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Africa is forecasted to experience large and rapid climate change1 and population

growth2 during the XXIst century, threatening the world’s second largest 

rainforest. Protecting and sustainably managing these forests requires an 

extended understanding of their current compositional heterogeneity, 

environmental drivers and vulnerability to ongoing changes. Here, using an 

unprecedented dataset of 6 million trees in more than 180,000 field plots, we 

jointly model the distribution in abundance of the most dominant central African 

tree taxa and produce the first continuous maps of the floristic and functional 

composition of central African forests. Our results show that the uncertainty in 

taxon-specific distributions averages out at the community level, revealing highly

deterministic assemblages. We uncover contrasting floristic and functional 

compositions across climate, soil types and anthropogenic gradients, with 

functional convergence among floristically dissimilar forest types. Combining 

these spatial predictions with global change scenarios suggests a high 

vulnerability of the northern and southern forest margins, the Atlantic forests and

of most forests from the Democratic Republic of Congo where both climate and 

anthropogenic threats are expected to increase sharply by 2085. These results 

constitute key quantitative benchmarks for scientists and policy makers to shape 

transnational conservation and management strategies aiming at providing a 

sustainable future for central African forests.

Concomitant increases in climate stress, human population needs and resource 

extraction in central Africa raise environmental concerns3–5. These threats may have 

considerable impacts on the carbon budget6, climate7 and biodiversity of central African 

forests8, which shelter some of the world’s most iconic wildlife species and that are 

already experiencing much drier and seasonal climate than other tropical forests9. 

However, the current composition of central African forests and its determinants at 

regional scale are still poorly known, being often studied on limited areas10–12 and 

datasets13 or at a very coarse grain with heterogeneous presence-only data14. Vast 

areas remain poorly scientifically explored15 while most spaceborne systems of Earth 
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observation provide very limited information on forest composition16. This limits our 

ability to understand how forest composition and functions vary regionally, to forecast 

how these forests will face upcoming global changes and, ultimately, to anticipate, on 

scientific bases, how to protect and manage them beyond national boundaries.

In this study, we used an unprecedented forest inventory dataset to (1) model the main 

floristic and functional gradients over central African forests, and (2) assess their 

expected vulnerability under forecasted global (climatic and anthropogenic) change 

conditions. We compiled the abundance distributions of 193 dominant tree taxa in 

185,665 field plots (ca. 90 ,000 ha) from commercial forest inventories spread over the 

five main forested countries in central Africa (Extended Data Fig. 1). We modeled the 

joint distributions of taxon abundances at a 10-km resolution using supervised 

component generalized linear regression (SCGLR)17, a modelling method that extends 

partial least squares (PLS) regression to the multivariate generalized linear framework. 

SCGLR models a set of responses (here the abundances of taxa) from synthetic 

orthogonal explanatory components derived from 24 climatic variables (hereafter, 

climatic components, CCs) and additional soil type (here, sand vs. clay) and 

anthropogenic pressure covariates. We developed for this study an index based on 

population density and road network specifically designed and calibrated to predict 

recent human-induced forest disturbance intensity in central Africa - see Methods. 

Finally, thanks to the huge size of the dataset, the predicted floristic and functional 

gradients were cross-validated with spatially independent observations using Spearman

correlation coefficients, ρCV .

Floristic composition in central Africa

Our model predicted individual taxon abundances with an overall median correlation ρCV
of 0.48 (range of -0.11 to 0.83). This median was still as high as 0.45 when unoccupied 

sites were removed, showing that, beyond presence-absence, our model also captured 

variations in abundances within taxon’s distributional range. A correspondence analysis 

(CA) performed on the predicted taxon abundances revealed major regional floristic 

gradients (Fig. 1; Extended Data Fig. 2 and 3) highly correlated with the observed 
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gradients (ρCV=0.89, 0.71 and 0.6 for CA axes 1 to 3, respectively; Fig. 1B-D). Contrary 

to Amazonian and Southeast Asian forests, where soil was shown to be the primary 

large scale driver of tree community composition18,19, the most prominent floristic 

gradient predicted here (CA axis 1) was highly related to climate, in particular to the first

predictive CC (Pearson’s r=0.98), contrasting areas with a cool and light-deficient20 dry 

season (coastal Gabon) and areas with high evapotranspiration rates (northern limit of 

the central African forests; Extended Data Fig. 4). The second predicted floristic 

gradient (CA axis 2) was highly correlated with the two other CCs (r=-0.86 and -0.72 for

