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A B S T R A C T   

Chemometrics pre-processing of spectral data is widely performed to enhance the predictive performance of 
near-infrared (NIR) models related to fresh fruit quality. Pre-processing approaches in the domain of NIR data 
analysis are used to remove the scattering effects, thus, enhancing the absorption components related to the 
chemical properties. However, in the case of fresh fruit, both the scattering and absorption properties are of key 
interest as they jointly explain the physicochemical state of a fruit. Therefore, pre-processing data that reduces 
the scattering information in the spectra may lead to poorly performing models. The objectives of this study are 
to test two hypotheses to explore the effect of pre-processing on NIR spectra of fresh fruit. The first hypothesis is 
that the pre-processing of NIR spectra with scatter correction techniques can reduce the predictive performance 
of models as the scatter correction can reduce the useful scattering information correlated to the property of 
interest. The second hypothesis is that the Deep Learning (DL) can model the raw absorbance data (mix of 
scattering and absorption) much more efficiently than the Partial Least Squares (PLS) regression analysis. To test 
the hypotheses, a real NIR data set related to dry matter (DM) prediction in mango fruit was used. The dataset 
consisted of a total of 11,420 NIR spectra and reference DM measurements for model training and independent 
testing. The chemometric pre-processing methods explored were standard normal variate (SNV), variable sorting 
for normalization (VSN), Savitzky-Golay based 2nd derivative and their combinations. Further two modelling 
approaches i.e., PLS regression and DL were used to evaluate the effect of pre-processing. The results showed that 
the best root mean squared error of prediction (RMSEP) for both the PLS and DL models were obtained with the 
raw absorbance data. The spectral pre-processing in general decreased the performance of both the PLS and DL 
models. Further, the DL model attained the lowest RMSEP of 0.76%, which was 13% lower compared to the PLS 
regression on the raw absorbance data. Pre-processing approaches should be carefully used while analysing the 
NIR data related to fresh fruit.   

1. Introduction 

Spectral data pre-processing is widely performed in chemometrics to 
remove or reduce the undesired artefacts from the spectra so that model 
predictive performance can be improved [1]. Several methods for 
pre-processing the spectra are available such as smoothing, baseline 
correction, normalizations and scatter correction [2,3]. Different 
pre-processing methods and their combinations are usually explored in 

combination with modelling approaches such as partial-least squares 
(PLS) regression to find the one with the best performance in terms of 
lowest prediction error [4]. Recently, to reduce the need to explore each 
pre-processing combination, ensemble approaches for combining the 
information from different pre-processing methods have been proposed 
[5,6]. Hence, whether alone or in combinations, various pre-processing 
techniques can be very effective in improving the predictive perfor
mance of chemometric models [2,7,8]. 
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In the case of near-infrared (NIR) spectroscopy of fresh fruit, the 
interaction of light results in two major phenomena i.e., absorbance and 
scattering [9]. The absorbance is related to the chemical components 
present in the fresh fruit, whereas the scattering is caused by the physical 
microstructure of the fruit skin and flesh [10]. The spectra recorded 
therefore contain a mixture of absorbance and scattering information 
[11]. The absorbance is highlighted as the broad peaks and valleys in the 
spectra while the scattering results in the global differences in intensities 
leading to additive and multiplicative effects [4]. Hence, to predict 
chemical properties such as dry matter (DM) and total soluble solids in 
fresh fruit, it seems practical to reduce/remove the scattering contri
bution from the spectra so that the remaining absorbance information 
can be linearly correlated to reference properties using linear models 
such as PLS [11,12]. 

