without
the corresponding yu labels. Generally, the number nl of labeled instances is
limited and much smaller than the number nu of unlabeled instances.

6

Our framework aims to provide an inductive semi-supervised learning
algorithm by leveraging graph-based semi-supervised learning in order to
augment the amount of labeled instances to train a supervised classifier.

As shown in Figure 1, our framework consists of different parts: embed-
ding computation, pseudo-labeling of unlabeled instances, and classification.
In the embedding computation part, we train an ensemble of neural networks
to extract a latent representation for each instance. These representations
are used to build a graph over labeled and unlabeled instances so that a
graph-based model can be employed to provide a pseudo-label for each unla-
beled instance. Finally, labeled instances and pseudo-labeled ones are both
used to train a supervised classification model.

In order to extract the data embeddings, an Ensemble of Semi-supervised
Autoencoders (ESA) [26, 6] is trained on both labeled and unlabeled data.

An autoencoder (AE) is a neural network that employs a series of fully
connected layers which constitute the encoder E : Rf → Re. An encoder
transforms each instance in a e-dimensional latent representation. When the
dimension of the representation layer is smaller than the dimension of the
input layer, the representation layer is called bottleneck layer and the au-
toencoder is defined under-complete [36]. The bottleneck layer is attached
to a second series of fully connected layers (decoder layers) in order to re-
construct the original instance D : Re → Rf . Given an instance xr of Xl or
Xu we expect that xr is similar to its reconstructed version via the encod-
ing/decoding process D(E(xr)) and therefore the bottleneck layer provides
a latent representation containing all relevant information needed to recover
the input despite having much fewer dimensions. Besides the reconstruction
task, if we add a classification layer CL : Re → R|C| to the bottleneck one,
we can also train the network to learn a bottleneck representation tailored to
the custom classification task we are undertaking. The output of the classi-
fication layer is a probability distribution over all possible labels in the label
set C.

The loss function we use to learn the internal parameters of the SSAE is
a combination of reconstruction and classification loss. More formally:

LSSAE = LAE + λLCL (1)

where

LAE =
1

nl + nu

∑

xi∈Xl∪Xu

||xi −D(E(xi|θE)|θD)||2, (2)

7

Algorithm 1 SSAE - Training
Require: Xl: set of labeled instances, yl: labels of Xl, Xu: set of unlabeled instances, f :

number of input features, sizehidden: size of the hidden layers of SSAE, sizebottleneck:
size of the bottleneck layer, |C|: number of classes, epochs: number of training epochs

Ensure: weights of the encoder, decoder and classification layers θE , θD, θCL

1: Initialize a SSAE with

• the encoder layers of sizes [f, sizehidden, sizebottleneck]

• decoder layers of sizes [sizehidden, f]

• the classification layer of size |C|
2: counter = 1
3: while counter ≤ epochs do
4: Update θE and θD by descending the gradient of the autoencoder loss ∇θE ,θDLAE

5: Update θE , θD and θCL by descending the gradient of the total loss
∇θE ,θD,θCL

{LAE + λLCL}
6: counter++
7: end while
8: return θE , θD, θCL

LCL = − 1

nl

∑

xi∈Xl

|C|∑

c=1

ylic · log(CL(E(xi|θE)|θCL)c), (3)

and θE, θD and θCL are respectively the set of parameters of the encoder,
decoder and classification layer, ylic is the c-th element of the i-th row of yl,
CL(·)c is the c-th element of the output vector of CL and λ is a parameter
that controls the importance of the classification loss. See Algorithm 1 for
the training details.

In our architecture (see Figure 2) the encoder has an input layer followed
by other two hidden layers; the decoder has one hidden layer of the same
size of the first hidden layer of the encoder and an output layer. The size of
the input layer, the output layer and the classification layer are respectively
fixed to f , f and |C|, while sizehidden and sizebottleneck (respectively, the size
of the hidden layer and that of the bottleneck one) can be varied. In order to
get diverse and multi-resolution representations, similarly as in [6], we train
K independent SSAEs, each with the sizes of the layers extracted randomly
from the intervals f

2
≤ sizehidden < f and f

4
≤ sizehidden < f

2
. Once the

ensemble is trained we obtain the new representations Φ(Xl), Φ(Xu) of Xl

and Xu by concatenating the embeddings of these K SSAEs:

Φ(·) = ||k=K
k=1 Ek(·|θEk

) (4)

8

x̃1 x̃2 x̃n

…

…

…

…

…

ESA

x x x

LESA =

n∑

i=1

[LAE(x, x̃i) + λLCL(y, ỹi)]

ỹ1 ỹ2 ỹn

Xl {xl, yl}
Xu {xu}

Figure 2: A graphical representation of ESA (ensemble of semi-supervised autoencoders)
step of our framework.

Algorithm 2 ESA - Training
Require: Xl: set of labeled instances, yl: labels of Xl, Xu: set of unlabeled instances, f :

number of input features, |C|: number of classes, epochs: number of training epochs,
K: number of SSAEs to be trained

Ensure: K SSAEs’ encoder weights
1: k = 1
2: while k ≤ K do

3: sample an integer sizehidden in the range
[
f
2 , f

]

4: sample an integer sizebottleneck in the range
[
f
4 ,

f
2

]

5: initialize and train the k-th SSAE in order to learn its weights θEk , θDk , θCLk

(Algorithm 1)
6: k + +
7: end while
8: return θE1

, θE2
, ..., θEK

where || is the stack (concatenation) operator and Ek and θEk
are respectively

the encoder of the k-th SSAE and its weights. See Algorithm 2 for the
training details of ESA.

Given the latent representations, a kNN graph structure can be derived
from the data points of Xl ∪Xu: embedding representations are nodes and

9

two of them can be considered connected if both of them belong to the top
k nearest neighbors of each other, respectively.