CC2 and CC3, respectively) related to seasonality and maximum temperature, thus 

contrasting equatorial areas with a low water deficit and areas with a high water deficit 

towards the limits of the tropics. Climate seasonality was also found to be an important 

driver of tree community composition in Amazonia18 and maximum temperature has 

been recently identified as the most important pantropical driver of forest biomass, 

impacting woody productivity21. The third predicted floristic gradient (CA axis 3) revealed

more local floristic variations highlighting human-impacted forests (r=0.67 with our index

of human-induced forest disturbance intensity).

As already shown in previous studies22,23, the association between taxon distributions 

and climate patterns may appear by chance because both are spatially autocorrelated 

at the regional scale. We thus used a spatially explicit null model that randomized the 

predictive CCs while preserving their spatial (co)structures. When keeping the soil and 

human impact on forests unchanged, the null model did not predict significantly different

abundances (P>0.1) from those predicted with original CCs for 67% of the taxa. This 

suggests that variation in taxon abundances directly depends on climate for a minimum 

of only one-third of the taxa, while for most of them, abundance may correlate with 

climate by chance only. In contrast, the association between climate and the main 

gradients of floristic assemblages was robust to autocorrelation artifacts (P=0.028, 

0.006 and 0.06 for CA1 to 3, respectively). This result confirms that extrapolating 

assemblages from climate variables is more reliable than extrapolating individual taxon 

abundances24. Indeed, individual taxon abundances are likely less predictable on the 
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basis of only current drivers since they are also affected by unknown past human 

disturbances25, biotic interactions and biogeographical history26, the idiosyncratic effects 

of which tend to average out at the community level.

Functional composition in central Africa

From the predicted floristic assemblages, we computed the community weighted mean27

of three functional traits known to play an important role in ecosystem processes: wood 

density, deciduousness and maximum diameter (Fig. 2). The predicted functional 

composition was consistent with the observations (ρCV=0.47, 0.75 and 0.45 for the three

traits, respectively; Extended Data Fig. 5). As in Amazonia18, community wood density 

varies with soil type with the highest values found on sandy soils, at the boundaries of 

Cameroon, Republic of Congo and Central African Republic, where tree species with 

conservative resource use strategies predominate11. However, larger scale variations in 

wood density were primarily driven by human-induced forest disturbances, with a lower 

community wood density in human-impacted forests, indicating that they are mostly 

composed of fast-growing taxa28. However, these areas also feature a high proportion of

trees that can potentially reach a large diameter. These two results indicate that human-

impacted forests are dominated by long-lived pioneer taxa, which are characterized by a

low wood density but a large potential stature, offering a fast and relatively long-lasting 

carbon sink potential in absence of disturbances29. Finally, a marked deciduousness 

gradient ran from the highly evergreen forests of coastal Gabon to the northern limit of 

the central African forests with, again, a well-known exception on the northern sandy 

soil plateau11,30.

A reference map of forest types

To ease practical applications, we performed hierarchical clustering of the predicted 

floristic gradients (pixel scores on the first five CA axes), which are continuous by 

nature, and identified ten major forest types (Fig. 3; Extended Data Table 1). The 

strongest floristic dissimilarity appeared between Atlantic forests (types 1 to 3) and the 

other forest types (4 to 10), within which semideciduous seasonal forests were clearly 

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152



distinguished (types 4 to 6). We also observed functional convergences among 

floristically dissimilar forest types and vice versa. For example, despite having a 

regional species pool similar to deciduous forests (types 4 and 6), sandstone forests 

(type 5) have a functional composition closer to remote forest groups (e.g. types 2, 3, 7 

and 8), with high wood density and low deciduousness. Soil filtering indeed modifies the

relative abundance of species (rather than their presence or absence31) favoring 

suitable functional attributes in poor sandy soils11. By contrast, while Atlantic forests 

(types 1 to 3) have little taxonomic affinity with the east-central and southern forests 

(types 7 and 8), they display similar functional composition due to more similar climate 

conditions, as represented on the first predictive CC (Extended Data Table 1). This 

confirms that while taxonomic composition has an important biogeographical 

component, the functional composition of tree communities can converge in similar 

environmental conditions.