Some commonly used pre-processing techniques in the domain of 
fresh fruit analysis are the estimation of 2nd derivative using Savitzky- 
Golay filtering to reveal underlying peaks [13], standard normal 
variate (SNV) [14] and its variants such as variable sorting for 
normalization (VSN) [15] to normalize the global intensity differences, 
as well as combinations of normalization and 2nd derivatives such as 
SNV or VSN followed by 2nd derivative [16]. Although with chemo
metric pre-processing methods the scattering information is reduce
d/removed from the spectral profiles, it is clear from previous research 
works that scattering information may provide added value related to 
the physical structure of materials which could enhance the model 
performance. Therefore, in some cases it may be interesting to retain the 
scattering information in the data while in others the additive and 
multiplicative effects may add to the difficulty of the modelling. To NIR 
spectroscopy of fresh fruit, the scattering may contain important infor
mation related to the property of interest [10,17]. This is because the 
fruit structure is highly correlated with the fruit ripeness stage, hence a 
correlation can also be expected with the key ripeness parameters such 
as DM. The fruit structure is mainly responsible for the scattering in
formation in the NIR spectra of fresh fruit, hence, performing a 
pre-processing task which removes/reduces the scattering may not be an 
ideal solution to attain optimal models. Further, modelling NIR data 
containing both scattering and absorption information with linear PLS 
techniques may also be not a practical solution as the mixture of scat
tering and absorption can be highly non-linear to model. For this reason, 
there is a need for advanced pattern learning approaches that can learn 
the patterns from both the scattering and absorption information present 
in the data and correlate them with the property of interest. 

Although pre-processing plays a significant role in chemometrics, a 
recent study found that the effect of pre-processing gets less significant 
as the number of samples increases [18]. This is because the latent 
space-based models such as PLS can learn added information as extra 
latent variables which can compensate for the effects which would need 
to be removed by the pre-processing. However, in the case of huge data 
sets, standard PLS may not be an efficient solution to learn complex 
mixed patterns such as the absorption and scattering characteristics in 
data [19]. In such a case, non-linear methods that can automatically 
learn non-linear patterns in data could be of interest. Recently, interest is 
growing for the use of advanced machine learning algorithms, such as 
deep learning (DL), to model spectral data [20–22]. The interest in DL is 
increasing because the DL model keeps on learning as the data increases 
whereas the traditional machine learning algorithms become saturated 
in performance at a certain point. Unlike the conventional DL analysis 
performed for computer vision tasks using convolutional 2D neural 
networks (2D-CNN), spectral data requires 1-dimensional convolutional 
neural networks (1D-CNN) as the single spectrum is 1 × n size, where n 
is the number of wavelengths [22]. Applications of 1D CNN models to 
spectral data has already shown better performance than PLS regression 
approaches [22], however, the effect of chemometric pre-processing 
methods on the performance of 1D CNN models on real-life big spec
tral data sets is still unexplored. 

The objectives of this study are to test two hypotheses to explore the 

effect of pre-processing on NIR spectra of fresh fruit. The first hypothesis 
is that the pre-processing of NIR spectra with scatter correction tech
niques can reduce the predictive performance of models as the scatter 
correction can reduce the useful scattering information correlated to the 
property of interest. The second hypothesis is that the DL can model the 
raw absorbance data (mix of scattering and absorption) much more 
efficiently than the PLS regression analysis. To test the hypotheses, a real 
NIR data set related to dry matter (DM) prediction in mango fruit was 
used. The dataset consisted of a total of 11,420 NIR spectra and refer
ence DM measurements for model training and independent testing. The 
chemometric pre-processing methods explored were SNV, VSN, 2nd 
derivative by Savitzky-Golay filtering, as well as their combinations. 
Further two modelling approaches i.e., partial least-squares (PLS) 
regression and 1-D CNN based DL were used to evaluate the effect of pre- 
processing and identify the best technique to model the raw absorbance 
spectra. The criteria to test both the hypotheses was the lowest RMSEP. 