At this point we perform graph-based pseudo-labeling (GBPL) to assign
pseudo class labels to unlabeled instances. To this purpose, any graph-based
semi-supervised learning algorithm (GBSSL) can be applied to infer the la-
bels of the unlabeled portion of data ỹu by propagating the class information
from the labeled data yl over the graph constructed on the embeddings. Suc-
cessively, a supervised classifier (SC) can be trained leveraging the union
of the labeled data (Φ(Xl), yl) with the pseudo-labeled one (Φ(Xu), ỹu) as
training set. In prediction, we first compute the latent representation of un-
seen data Φ(Xt) with the trained ESA, then we make predictions with the
supervised classifier SC. It is worth pointing out that during the entire pro-
cess, the transductive GBSSL process is used only during the training phase
to provide pseudo-labels of the unlabeled data (as in wrapper methods) in
order to help the supervised classifier to generalize better. Therefore, our
approach, hereinafter referred as ESA?, is inductive1. See Algorithm 3 and
Algorithm 4 for the training and prediction details of the overall framework.
In the next two sections, we present two variants adopting different strategies
to perform pseudo-labeling based on different graph-based semi-supervised
learning approaches.

3.1. Pseudo-labeling based on confidence-aware label propagation

In this section we introduce the first variant of our framework for semi-
supervised learning (see Figure 3). The adopted strategy consists in instanti-
ating the graph-based pseudo-labeling (GBPL) part with a confidence-aware
label propagation algorithm working on both homophily and heterophily net-
works [7]. In the following we provide the details of this strategy, which we
name ESALP.

Given the adjacency matrix A, ESALP computes the probability distribu-
tion over the classes as the solution of:

Fiϕ =
1

Zi

(
yiϕ + β

∑

j

Aijsji(ϕ)

)
(5)

1In the paper, we will use ESA to indicate the block consisting of the ensemble of
semi-supervised autoencoders in our framework, while ESA? stands for the overall semi-
supervised learning approach.

10

Algorithm 3 ESA? - Training
Require: Xl: set of labeled instances, yl: labels of Xl, Xu: set of unlabeled instances, f :

number of input features, |C|: number of classes, epochs: number of training epochs,
K: number of SSAEs to be trained, SC: a classifier to be trained

Ensure: K SSAEs’ encoder weights, parameters of the classifier SC
1: Learn the weights θE1

, θE2
, ..., θEK of ESA (Algorithm 2)

2: For each instance xi ∈ Xl ∪Xu compute the bottleneck representation of each SSAE
E1(xi|θE1), E2(xi|θE2), ..., EK(xi|θEK)

3: Stack the K embedding representations of each xi by forming one unique array of real
numbers Φ(xi) = ||k=Kk=1 Ek(xi|θEk)

4: For each Φ(xi) compute its 20-nearest neighbors in the euclidean space
5: Construct an adjacency matrix A where the (i, j)-element is equal to 1 if and only if

Φ(Xi) is in the top 20-nearest neighbors of Φ(Xj) and vice versa
6: Feed a GBSSL algorithm with A, (Φ(Xl), yl) and Φ(Xu) in order to infer the labels of

unlabeled instances ỹu
7: Train a classifier SC(·|θSC) with the labeled embeddings (Φ(Xl), yl) and the pseudo-

labeled ones (Φ(Xu), ỹu)
8: return θE1 , θE2 , ..., θEK , θSC

Algorithm 4 ESA? - Prediction
Require: θE1 , θE2 , ..., θEK : learned weights of ESA, θSC : learned parameters of the

classifier SC, xnew: a new instance
Ensure: class prediction of xnew
1: Given the weights of ESA (Algorithm 2), compute the embedding representation as

Φ(xnew) = ||k=Kk=1 Ek(xnew|θEk)
2: return SC(Φ(Xnew)|θSC)

where Fiϕ is the probability that i-th instance has label ϕ, Zi is a normal-
ization term, yiϕ is the prior belief of i-th instance having label ϕ, 0 < β
represents the importance of the neighborhood’s influence, Aij is the i, j en-
try of the adjacency matrix and sji(ϕ) represents how intense the node j
believes that the node i has class ϕ. More formally:

sji(ϕ) =
∑

l

FjlHlϕ (6)

where H is the modulation matrix. If Hlϕ is low then class l has a low
correlation with the class ϕ, on the contrary, if it is high these two classes have
a strong correlation. On homophily networks, H is the identity matrix, while
on heterophily networks it can be designed empirically. In our experiments
we assume that the graph obtained by the embeddings of ESA is a homophily
network.

11

Adj matrix

A11 . . . A1n

...
. . .

...
An1 . . . Ann

Fiϕ =
1

Zi

yiϕ + β

∑

j

Aijsjϕ(ϕ)

numiter

F r
11 F r

1ϕ
... F r

iϕ

. . .
...

F r
n1 F r

nϕ

 = F r

F numiter

{Φ(xu), ỹu}

{Φ(xl), yl}

GBPL-LP

Figure 3: A graphical representation of the label propagation strategy of ESALP.

We can rewrite the Equation 5 in matrix form and in an iterative way:

F r+1 = Z−1(Y + βAF rH) (7)

where Z = I+βD and D is the node degrees diagonal matrix. Once obtained
the adjacency matrix A of labeled and unlabeled instances, as described in
the previous section, we initialize F 0 as a (nl+nu)×|C|matrix of zeros. Then
we apply the Equation 7 numiter times to obtain F numiter , which represents
the probability distributions of the instances over the classes. From F numiter

we extract only the predictions of Xu and keep the original labels for Xl.
They are then used to feed a classifier SC.

Since the algorithm of our generic framework is already detailed previ-
ously, in Algorithm 5 we only report the details of the label propagation
phase (Step 6 of Algorithm 3).

3.2. Pseudo-labeling based on graph attention networks

For the second variant, we consider a completely different approach lever-
aging the convolution operation. Many recent works employ the spectral
representation of the graph and perform convolution by computing the eigen-
decomposition of the Laplacian associated to the graph [37, 38, 39, 40].
However, since the Laplacian eigenbasis depends on the graph structure,

12

Algorithm 5 GBPL – LP
Require: Xl: the set of nl labeled instances, yl: labels of Xl, Xu: the set of nu unlabeled

instances, |C|: number of classes, H: modulation matrix, A: adjacency matrix, β:
importance of the neighborhood’s influence, D: the diagonal matrix of node degrees,
numiter: number of iterations