Vulnerability to global change

For the ten forest types, most climate models predict current climate conditions either to

virtually disappear from central Africa (e.g., types 2 and 5; Extended Data Fig. 6), or to 

move at spatial and temporal scales incommensurate with tree dispersal ability 

(e.g. types 4 and 6). This suggests that current forest communities will not be able to 

track their present climate envelopes and will face the emergence of novel climates, 

making the prediction of taxon distributions under future climate projection highly risky32.

We thus assessed the vulnerability of central African forests to climate change through 

their sensitivity, exposure, and adaptive capacity, following the recommendation of the 

IPCC33.

We quantified sensitivity at the community level using the inverse of the current climate 

niche breadth of taxa (Fig. 4C) and assuming that assemblages dominated by taxa with 

narrow environmental tolerances will be more vulnerable to upcoming changes34. 

Sensitivity appeared to be high in coastal Gabon (type 2), where a high level of species 

endemism exists35 and in the driest northern margin of central African forests. Recent 

studies consistently showed that drier tropical forests exhibited larger functional 
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changes than wetter forests in response to a long-term drought in west Africa36 and are 

likely to be more sensitive to global warming21. By contrast, forests from the northwest 

Cameroon displayed a relatively low sensitivity to current climate conditions, probably 

because these forests are dominated by widespread tree taxa adapted to anthropogenic

pressure (Fig. 2). Long-lived pioneers, typical of these human-impacted forests, are also

expected to be favored by a possible acceleration in forest dynamics induced by global 

change37,38.

Exposure to climate change was quantified as the extent to which the current climate 

determinants (CC1 to 3) are expected to change by 2085, using 18 unique bias-

corrected climate model combinations (under the IPCC-AR5 RCP 4.5 scenario; see 

Extended Data Fig. 7 for other scenarios). We found that exposure to climate change 

was mostly driven by an increase in drought stress and maximum temperature (Fig. S2, 

see also4,39). The central and east part of central African forests are predicted to be the 

most exposed, particularly in the south of the Democratic Republic of Congo (DRC) 

(Fig. 4D). Note, however, that climate change predictions in central Africa are uncertain 

because meteorological data for model validation are lacking4 (Fig. S3).

Finally, we assessed the adaptive capacity of tree communities through their 

evolutionary potential. We first found highly significant niche conservatism along the first

two climate components (P<0.002). This indicates that closely related taxa tend to share

similar climate niche spaces at the regional scale and suggests that they could be 

impacted similarly by future climate change. We thus assumed that higher local 

phylogenetic diversity provides a wider range of potential responses to novel climate 

conditions40, similarly to the insurance hypothesis41. We thus used the phylogenetical 

diversity of predicted tree assemblages as a proxy of their adaptive capacity to climate 

change. Undisturbed semideciduous and transitional forests (types 6 and 10 in Fig. 3) 

appeared phylogenetically more diverse, thus having higher adaptive capacity, than 

evergreen forests (Fig. 4E). A recent study in Amazonia42 also found a peak of 

phylogenetic diversity at intermediate precipitation level, where dry- and wet-adapted 

lineages are mixing. As expected43, we also found that human-impacted areas tended to
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have a low phylogenetic diversity and hence a lower adaptive capacity to climate 

change.