2. Material and methods 

2.1. Data set 

The data set used in this study is comprised of a total of 11,691 NIR 
spectra (742–990 nm) and reference dry matter measurements per
formed on 4,675 mango fruit collected across 4 harvest seasons 2015, 
2016, 2017 and 2018. The NIR spectra were acquired using F750 Pro
duce Quality Meter (Felix Instruments, Camas, USA). The DM was 
measured with hot air oven drying (UltraFD1000, Ezidri, Beverley, 
Australia). The data set was sourced from Prof. Kerry Walsh, Central 
Queensland University, Australia [23]. 10,243 spectra, corresponding to 
season 2015, 2016 and 2017, were used for training and tuning, and the 
remaining 1,448 spectra from season 2018 were used as an independent 
test set. Due to the presence of outliers in both the training and test sets, 
hoteling T2 and Q statistics (with PLS) was used to remove the abnormal 
samples. After outlier removal, the final data consisted of 10,135 sam
ples in the training set and 1,285 samples in the test set. The data used 
can be found in the supplementary file. 

2.2. Pre-processing method implemented 

Based on the popularity of use and practicality in NIR data analysis of 
fresh fruit, three main pre-processing techniques were chosen [12,16]. 
The three techniques were 2nd derivative with Savitzky-Golay poly
nomial fitting [13], SNV [14] and VSN [15]. Furthermore, the two 
normalization techniques (SNV and VSN) were combined with the 2nd 
derivative to unravel the underling peaks. A combination of normali
zation technique with the 2nd derivative has already proven to be more 
powerful than other techniques [16]. 

In this study, the 2nd derivative in the spectral domain was imple
mented with a fixed window size of 13 and a 2nd order polynomial. The 
pre-treatments were implemented using in-house codes in MATLAB 
2018b, MathWorks, Natick, USA. 

2.3. Partial least squares regression 

PLS regression analysis was performed as the baseline method to 
compare the effect of different pre-processing on the DL model perfor
mance. The PLS was implemented using the non-linear iterative partial 
least squares (NIPALS) algorithm which starts by using the response 
variable (in the case of a single response variable) to estimate the 
weights w for the X matrix such that the covariance between Xw and y is 
maximized. The weight vector is further normalized to unit norm, i.e., || 
w|| = 1. The X-scores are then estimated as t ¼ Xw and y subsequently 
regressed against t. Finally, X and y are deflated to remove the variation 
extracted by the current LV. In this work a 10-fold cross-validation was 
used to determine the optimal number of LVs for the final PLS model. 
The PLS analysis was carried out using the ‘plsregress’ function in 
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MATALB’s ‘machine learning and statistics’ toolbox. 

2.4. Deep learning architecture and modelling 

A 1-dimensional convolutional neural network (1D-CNN) deep 
learning (DL) architecture inspired from Ref. [22] was used for training 
and testing. A summary of the architecture is presented in Fig. 1, where 
6 layered networks were created with one input layer, one 1D- CNN 
layer with a fixed kernel of width = 5 and stride = 1, three fully con
nected layers with 36, 18 and 12 neurons, respectively, and the final 
output layer with one neuron. To capture the non-linearity in the data, 
rectified linear units were used as the activation function between the 
layers. 10,135 training samples were further split into calibration 
(66.6%) and tuning set (33.3%) using the ‘test_train_split’ function from 
SciKit learn. The model weights were optimized with adaptive moment 
(Adam) optimizer and the mean absolute error was used as the loss 
function to train the network. A batch size of 256 was used and each 
model was trained up to 500 epochs. To have a fair comparison for 
different pre-processing techniques, the same architecture settings were 

used. 
All analyses were carried out using Tensorflow GPU 2.1.0 using the 

GeForce RTX 2080 Ti, Nvidia, Santa Clara, California, USA, using a 
desktop computer equipped with a 3.60 GHz Intel® Xeon® W-2133 
processor (Intel Corporation, Santa Clara, CA) and 64 GB RAM, running 
Microsoft Windows 10 operating system (Microsoft Inc., Redmond, WA) 
and 64-bit MATLAB 2018b (The Mathworks, Natick, MA). 