Ensure: probability distribution of instances of Xl ∪Xu over the classes
1: Initialize F 0 as a (nl + nu)× |C| matrix with zeros as its entries
2: Initialize Y as a (nl + nu)× |C| matrix where Yij = 1 if the i-th instances of Xl ∪Xu

has j-th label, Yij = 0 if the i-th instances of Xl∪Xu is labeled but has not j-th label,
Yij = 1

|C| if the i-th instances of Xl ∪Xu is unlabeled

3: Initialize Z = I + βD
4: r = 0
5: while r < numiter do
6: compute F r+1 = z−1(Y + βAF rH)
7: r + +
8: end while
9: return Fnumiter

these methods, once trained, can hardly be applied to graphs with dif-
ferent structures. On the other hand, non-spectral methods perform fea-
ture extraction from the neighborhood nodes while still maintaining shared
weights [41, 42, 43, 44]. For instance, in [45] the weights are optimized to
output similar representations for nearby nodes and once learned, they can
be applied to graphs with different structures. In this models, each neighbor
contributes equally to a node’s embedded representation. Graph attention
networks (GAT) [8], instead, overcome this limitation by adding a multi-
head attention mechanism to each embedding layer so that nodes of the
same neighborhood can assume different importance. Moreover, the weights
of the feature transformation and the multi-head attention are shared and
this method can be either transductive or inductive. Hence, GATs are good
candidates for our pseudo-labeling process, as they are able to capture dif-
ferent levels of importance of features of neighborhood nodes in the kNN
graph built upon the embeddings computed by ESA. We call this strategy
ESAGAT and provide the details below (a graphical representation is given in
Figure 4).

Given the set of nodes, each represented by a b-dimensional real numbers
array obtained from the ESA embedding process or as a result of a previous
convolutional layer, we can compute the self-attention on nodes as

eij = a(Whi,Whj|ℵ) (8)

13

{Φ(xl), yl}

A
d
j
m
a
tr
ix

A11 . . . A1n

...
. . .

...
An1 . . . Ann

{Φ(xu), ỹu}

GBPL-GAT

Figure 4: a graphical representation of the graph attention mechanism of ESAGAT.

where hi, hj ∈ Rb are the embeddings of instance i and j, W is a b′ × b
shared linear transformation matrix, and a : Rb′×Rb′ → R is the attentional
mechanism consisting in a feedforward layer with weights ℵ and LeakyReLU
activation [46]. Each eij is computed only for connected nodes (masked
attention) so that the graph structure is embedded into the coefficients. The
attention coefficients are then normalized using the softmax function:

αij =
exp eij∑

ι∈N (i) exp eiι
(9)

with N (i) representing the nodes connected to the node i. The new repre-
sentation of the node i through the attention layer is then computed as

h
′

i = σ

 ∑

j∈N (i)

αijWhj

 (10)

with σ a non linear transformation. As in ESA, we can concatenate the out-
puts of different independent attention layers in order to employ a multi-head

14

Algorithm 6 GBPL – GAT
Require: Xl: the set of nl labeled instances, yl: labels of Xl, Xu: the set of nu unlabeled

instances, A: adjacency matrix, numheads: number of heades, h1, ..., hnl+nu : ESA em-
beddings of labeled and unlabeled instances, epochs: number of epochs, a: attentional
mechanism, σ, σ′: non linear functions

Ensure: weights of the GAT
1: Initialize random matrices W 1, W 2, ..., Wnumheads , ℵ1, ℵ2, .., ℵnumheads , W ′, ℵ′
2: counter = 1
3: while counter ≤ epochs do
4: ~ = 1
5: while ~ ≤ numheads do
6: For each couple of instances (i, j) compute e~ij = a(W ~hi,W

~hj |ℵ~)

7: For each couple of instances (i, j) compute the attention coefficients αij~ =
exp e~ij∑

ι∈N(i) exp e
~
iι

8: For each instance i compute its new representation h′~i = σ
(∑

j∈N(i) αijWhj

)

9: ~ + +
10: end while
11: For each instance i concatenate its representations h′i = ||k=numheads~=1 h′~i
12: For each couple of instances (i, j) compute e′ij = a(W ′hi,W

′hj |ℵ′)
13: For each couple of instances (i, j) compute the attention coefficients α′ij =

exp e′ij∑
ι∈N(i) exp e

′
iι

14: For each instance i compute its new representation h′′i = σ′
(∑

j∈N(i) α
′
ijW

′h′j

)

15: Compute the negative log-likehood loss for the labeled instances L(h′′i , yl)
16: Update W 1, W 2, ..., Wnumheads , ℵ1, ℵ2, ..., ℵnumheads, W ′, ℵ′ by descending the

gradient ∇L
17: end while
18: return W 1, W 2, ..., Wnumheads , ℵ1, ℵ2, ..., ℵnumheads , W ′, ℵ′

attention mechanism. To do that, once the ESA embeddings are obtained,
we can apply the Equation 10 multiple times: from the point of view of the
neural network structure, the mechanism is realized by adding additional
convolutional layers, each with its own weights to be trained and the num-
ber of nodes of the last layer should be equal to the number of classes. See
Algorithm 6 for the training details of a 2-layers GAT.

Even though there are some similarities between the attention mechanism
in ESAGAT and the modulation matrix in ESALP, it is worth noting that while
ESAGAT operates on the latent representation of the nodes, ESALP regards the
relationships among classes.

15

4. Experiments

To assess the behavior of our framework under different settings and
configurations, we conduct four experiments.

In the first experiment, we compare the two versions of our framework:
ESALP and ESAGAT. Our objective is twofold: on the one hand, we want to
measure the impact of varying the different components of our framework,
on the other hand, we aim at identifying the best combination(s). To this
purpose, both ESALP and ESAGAT variants of our framework are combined with
four different classifiers: random forest (RF), multilayer perceptron (MLP),
support vector machine (SVM) and discriminative ridge machine (DRM [47]).
We name all possible combinations as follows: ESALP+RF, ESALP+MLP,
ESALP+SVM, ESALP+DRM, ESAGAT+RF, ESAGAT+MLP, ESAGAT+SVM and
ESAGAT+DRM.

In the second experiment, we compare the two best performing configu-
rations of our framework to four well-known supervised methods (RF, MLP,
SVM and DRM) and two recent state-of-the-art semi-supervised approaches:
interpolation consistency training (ICT) [10] and ladder networks (LN) [9]. In
our experiments, ICT is coupled with fully connected layers, instead of convo-
lutional layers, to deal with tabular shaped dataset, as we do not specifically
target image datasets. Our objective is to understand both the strengths
and the limitations of our framework and to study under which conditions it
outperforms (or is outperformed by) the other approaches.