The resulting vulnerability of tree communities to climate change did not correlate with 

the expected human impact on forests in 2085 (ρ= -0.08), here assessed using country-

specific projections of human population (Fig. 4A; Extended Data Fig. 8). Vulnerability to

climate change is expected to be higher for communities dominated by hard-wooded 

taxa (ρ=0.46 with wood density, Table S1). By contrast, forecasted human impact on 

forests is predicted to be higher in already disturbed communities, i.e., dominated by 

light-wooded taxa with a large potential size (ρ=-0.4 and 0.43, respectively). However, 

because we did not account for the appearance of new roads by 2085, we may 

underestimate the effect of future anthropogenic activities in remote, currently 

undisturbed forests. Vulnerability to both climate change and anthropogenic activities 

(pink color in Fig. 4A) is predicted to be high for forests from coastal Gabon, in large 

areas from DRC and in the northern margin of the forest domain. Forests from 

Cameroon and in the south of the Republic of Congo mostly appear vulnerable due to 

the high expected human impact on forests by 2085 (orange patches in Fig. 4A). By 

contrast, the tri-national Sangha transboundary forest complex and the northeastern 

part of Gabon appeared as the least vulnerable area in the region (the large green 

patch in Fig. 4A). Globally, DRC, which comprises most of the central African forests, 

mainly contains forests that are predicted to be vulnerable to climate change and/or to 

anthropogenic pressure (blues to pink patches in Fig. 4A).

Conclusions and perspectives

While some country-specific vegetation patterns were already suggested by 

phytogeographers, here we provide the first synoptic view of central African forest 

composition at a fine resolution, based on an unprecedented amount of quantitative 

data. Unveiling the functional composition of central African forests conveys important 

insights on their functioning, dynamics and carbon uptake potential and on the way they

could respond to global change. Accounting for forest functional characteristics can also

considerably reduce uncertainty in large-scale vegetation models44 or improve remote 
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sensing approaches, for example, by assimilating large-scale variation in wood density 

into forest carbon maps45. Our maps may also help scientists to design representative 

sampling to better understand the long-term impact of climate change on tree species 

and stand dynamics, e.g., monitoring under-represented forest types or areas highly 

vulnerable to climate change.

The forest types and vulnerability maps should guide the development of new land use 

plans that preserve the full range of evolutionary and functional potential of today’s 

forests or, at least, that maintain their connectivity to attenuate the threats related to 

expected changes. In central Africa, protected areas and logging concessions, which 

cover almost half of the forest domain (14.9% and 32.2%, respectively; Extended Data 

Fig. 9), are important to consider in such plans. Protected areas do not equally cover 

the ten identified forest types (4 to 54%; Extended Data Table 1) and should therefore 

be extended to reach a better representativity. How estimated vulnerability should be 

accounted for when designing protected areas, e.g., by extending the network in 

vulnerable areas to minimize biodiversity loss, or in areas with low anthropogenic 

pressure to improve their protection, is subject to debate46. Logging concessions can 

also contribute to the maintenance of forest cover and functions, providing that they are 

well managed47,48, and currently likely act like biodiversity corridors between protected 

areas49. However, this will only prove effective in the long term if they strictly comply 

with legislation and, ideally, with standard certification requirements. These good 

practices are especially important in forests dominated by evergreen taxa with high 

wood density, where disturbances may have a higher impact on community 

composition. In areas expected to be under high anthropogenic pressure, forest 

connectivity could be preserved by promoting agroforestry and restoration programs, 

strictly controlling access to logging roads and stabilizing shifting agriculture50. Over 

central Africa, the highest uncertainties for the future of forests remain in DRC, where 

substantial areas, belonging to the state, are not yet attributed to any land use category 

and should deserve particular attention due to their high vulnerability (Fig. 4).
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Figures

Figure 1: Floristic composition of central African forests. A, Spatialized RGB 

composition of the three first axes of a correspondence analysis (CA) performed on 

jointly predicted taxon abundances at 10-km resolution (n=193 taxa; axis 1: blue, axis 2:

red, axis 3: green). Grey crosses represent forested areas outside the calibration 

domain, including permanently flooded forests and country boundaries are represented 

in black. Right panels B-D provide cross-validation results comparing the observed and 

predicted CA gradients (1:1 line in red). Taxon CA planes 1-2 and 1-3 are given in 

Extended Data Fig. 2.

392

393

394

395

396

397

398

399

400

401

402

403

404



Figure 2: Predicted functional composition of central African forests. A-C, 

Predicted community weighted functional trait values at 10-km resolution.
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Figure 3: Main forest types across central Africa and their functional composition.