3. Results and discussion 

3.1. Spectral profiles and pre-processings 

Mean spectral profiles (742–990 nm) of the training and test sets as 
raw absorbance spectra and after several pre-processings are shown in 
Fig. 2. In the raw absorbance data (Fig. 2A), a global intensity difference 
can be seen in the mean spectral profiles of the training and test sets. 
Such global differences in intensity could be related to the presence of 
additive and multiplicative effects in the spectra due to changes in the 
light scattering caused by the interaction of light with the mango fruit at 
various levels of ripening [2] being influenced by changes in the cell 
structure of the fruit. For example, a hard fruit has a stiffer cell structure 
and exhibits refractive index steps that cause light scattering. On the 
contrary, a soft fruit has a looser cell structure [9] and the space between 
the cells is filled with liquid, which reduces refractive index steps, thus 
reducing light scattering. The raw spectra (Fig. 2A) also present a high 
absorbance near the spectral band at 960 nm which could be related to 
higher moisture content in fresh produce such a mango fruit [10,24]. 
The presence of high moisture usually masks peaks related to other 
chemical constituents such as sugars, fats and proteins, and methods 
such a 2nd derivative are usually required to reveal the underlying peaks 
[25]. Following the application of the 2nd derivative (Fig. 2B), several 
underlying peaks were in fact revealed, e.g., at 820, 870 and 920 nm 
which can be assigned to the 3rd overtones of NH and CH bonds, related 
to the protein and fats in the mango fruit [25]. The 2nd derivative also 
reduced the global difference in the spectra, but on the other hand, the 
shape of the spectral profile is lost. The SNV transformation (Fig. 2C) 
also allowed to reduce the global intensity differences while keeping the 
same shape of the spectra but did not reveal the underling peaks. 
However, the 2nd derivative of the SNV pre-processed data revealed the 
underlying peaks (Fig. 2E). The VSN pre-processing also reduced the 
overall intensity differences but only in the zones where the scattering 
dominates the absorption, while retaining the variability near the highly 
absorbing moisture bands i.e., 960 nm. Combining VSN with the 2nd 
derivative revealed the underlying peaks. A point to be noted is that the 
peak revealed after the 2nd derivative of the SNV or VSN pre-processed 
data were like the peaks revealed with 2nd derivative on raw absorbance 
data. A summary of reference dry matter (DM) values is presented in 
Fig. 3. The DM of the test set was well represented in the DM of the 
training set except for high DM samples which were less present in the 
training set compared to the test set. The DM of the training and test sets 
were 16.2 ± 2.4% and 16.9 ± 2.6%, respectively. 

3.2. Partial least-squares vs deep learning vs pre-processings 

A summary of PLS regression and DL model performances on raw 
absorbance and differently pre-processed data is shown in Table 1. For 
both PLS and DL, the model based on raw absorbance data outperformed 
the models based on pre-processed data, thus proving the first hypoth
esis in this study (scatter removal can deteriorate NIR models of fresh 
fruit) to be true. This claim is also supported by a recent study on pear 
fruit, where the best models for moisture content prediction (100% - 
DM) were attained when the raw absorbance information was incor
porated in the PLS model [5]. The outcomes of PLS and DL models on 
raw absorbance data are shown in Fig. 4. The RMSEP for DL on the raw 
absorbance data was 13% lower than for the PLS regression, thus 
demonstrating the superiority of DL in modelling the raw absorbance 

Fig. 1. A summary of the deep learning (DL) architecture implemented. The 
architecture consisted of one convolutional later and 3 dense fully con
nected layers. 
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data. A 13% lower RMSEP of the DL model compared to the PLS 
regression model proves that the second hypothesis in this study is also 
true. The second-best DL model was obtained with the SNV 
pre-processed data and was also better than any PLS model. In the case 
of PLS modelling, the 2nd best performance was obtained on the 2nd 
derivative pre-processed data with same number of LVs as obtained for 
the raw absorbance data modelling. The 2nd derivative did not drasti
cally reduce the performance of models compared to the scatter 
correction techniques, SNV and VSN. The better performance of 2nd 

derivative compared to the scatter correction technique is because the 
2nd derivative is not only a scatter reduction technique, but also a peak 
revealing technique, thus completing the NIR data. And in fact, using 
scatter correction prior to 2nd derivative led to poorer PLS models 