In the third experiment, we conduct an ablation study for inspecting the
contribution of the different components of our framework on the prediction
accuracy. We compare the performances of three different inductive semi-
supervised methods: i) a semi-supervised autoencoder (SSAE), ii) a semi-
supervised autoencoder ensemble coupled with a classifier (ESA+RF), iii) our
complete framework (including the graph-based semi-supervised component).

In the last experiment, we compare the two best performing configura-
tions of our framework to two state-of-the-art transductive semi-supervised
approaches: structured graph learning with multiple kernel (SGMK) [48] and
robust graph construction (RGC) [49].

The remainder of the section is organized as follows: we first present the
datasets used in our experiments (Section 4.1); then, in Section 4.2 we give
the details of our experimental protocol; finally, we report and discuss the
results of our four experiments in Section 4.3.

16

Dataset # instances # classes # features
ANTIVIRUS [54] 373 2 513

COIL20 [53] 1440 20 576
FMNIST [52] 70000 10 784

LANDSAT [54] 6435 6 36
MADELON [54] 2600 2 500
MALWARE [54] 6248 2 1087

MNIST [51] 70000 10 784
PARKINSON [54] 756 2 753

SONAR [54] 208 2 60
SPAMBASE [54] 4601 2 57

USPS [50] 9298 10 256
WAVEFORM [54] 5000 3 40

WINE [54] 178 3 12

Table 1: List of datasets used during our experiments. This table contains the number of
instances and the number of classes of each of them.

4.1. Datasets

As shown in Table 1, thirteen publicly available real-world classification
datasets, encompassing a wide variety of application scenarios, have been con-
sidered in our experiments. They exhibits different sizes (from 178 to 70 000
instances) and dimensionality (from 12 to 1087 features). The datasets in-
clude 4 well-known image datasets (USPS [50], MNIST [51], FMNIST [52],
COIL20 [53]). However, to be fair when comparing with competing ap-
proaches, we do not consider any convolutional filter and handle the images
as numeric vectors.

4.2. Experiments settings

Each dataset is randomly split into three parts: labeled instances (p% of
the dataset), unlabeled instances ((70−p)% of the dataset), and test instances
(30% of the dataset). The random split is stratified so that each dataset
maintains the same proportion of labels as in the original datasets. Every
supervised model (RF, MLP, SVM, DRM) is trained on labeled instances
only and evaluated on test instances, while all semi-supervised models are
trained both on labeled instances and unlabeled ones and evaluated on the
test instances.

17

During the experiments we vary the percentage p of labeled instances to
study how the performances change when the portion of labeled instances
increases in both supervised and semi-supervised models. More in details, p
takes one of the following values: 0.1, 0.5, 1, 2, 3, 4 or 5. Therefore, in the
most adverse situation, the percentage of labeled instances is only 0.1% of
the entire dataset while the remaining 69.9% is unlabeled. In any case, we
consider at least one labeled instance per class.

To obtain more robust performance indicators, for each combination of
dataset, percentage p and model, we evaluate 25 different random splits as
described above and then take the average performances. The model is re-
trained for each of the 25 different splits and new predictions are made on
every different test set. For any given percentage p and random split, all
models are trained on the same labeled/unlabeled set, and compared on the
same test set. As performance index, we consider the micro-averaged F1-
score computed on the test set.

In Table 2 we report the structures and the hyper-parameters of the
models used in our experiments. We have not performed a grid search to find
the best combination of hyper-parameters for each model since this would
be infeasible for the huge number of experiments required. Instead, when
available, we used the default values reported in the original papers of models.
When defaults values were unavailable, we made an educated guess based on
the considerations found in the papers introducing the algorithms. It is worth
pointing out that, in any case, the performances are always measured on an
independent test set.

4.3. Results and discussion

In all evaluations of the experiments, we compute detailed performance
results for each dataset (Figures 6, 7, 8, 9) and a summary of the results
(Figure 5). The latter is obtained as follows: for a given percentage p of la-
beled instances, we compute the average ranks across all the dataset for each
algorithm, according to the micro-averaged F1 score, and then we plot them
for increasing values of p% (lower ranks are plotted higher in the pictures
and mean better performances). This allows us to obtain an overall picture
of the relative performances of all competitors considered in our study. In
the following, we present and discuss the results for each experiment.

18

Model Structure / Hyperparameters
RF - default values.

MLP
- 2 hidden layers of sizes 64 and 32;
- default values for the rest.

SVM

- Kernel: Nystroem approximation of an RBF kernel with gamma = 0.2,
and number of components = 300 (as in the example given by the authors),
- Optimization: Stochastic Gradient Descent;
- default values for the rest.

DRM

- the DRM algorithm based on PPA (DRM-PPA [47]) is used in our experiments;
- linear DRM-PPA is used for the datasets MNIST and FMNIST;
- alpha = 0.1;
- beta = 0.1

SSAE

- 2 hidden layers of sizes 64 and 32;
- autoencoder batch size = 64;
- semi-supervised autoencoder batch size = 8;
- epochs = 100

ESA?

10 SSAEs each one having:

- the first hidden layer of size in the interval
[
f
2
, f

]
- the second hidden layer of size in the interval

[
f
4
, f
4

]
;

these intervals are reduced to
[
f
5
, f
2.5

]
and

[
f
10
, f
5

]
for the datasets MNIST and FMNIST.

CAMLP - default values.

GAT

- 2 layers of size 8;
- number of heads = 3;
- epochs = 100;
- default values for the rest.

LN

- 4 hidden layers of sizes 128, 64, 32 and 32;
- noise standard deviation = 0.3
- denoising cost = [1000, 10, 0.1, 0.1, 0.1, 0.1]
- epochs = 100
- default values for the rest.

ICT

- mixup consistency = 10;
- consistency rampup starts = 0;
- consistency rampup ends = 100;
- mixup sup alpha = 0.2; mixup usup alpha=0.2;
- mixup hidden = False;
- num mix layer = 2
- in the base model convolutional layers are substituted
by full dense layers of sizes 64 and 32;
- default values for the rest.

SGMK
- gamma = 1.0;
- default values for the rest.

RGC

- beta = 0.1;
- mu = 16;
- k = 5;
- r = 0.5;
- default values for the rest.

Table 2: The structures and the hyperparameters of the models used in the experiments.
The hyper-parameters are maintained unchanged for the models used in different parts of
our experiments: for instance, RF, which is a standalone classifier, is also used as part of
ESALP+RF and ESAGAT+RF.