A, Forest type classification obtained by hierarchical clustering of the predicted floristic 

gradients. Colors represent a RGB composite of the mean values of the three functional

traits per forest type (see Fig. 2), viz. wood density (red), deciduousness (green) and 

maximum diameter (blue). Thus similar colors illustrate similar functional composition. 

B, Taxonomic relationships among the forest types illustrated by a clustering 

dendrogram (top) and a boxplot of the standardized predicted functional composition 

over the 12,295 grid cells (bottom), with wood density in red, deciduousness in green 

and maximum diameter in blue (median is reported at the center, the lower and upper 

hinges correspond to the first and third quartiles and the two whiskers extend from 

these two quartiles to the largest and smallest values, at most 1.5 times the inter-

quartile range from the hinge). Forest type names and additional information are 

provided in Extended Data Table 1. Clustering uncertainty is reported in Fig. S1.
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Figure 4: Predicted vulnerability of central African tree communities to global 

changes. A, Composite map of the vulnerability to climate change and of the 

forecasted human-induced forest disturbance intensity by 2085. B, Projected human-

induced forest disturbance intensity in 2085. Vulnerability to climate change was 

estimated as the sensitivity to current climate (C) plus the exposure to forecasted 

climate changes by 2085 (under RCP scenario 4.5) (D) minus the adaptive capacity of 

tree communities using phylogenetic diversity as a proxy (E).
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METHODS

Floristic and functional trait data

Forestry data were extracted from management forest inventories conducted in 105 

logging concessions covering ca. 1.6×105 km2 (Extended Data Fig. 1). Most companies 

followed a standardized inventory protocol similar to that described in Réjou-Méchain et 

al.51. In most cases, it consisted of continuous and parallel transects 20 m or 25 m wide,

often 2-3 km apart, and subdivided into rectangular 0.4 or 0.5-ha plots. Overall, the full 

dataset had a total of 192,972 plots. Within each plot, trees with a diameter at breast 

height (DBH) ≥ 30 cm were allocated into 10-cm wide diameter classes and identified at

the species or genus level whenever possible through either commercial or local 

names51. Independent analyses performed on 298 scientific plots (≥ 1 ha in size) 

showed that the floristic gradients obtained with large trees are representative of the 

ones obtained with trees ≥ 10 cm in diameter (Pearson r>0.94; Fig. S4). Overall, ca.

7×106 trees were recorded. Taxonomy was revised and homogenized using the African 

Flowering Plants Database (http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php?

langue=an, last access on 01/09/2019) and the Angiosperm Phylogeny Group III for 

orders and families52. A total of 1,092 taxa were recorded in the original dataset. 

Extensive botanical controls demonstrated that the patterns of both intra (alpha)- and 

inter (beta)- plot diversity extracted from these data were highly reliable51.

For the purpose of the present paper, we conducted an additional assessment 

according to botanical experts and by comparing the distributional range of our taxa with

that in other datasets53,54 to select a set of species and genera deemed to be reliably 

identified over the whole study area (n=195). The abundances of these taxa were 

aggregated in 10x10-km2 grid cells across the study area, but we only kept the taxa 

occurring in at least 5% of the cells to discard taxa that cannot be studied at the regional

scale (n=2). For the statistical analyses, we kept the 10x10-km2 grid cells having a field 

plot sampling area ≥ to 10 ha and where the selected taxa represented at least 75% of 

the total number of individuals originally inventoried to ensure that our dataset was 

representative of the within-cell tree community composition. The final dataset contains
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6.1×106 tree individuals belonging to 193 taxa, of which 96 were analyzed at the 

species and 97 at the genus levels (Table S2), recorded in 185,665 plots aggregated in 

1,571 10x10-km2 grid cells. Overall, the selected taxa represented 90% of the total 

number of individuals originally inventoried in the selected grid cells.