Fig. 2. Mean spectra of the training and test sets for absorbance spectra and after several pre-processings. (A) Absorbance, (B) 2nd derivative (window 13, order 2), 
(C) SNV, (D) VSN, (E) SNV followed by 2 nd derivative, and (F) VSN followed by 2 nd derivative. 

Fig. 3. Distribution of dry matter in mangoes for the training and test sets.  

Table 1 
A summary of performances of partial least squares (PLS) and deep learning (DL) 
models for predicting dry matter in mangoes using different pre-processing.  

Pre-processing methods RMSEP of PLS model/Latent Variables RMSEP of DL 

Raw absorbance 0.87/8 LVs 0.76 
SNV 0.97/7 LVs 0.81 
VSN 1/7 LVs 0.91 
2nd derivative 0.88/8 LVs 0.92 
SNV+2nd derivative 0.98/7 LVs 0.90 
VSN+2nd derivative 0.95/9 LVs 0.98  

Fig. 4. Prediction of the test set by partial least squares regression (A) and deep 
learning (B), with a model based on raw absorbance data for dry matter pre
diction in mango fruit. 
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compared to the PLS model on the data pre-processed only by the 2nd 
derivative. 

The best performance of the PLS model for the raw absorbance data 
agrees with the results of Schoot et al. [18], who conclude that with big 
spectral data sets the effect of pre-processing is reduced and raw data is 
sufficient to attain high accuracy models. This study finds the same thing 
for DL, where the raw absorbance data give better models than the 
pre-processed data. The results were also in agreement with Ciu et al. 
[22], where the author concluded that pre-processing of spectral data 
may not be required as the DL model may be able to learn the required 
transformations automatically. 

To get an enhanced understanding of the learning performed by PLS 
and DL on the raw data, the PLS regression weights and the mean 
activation of the convolutional layer of the DL model are shown in Fig. 5. 
At a first glance the PLS regression weights are dominated by the peak at 
920 nm which can be related to the 3rd overtones of C–H bonds [25], 
however, the DL model shows near zero weights in that region. The DL 
model showed higher weights in the spectral range at 960 nm which is 
related to the 3rd overtones of the O–H bonds [25] related to the 
moisture in the fresh mangoes. A reason for the better performance of 
the DL model on the test set (which is a new harvest season) can be that 
moisture in fruit is a more generalized indicator of DM than the fatty 
acids which may vary between cultivars and be season specific. 

3.3. Effect of pre-processing on PLS regression with different sample sizes 

In this study, pre-processing of data in general lead to poor accuracy 
of models. The same holds when the data set size was reduced (Fig. 6) by 
multiple folds ((100%, 50%, 25%, 12.75%, and 3.37%). This analysis 
was only performed for the PLS regression models and not for DL, as DL 
requires big data. A recent study concluded that when the NIR data set is 
small, pre-processing significantly improved the model accuracies [18]. 
The present study shows that the conclusion proposed in [18] does not 
always hold true as here, in the case of fresh fruit analysis using NIR 
spectroscopy, the pre-processed data never performed better than the 
raw absorbance. In this study, exploring the individual pre-processings 
for different sample sizes showed that most pre-processings either 
maintained the same predictive performance or showed improved per
formance of the PLS models (Fig. 6) as the sample size increases (3.37%, 
12.75%, 25%, 50% and 100%). This indicates that the use of more data 
in this study (irrespective of pre-processing) in general improved the 
performance of PLS models. 