19

RF
MLP
SVM
DRM

ESALP+RF
ESALP+MLP
ESALP+SVM
ESALP+DRM

ESAGAT+RF
ESAGAT+MLP
ESAGAT+SVM
ESAGAT+DRM

ICT
LN
SSAE

ESA+RF
SGMK
RGC

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

3

4

5

6

7

Av
er
ag

e
ra
nk

 (l
ow

er
 is
 b
et
te
r)

(a) Experiment 1

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

3

4

5

6

Av
er
ag

e
ra
nk

 (l
ow

er
 is

 b
et
te
r)

(b) Experiment 2

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Av
er
ag

e
ra
nk

 (l
ow

er
 is
 b
et
te
r)

(c) Experiment 3

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

1.5

2.0

2.5

3.0

3.5

4.0

Av
er
ag

e
ra
nk

 (l
ow

er
 is

 b
et
te
r)

(d) Experiment 4

Figure 5: Average rank according to micro-averaged F1-measure in the experiments.

4.3.1. Experiment 1: analysis of the variants

This experiment aims to study different variants of our framework and
select two of them as reference for further analysis (Experiments 2 and 3).
To this purpose, we compare both ESALP and ESAGAT variants with a different
choice of final classifier (RF, MLP, SVM and DRM). The detailed results are
provided in Figure 6 while a summary is presented in Figure 5(a). It can be
noticed that, in general, when both variants are coupled with RF, on aver-
age, they outperform all other combinations, for all percentages of labeled
samples. From the plots it is also evident that ESAGAT+RF performs slightly
better than ESALP+RF when p ≥ 1. Apart from the variants with DRM

20

(which perform poorly on some datasets, probably due to their particulari-
ties), it is worth noting that, the overall behavior is similar for the remaining
algorithms and all datasets (see Figure 6) except for small datasets (SONAR
and WINE) and for COIL20 (the dataset with the largest number of classes).
This first batch of experiments suggests that ESALP+RF and ESAGAT+RF are
the best combination for our technique on the chosen datasets, and we shall
use these two models for the comparative analysis in the next experiments.

4.3.2. Experiment 2: comparative analysis

In this analysis the objective is to compare our framework to other su-
pervised and semi-supervised methods. From the obtained results (Figure
5(b)), it emerges that, for every percentage of labeled examples, on average,
the two variants of our framework outperform all other methods, including
the four fully supervised classifiers considered in this study (RF, MLP, SVM
and DRM). It is worth noting that, in contrast, the two competing semi-
supervised methods (ICT and LN) are not able to outperform the supervised
competitors with the same consistency. The micro-averaged F1 score of ICT
is below the one of RF, for any given value of p. Ladder networks (LN) are
ranked third with less than 2% of labeled samples, but RF is still competi-
tive w.r.t. LN despite the fact that it does not take advantage of unlabeled
instances. From the Figure (7), we can point out that LN performs well on
some datasets (ANTIVIRUS, LANDSAT, PARKINSON, MNIST, FMNIST,
USPS), but achieves relatively low accuracy in all other cases. Furthermore,
both ICT and LN are ineffective on COIL20: the reason for such deceiving
performances could be in the high number of classes of such a dataset. In
this case, our methods are the only two capable to exceed the 0.7 thresh-
old of micro-averaged F1 score. Finally, it is worth pointing out that, not
surprisingly, when the number of labeled instances increases, the differences
between semi-supervised methods and fully supervised ones decrease.

4.3.3. Experiment 3: ablation study

With this evaluation we measure the impact of every individual com-
ponent of our framework in an inductive setting. In this case, we focus
on ESALP+RF (the variant that considers label propagation and random
forest) and analyze RF (the supervised counterpart), ESA+RF (an ensem-
ble of semi-supervised autoencoders coupled with RF), and a simple semi-
supervised autoencoder. Figure 5(c) summarizes the results by presenting
the average rank of each competitor. From this plot, it turns out that using

21

ESALP+RF
ESAGAT+RF

ESALP+MLP
ESAGAT+MLP

ESALP+SVM
ESAGAT+SVM

ESALP+DRM
ESAGAT+DRM

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.75

0.80

0.85

0.90

0.95

M
ea

n
f1
 m

icr
o

(a) ANTIVIRUS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.60

0.65

0.70

0.75

0.80

0.85

M
ea

n
f1
 m

icr
o

(b) COIL20

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
f1
 m

icr
o

(c) FMNIST

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
f1
 m

icr
o

(d) LANDSAT

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.490

0.492

0.494

0.496

0.498

0.500

0.502

0.504

M
ea

n
f1
 m

icr
o

(e) MADELON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.2

0.4

0.6

0.8

M
ea

n
f1
 m

icr
o

(f) MNIST

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
ea

n
f1
 m

icr
o

(g) SONAR

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
f1
 m

icr
o

(h) SPAMBASE

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.2

0.4

0.6

0.8

M
ea

n
f1
 m

icr
o

(i) USPS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
f1
 m

icr
o

(j) MALWARE

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.55

0.60

0.65

0.70

0.75

M
ea

n
f1
 m

icr
o

(k) PARKINSON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.4

0.5

0.6

0.7

0.8

M
ea

n
f1
 m

icr
o

(l) WAVEFORM

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

M
ea

n
f1
 m

icr
o

(m) WINE

Figure 6: Micro-averaged F1-measure for increasing percentage of labeled instances and
for different datasets and variants of our algorithm (Experiment 1).

an ensemble of autoencoders helps improve the performances of a single semi-
supervised autoencoder, but not to a great extent. Indeed, ESA+RF and RF

22

ESALP+RF
ESAGAT+RF

RF
MLP

SVM
DRM

ICT
LN

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.75

0.80

0.85

0.90

0.95

1.00

M
ea

n
f1
 m

icr
o

(a) ANTIVIRUS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
ea

n
f1
 m

icr
o

(b) COIL20

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
f1
 m

icr
o

(c) FMNIST

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.5

0.6

0.7

0.8

M
ea

n
f1
 m

icr
o

(d) LANDSAT

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.490

0.492

0.494

0.496

0.498

0.500

0.502

0.504
M
ea

n
f1
 m

icr
o

(e) MADELON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.2

0.4

0.6

0.8

1.0

M
ea

n
f1
 m

icr
o

(f) MNIST

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

M
ea

n
f1
 m

icr
o

(g) SONAR

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
f1
 m

icr
o

(h) SPAMBASE

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.2

0.4

0.6

0.8

M
ea

n
f1
 m

icr
o

(i) USPS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
f1
 m

icr
o

(j) MALWARE

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ea

n
f1
 m

icr
o

(k) PARKINSON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ea

n
f1
 m

icr
o

(l) WAVEFORM

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.775

0.800

0.825

0.850

0.875

0.900

0.925

M
ea

n
f1
 m

icr
o

(m) WINE

Figure 7: Micro-averaged F1-measure for increasing percentage of labeled instances and
for different datasets and competitors (Experiment 2).

23

have still comparable overall performances and only the overall framework
(in this case, ESALP+RF) enable us to substantially outperform RF. Hence,
providing pseudo-labels for unlabeled instances via the graph-based semi-
supervised learning step is crucial. Notice that, in this study, we can not
consider the graph-based semi-supervised learning step alone, since it is a
transductive approach and it does not provide a model that can be deployed
on the test data.

4.3.4. Experiment 4: comparative analysis w.r.t. transductive methods

In the last experiment the objective is to compare our inductive frame-
work to recent semi-supervised transductive methods. It is worth pointing
out that, while the transductive setting has potential liabilities in terms of ap-
plicability, it has advantages in the possibility of leveraging more information
than its inductive counterparts (since it can leverage the test set distribution
when propagating the labels). As we shall see, while our method is at a
disadvantage here, it works quite well nonetheless and we believe that this
comparison further clarifies the strength and the weaknesses of the proposed
approach.

We compare the variants ESALP+RF and ESAGAT+RF to the structured
graph learning with multiple kernel (SGMK) [48] and to the robust graph con-
struction (RGC) [49]. Due to computational limitations, the experiments are
performed only on a subset of the available datasets, namely: ANTIVIRUS,
SONAR, PARKINSON and WINE. From the results shown in Figure 9, our
methods outperform the competing ones on ANTIVIRUS and PARKINSON.
However, in SONAR and in WINE, RGC has better performances. Overall,
with the Figure 5(d), we can conclude that, within our experimental settings,
ESALP+RF and ESAGAT+RF are able to reach competitive performances com-
pared to SOTA transductive methods (i.e. RGC), and, in some cases, even
outperform them (i.e. SGMK).

5. Conclusion

In this paper, we have presented a new inductive semi-supervised learning
framework that take the most of two successful approaches: semi-supervised
autoencoders and graph-based semi-supervised learning. While the former
supports the generation of new data representations improved by labeled in-
stances, the latter spread the label information to unlabeled instances in the
new representation space. Thanks to an extensive experimental study, we

24

RF SSAE ESA+RF ESALP+RF

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

M
ea

n
f1
 m

icr
o

(a) ANTIVIRUS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ea

n
f1
 m

icr
o

(b) COIL20

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ea

n
f1
 m

icr
o

(c) FMNIST

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.5

0.6

0.7

0.8

M
ea

n
f1
 m

icr
o

(d) LANDSAT

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.490

0.492

0.494

0.496

0.498

0.500

0.502

M
ea

n
f1
 m

icr
o

(e) MADELON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.5

0.6

0.7

0.8

0.9

M
ea

n
f1
 m

icr
o

(f) MNIST

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
ea

n
f1
 m

icr
o

(g) SONAR

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
f1
 m

icr
o

(h) SPAMBASE

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
f1
 m

icr
o

(i) USPS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
f1
 m

icr
o

(j) MALWARE

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.55

0.60

0.65

0.70

0.75

M
ea

n
f1
 m

icr
o

(k) PARKINSON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
ea

n
f1
 m

icr
o

(l) WAVEFORM

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

M
ea

n
f1
 m

icr
o

(m) WINE

Figure 8: Micro-averaged F1-measure for increasing percentage of labeled instances and
for different datasets and different subcomponents of our algorithm (Experiment 3).

have shown that a classifier trained with both labeled instances and pseudo-
labeled instances achieves better prediction accuracy than its supervised

25

ESAGAT+RF ESALP+RF SGMK RGC

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.5

0.6

0.7

0.8

0.9

M
ea

n
f1
 m

icr
o

(a) ANTIVIRUS

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66

M
ea

n
f1
 m

icr
o

(b) SONAR

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

M
ea

n
f1
 m

icr
o

(c) PARKINSON

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Percentage of labeled instances (%)

0.84

0.86

0.88

0.90

0.92

M
ea

n
f1
 m

icr
o

(d) WINE

Figure 9: Micro-averaged F1-measure for increasing percentage of labeled instances and
for different datasets and different subcomponents of our algorithm (Experiment 4).

counterpart trained only on labeled instances, and also outperforms state-
of-the-art semi-supervised competitors. Additionally, we have proposed two
variants of our framework: the first one, based on a graph-based confidence-
aware label propagation approach, is more effective with very few labeled
instances; the second one, leveraging graph attention networks, outperforms
the first one when more labeled instances are available.

As possible future work, we will introduce a variant of our framework
especially tailored for image data by including convolutional layers in the
first stages of the pipeline. Moreover, we will design an end-to-end inductive
semi-supervised deep neural network process to strengthen the interaction
among the different components of the proposed framework.

Author statement and acknowledgement

Shuyi Yang: Conceptualization, Methodology, Software, Investigation, Val-
idation, Writing - Original draft Dino Ienco: Conceptualization, Methodol-
ogy, Writing – Review & Editing. Roberto Esposito: Conceptualization,
Methodology, Writing – Original draft, Writing – Review & Editing. Rug-
gero G. Pensa: Supervision, Conceptualization, Methodology, Writing –
Original draft, Writing – Review & Editing.

26

The authors wish to thank Mattia Cerrato for stimulating discussions and
its critical review of the paper.

References

[1] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, F. A.
Wichmann, Generalisation in humans and deep neural networks, in:
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
R. Garnett (Eds.), Proceedings of the Annual Conference on Neural In-
formation Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada, 2018, pp. 7549–7561.

[2] S. Rajaraman, J. Siegelman, P. O. Alderson, L. S. Folio, L. R. Folio,
S. K. Antani, Iteratively pruned deep learning ensembles for COVID-19
detection in chest x-rays, IEEE Access 8 (2020) 115041–115050.