3.4. A posteriori analysis to determine whether any pre-processed data 
carry complementary information to raw absorbance 

It has been shown that the PLS models based on raw absorbance 
performed the best compared to any other pre-processed data. However, 
differently pre-processed data may carry complementary information 
which may benefit the modelling performed with raw data alone [2,5,6, 
12]. To find any existing complementary information in differently 
pre-processed data, a posterior analysis was performed. At first the 

RMSEP for PLS models based on raw absorbance were explored in the 
LVs range from 1 to 30. In Fig. 7A, it can be noted that 7 LVs were 
sufficient to reach a RMSEP of 0.85%. After that, using the scores from 
the 7 LVs extracted from the raw absorbance data and the already 
explained part of the response variable (DM), the data matrices corre
sponding to each differently pre-processed data block and the response 
variable (DM) were orthogonalized. After orthogonalization the unique 
information present in the differently pre-processed data was used to 
model the unexplained part of the response variable. The PLS models for 
each differently pre-processed data block were explored in the range of 
1–30 LVs. It can be noted in Fig. 7B that out of all pre-processing ap
proaches, combining 4 LVs from the VSN pre-processed data (black solid 
line) with the 7 LVs of raw absorbance decreased the RMSEP from 0.85% 
to 0.82%, thus, indicating that VSN carries information complementary 
to the raw absorbance data. Although combining the information from 
raw absorbance and VSN pre-processed data decreased the RMSEP, it 
never achieved the RMSEP of 0.76% attained by the DL analysis. To 
understand the complementary information present in the VSN 
pre-processed data block, the regression vectors for raw absorbance and 
VSN pre-processed data are shown in Fig. 8. For raw absorbance: The left 
part of the coefficients has the same shape as the raw spectra. The 
regression is therefore based on baseline variations. The sine profile, 
positive for 920 nm and negative for 950 nm indicates that the regres
sion is sensitive to a shift of the main peak flank. The peak of the co
efficients at 975 nm is directly related to the water peak. These two 
characteristics are both related to the inflation of the main peak of the 
spectra. It may seem inquisitive to find positive coefficients at the peak 
related to water content, knowing that DM is negatively correlated with 
water content. However, one can hypothesize that the regression is 
sensitive to scattering, which has the effect of increasing the apparent 
absorbance. For VSN pre-processed spectra: The regression coefficients 
show peaks which correspond to chemical absorptions. Thus, the two 
negative peaks at around 760 nm and 975 nm can be directly attributed 
to water absorption [25]. 

4. Conclusions 

This study tested two hypotheses concerning the effect of spectral 
pre-processing on the quality of predictive models. The first hypothesis 
was that the pre-processing of NIR spectra of mango fruit with scatter 
correction techniques can reduce the predictive performance of models. 
The second hypothesis was that the DL can model the raw absorbance 
data (mix of scattering and absorption) much more efficiently than the 
PLS regression analysis. The criteria to test both the hypotheses was the 
lowest RMSEP. The results from the study showed that both hypotheses 
are true as the lowest RMSEP models (both PLS and DL) for predicting 
DM in mango fruit were achieved with the raw absorbance data. The 
scatter correction methods, particularly SNV, VSN and their combina
tion with 2nd derivative drastically degraded the PLS models for pre
dicting DM in mango fruit. A reason put forward to explain this is that 
the scatter correction removes the useful scattering information corre
lated to the property of interest. Furthermore, for the raw data, DL 

Fig. 5. Comparison of the spectral features detected by PLS regression and the mean activation of the convolutional layer, to predict dry matter in mango fruit.  
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models achieved a 13% lower RMSEP compared to the PLS models, 
indicating when big data is available, DL should be the preferred 
approach to attain high accuracy predictive models. This study also 
explored the effect of sample size and pre-processing on the performance 
of PLS models and found that increasing data in general improved the 
PLS modelling irrespective of the pre-processing. There was also com
plementary information present in the VSN pre-processed data which 
improved the performance of PLS models based on the raw absorbance, 
but the performance of DL models on the raw data outperformed all. 
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