[3] O. Chapelle, B. Schölkopf, A. Zien (Eds.), Semi-Supervised Learning,
The MIT Press, 2006.

[4] J. E. van Engelen, H. H. Hoos, A survey on semi-supervised learning,
Mach. Learn. 109 (2020) 373–440.

[5] M. G. Quiles, L. Zhao, F. A. Breve, A. Rocha, Label propagation
through neuronal synchrony, in: Proceedings of the International Joint
Conference on Neural Networks, IJCNN 2010, Barcelona, Spain, 18-23
July, 2010, IEEE, 2010, pp. 1–8.

[6] D. Ienco, R. G. Pensa, Enhancing graph-based semisupervised learning
via knowledge-aware data embedding, IEEE Transactions on Neural
Networks and Learning Systems (2019) 1–7.

[7] Y. Yamaguchi, C. Faloutsos, H. Kitagawa, CAMLP: confidence-aware
modulated label propagation, in: S. C. Venkatasubramanian, W. M.
Jr. (Eds.), Proceedings of the International Conference on Data Mining,
SIAM 2016, Miami, Florida, USA, May 5-7, 2016, SIAM, 2016, pp.
513–521.

[8] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio,
Graph attention networks, in: Proceedings of the 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, OpenReview.net, 2018.

27

[9] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, T. Raiko, Semi-
supervised learning with ladder networks, in: C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, R. Garnett (Eds.), Proceedings of the Annual
Conference on Neural Information Processing Systems 2015, NIPS 2015,
Montreal, Quebec, Canada, December 7-12, 2015, 2015, pp. 3546–3554.

[10] V. Verma, A. Lamb, J. Kannala, Y. Bengio, D. Lopez-Paz, Interpolation
consistency training for semi-supervised learning, in: S. Kraus (Ed.),
Proceedings of the 28th International Joint Conference on Artificial In-
telligence, IJCAI 2019, Macao, China, August 10-16, 2019, ijcai.org,
2019, pp. 3635–3641.

[11] W. G. S. Günnemann, D. Koutra, C. Faloutsos, Linearized and single-
pass belief propagation, Proceedings of the VLDB Endowment 8 (2015).

[12] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad,
Collective classification in network data, AI magazine 29 (2008) 93–93.

[13] Y. Yamaguchi, C. Faloutsos, H. Kitagawa, Socnl: Bayesian label prop-
agation with confidence, in: T. Cao, E. Lim, Z. Zhou, T. B. Ho, D. W.
Cheung, H. Motoda (Eds.), Proceedings of the 19th Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining, PAKDD 2015, Ho Chi
Minh City, Vietnam, May 19-22, 2015, volume 9077 of Lecture Notes in
Computer Science, Springer, 2015, pp. 633–645.

[14] Y. Fang, B. P. Hsu, K. C. Chang, Confidence-aware graph regulariza-
tion with heterogeneous pairwise features, in: W. R. Hersh, J. Callan,
Y. Maarek, M. Sanderson (Eds.), Proceedings of the 35th International
Conference on Research and Development in Information Retrieval, SI-
GIR 2012, Portland, OR, USA, August 12-16, 2012, ACM, 2012, pp.
951–960.

[15] M. Orbach, K. Crammer, Graph-based transduction with confidence,
in: P. A. Flach, T. D. Bie, N. Cristianini (Eds.), Proceedings of the
European Conference on Machine Learning and Knowledge Discovery
in Databases, ECML PKDD 2012, Bristol, UK, September 24-28, 2012,
volume 7524 of Lecture Notes in Computer Science, Springer, 2012, pp.
323–338.

28

[16] C. Gong, D. Tao, K. Fu, J. Yang, Relish: Reliable label inference via
smoothness hypothesis, in: C. E. Brodley, P. Stone (Eds.), Proceedings
of the 28th Conference on Artificial Intelligence, AAAI 2014, Québec
City, Québec, Canada, July 27 -31, 2014, AAAI Press, 2014, pp. 1840–
1846.

[17] D. Yarowsky, Unsupervised word sense disambiguation rivaling super-
vised methods, in: H. Uszkoreit (Ed.), Proceedings of the 33rd Annual
Meeting of the Association for Computational Linguistics, ACL 1995,
MIT, Cambridge, Massachusetts, USA, 26-30 June 1995, Morgan Kauf-
mann Publishers / ACL, 1995, pp. 189–196.

[18] F. d’Alché-Buc, Y. Grandvalet, C. Ambroise, Semi-supervised margin-
boost, in: T. G. Dietterich, S. Becker, Z. Ghahramani (Eds.), Pro-
ceedings the International Conference on Neural Information Processing
Systems, NIPS 2001, Vancouver, British Columbia, Canada, December
3-8, 2001, MIT Press, 2001, pp. 553–560.

[19] K. P. Bennett, A. Demiriz, R. Maclin, Exploiting unlabeled data in
ensemble methods, in: Proceedings of the 8th International Conference
on Knowledge Discovery and Data Mining, SIGKDD 2002, Edmonton,
Alberta, Canada, July 23-26, 2002, ACM, 2002, pp. 289–296.

[20] P. K. Mallapragada, R. Jin, A. K. Jain, Y. Liu, Semiboost: Boosting
for semi-supervised learning, IEEE transactions on pattern analysis and
machine intelligence 31 (2008) 2000–2014.

[21] W. Wang, Z. Zhou, A new analysis of co-training, in: J. Fürnkranz,
T. Joachims (Eds.), Proceedings of the 27th International Conference
on Machine Learning ICML 2010, Haifa, Israel, June 21-24, 2010, Om-
nipress, 2010, pp. 1135–1142.

[22] Z.-H. Zhou, M. Li, Semi-supervised learning by disagreement, Knowl-
edge and Information Systems 24 (2010) 415–439.

[23] A. B. Goldberg, X. Zhu, A. Singh, Z. Xu, R. D. Nowak, Multi-manifold
semi-supervised learning, in: D. A. V. Dyk, M. Welling (Eds.), Proceed-
ings of the 12th International Conference on Artificial Intelligence and
Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April 16-18,
2009, volume 5 of JMLR Proceedings, JMLR.org, 2009, pp. 169–176.

29

[24] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for
deep belief nets, Neural computation 18 (2006) 1527–1554.

[25] G. E. Hinton, R. S. Zemel, Autoencoders, minimum description length
and helmholtz free energy, in: J. D. Cowan, G. Tesauro, J. Alspector
(Eds.), Proceedings of the 7th Neural Information Processing Systems,
NIPS 19993, Denver, Colorado, USA, 1993], Morgan Kaufmann, 1993,
pp. 3–10.

[26] A. Gogna, A. Majumdar, Semi supervised autoencoder, in: A. Hi-
rose, S. Ozawa, K. Doya, K. Ikeda, M. Lee, D. Liu (Eds.), Proceedings
of the 23rd International Conference on Neural Information Process-
ing, ICONIP 2016, Kyoto, Japan, October 16-21, 2016, volume 9948 of
Lecture Notes in Computer Science, 2016, pp. 82–89.

[27] V. Vapnik, V. Vapnik, Statistical learning theory wiley, New York 1
(1998) 624.

[28] O. Chapelle, V. Sindhwani, S. S. Keerthi, Optimization techniques for
semi-supervised support vector machines, Journal of Machine Learning
Research 9 (2008) 203–233.

[29] N. D. Lawrence, M. I. Jordan, Semi-supervised learning via gaussian
processes, in: Proceedings the International Conference on Neural Infor-
mation Processing Systems, NIPS 2004, Vancouver, British Columbia,
Canada, December 13-18, 2004], 2004, pp. 753–760.

[30] A. Corduneanu, T. S. Jaakkola, On information regularization, in:
C. Meek, U. Kjærulff (Eds.), Proceedings of the 19th Conference in Un-
certainty in Artificial Intelligence, UAI 2003, Acapulco, Mexico, August
7-10 2003, Morgan Kaufmann, 2003, pp. 151–158.

[31] P. Bachman, O. Alsharif, D. Precup, Learning with pseudo-ensembles,
in: Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Wein-
berger (Eds.), Proceedings of the Annual Conference on Neural Infor-
mation Processing Systems, NIPS 2014, Montreal, Quebec, Canada, De-
cember 8-13, 2014, 2014, pp. 3365–3373.

[32] S. Laine, T. Aila, Temporal ensembling for semi-supervised learning,
arXiv preprint arXiv:1610.02242 (2016).

30

[33] H. Zhang, M. Cissé, Y. N. Dauphin, D. Lopez-Paz, mixup: Beyond
empirical risk minimization, in: Proceedings of the 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, OpenReview.net, 2018.

[34] D. Berthelot, N. Carlini, I. J. Goodfellow, N. Papernot, A. Oliver,
C. Raffel, Mixmatch: A holistic approach to semi-supervised learn-
ing, in: H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. B. Fox, R. Garnett (Eds.), Proceedings of the Annual Conference on
Neural Information Processing Systems, NeurIPS 2019, Vancouver, BC,
Canada, 8-14 December 2019, 2019, pp. 5050–5060.

[35] A. Tarvainen, H. Valpola, Weight-averaged consistency targets improve
semi-supervised deep learning results, CoRR abs/1703.01780 (2017).

[36] I. Goodfellow, Y. Bengio, A. Courville, Deep learning book, MIT Press
521 (2016) 800.

[37] J. B. Estrach, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks
and deep locally connected networks on graphs, in: Proceedings of the
2nd International Conference on Learning Representations, ICLR 2014,
2014.

[38] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-
structured data, arXiv preprint arXiv:1506.05163 (2015).

[39] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural net-
works on graphs with fast localized spectral filtering, in: D. D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, R. Garnett (Eds.), Proceed-
ings of the Annual Conference on Neural Information Processing Sys-
tems, NIPS 2016, Barcelona, Spain, December 5-10, 2016, 2016, pp.
3837–3845.

[40] T. N. Kipf, M. Welling, Semi-supervised classification with graph convo-
lutional networks, in: Proceedings of the 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, OpenReview.net, 2017.

[41] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, R. P. Adams, Convolutional

31

networks on graphs for learning molecular fingerprints, in: C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (Eds.), Proceed-
ings of the Annual Conference on Neural Information Processing Sys-
tems, NIPS 2015, Montreal, Quebec, Canada, December 7-12, 2015,
2015, pp. 2224–2232.

[42] J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in:
D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon, R. Garnett (Eds.),
Proceedings of the Annual Conference on Neural Information Processing
Systems, NIPS 2016, Barcelona, Spain, December 5-10, 2016, 2016, pp.
1993–2001.

[43] M. Niepert, M. Ahmed, K. Kutzkov, Learning convolutional neural net-
works for graphs, in: M. Balcan, K. Q. Weinberger (Eds.), Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Work-
shop and Conference Proceedings, JMLR.org, 2016, pp. 2014–2023.

[44] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, M. M. Bron-
stein, Geometric deep learning on graphs and manifolds using mixture
model cnns, in: Proceedings of the Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
IEEE Computer Society, 2017, pp. 5425–5434.

[45] W. L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning
on large graphs, in: I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, R. Garnett (Eds.), Proceedings of
the Annual Conference on Neural Information Processing Systems, NIPS
2017, Long Beach, CA, USA, 4-9 December 2017, 2017, pp. 1024–1034.

[46] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve
neural network acoustic models, in: Proceedings of the International
Conference on Machine Learning, ICML 2013, Atlanta, USA, June 16-
21, 2013, 2013.

[47] C. Peng, Q. Cheng, Discriminative ridge machine: A classifier for high-
dimensional data or imbalanced data, IEEE Transactions on Neural
Networks and Learning Systems (2020). Available online.

32

[48] Z. Kang, C. Peng, Q. Cheng, X. Liu, X. Peng, Z. Xu, L. Tian, Structured
graph learning for clustering and semi-supervised classification, Pattern
Recognition 110 (2021) 107627.

[49] Z. Kang, H. Pan, S. C. Hoi, Z. Xu, Robust graph learning from noisy
data, IEEE transactions on cybernetics 50 (2019) 1833–1843.

[50] J. J. Hull, A database for handwritten text recognition research, IEEE
Transactions on pattern analysis and machine intelligence 16 (1994) 550–
554.

[51] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (1998)
2278–2324.

[52] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms, 2017.
arXiv:cs.LG/1708.07747.

[53] S. A. Nene, S. K. Nayar, H. Murase, et al., Columbia object image
library (coil-100) (1996).

[54] D. Dua, C. Graff, UCI machine learning repository, 2017. URL:
http://archive.ics.uci.edu/ml.

33