For each taxon, we compiled information on three important functional traits. First, we 

extracted an average wood density using the global wood density database55,56 as well 

as other wood density data57. Wood density is an integrative trait that reflects a trade-off

between tree growth potential and mortality risk28 and is thus highly informative on 

community dynamics58. It ultimately directly impacts the amount of carbon that can be 

stored in the vegetation59. Second, we extracted the leaf phenology (deciduous or 

evergreen) of all taxa from the large unpublished CoForTraits database60. This database

compiles information on more than 1000 species from central Africa with values 

extracted from the literature (mostly from local floras, academic papers and unpublished

theses). When several values were available for a given species from different sources, 

we attributed the one with the maximum of occurrences (ambiguities were left as 

unknown). At the genus level, we first computed this step for all species belonging to 

the genus and then attributed the phenology with the maximum of occurrences at the 

species level to the genus so that all congeneric species have the same weight in the 

phenology attribution. This approach relies on the assumption that leaf phenological 

traits are highly phylogenetically conserved61. For a few taxa (n=5), the phenology 

information was obtained from Ouédraogo et al.30 and following these authors we 

considered Lophira alata Banks ex C. F. Gaertn. and  Musanga cecropioides R. Br. as 

leaf exchangers, i.e., with a trait value of 0.5, intermediate between evergreen (0) and 

deciduous (1). Leaf phenology is one of the few traits considered in dynamic global 

vegetation models as it impacts the dynamics of forest productivity62. In particular, 

deciduousness indicates that tree photosynthetic activity, and thus growth, is seasonally

depressed, which has a direct impact on carbon, water and nutrient cycling63. 

Deciduousness has often been interpreted as a strategy to avoid water stress and is 

thus expected to depend on climate and soil conditions30,64. Lastly, we used the original 
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inventory data to calculate the maximum diameter as the 95th percentile value of the 

diameter distribution for each taxon. Maximum potential diameter, which is often used 

as a proxy of maximum height65, informs both on tree competitive ability for light and on 

the carbon sequestration potential. At the community level, it is expected to vary along 

gradients of productivity and disturbance66. Leaf phenology was successfully assigned 

to 89% of the taxa (98% of the individuals), wood density to 91% of the taxa (96% of the

individuals) and maximum diameter to all taxa.

Climate and soil data

We considered 24 climatic predictors derived from the open Climatic Research Unit 

(CRU) dataset67 (Extended Data Table 2). We decided to rely on the CRU dataset as 

other datasets, such as WorldClim68, contain erroneous observations for some climatic 

stations (e.g., Ngoundi in Cameroon) that severely impacted our model. Furthermore, 

our cross-validation approach showed that the CRU database led to higher correlations 

between observed and predicted taxa abundances, correspondence analyses scores 

and community weighted trait values than the WorldClim68 and CHIRPS69 databases 

(results not shown).

Soil maps have been published at the country scale in central Africa and their 

homogenization is very challenging. We thus relied on a global dataset, the Harmonized

World Soil Database (HWSD)70, to attribute a soil type to each grid cell. A cross-

validation analysis of our joint distribution model revealed that soil significantly improved

predictions, mostly due to the contrast between Arenic Acrisols and the other soil types 

(Fig. S5). To keep the model parsimonious and maximize its robustness, we thus 

merged all soil categories but the Arenic Acrisols soils into a single category and 

discarded the permanently flooded areas as mapped in the open ESA-CCI landcover 

product (V.1.6), where no tree inventory data were available.

Human-induced forests disturbance intensity

Many studies have attempted to spatialize human impacts on environment at a large 

scale. In most cases, these human footprint maps have consisted of cumulative threat 
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maps, assuming for instance population density and infrastructure effects71–73. 

Moreover, most of these maps relied on population statistics obtained at the level of 

administrative entities, resulting in human footprint indices with sharp changes at 

administrative boundaries74. We thus developed a statistical model to link the probability

for a forest pixel i to be impacted by anthropogenic activities depending on human 

population density and road proximity through nonlinear relationships. This resulted in a 

spatially continuous index representing human-induced forest disturbance intensity that 

can be projected in space and/or time following predefined human population dynamics 

scenarios (Extended Data Fig. 8).

We calibrated this index with the “Settlement Points” dataset produced under the 

“Global Rural Urban Mapping Project” (Grumpv1). This dataset provides estimates of 

human population (counts, in persons) for the year 2000 using a proportional allocation 

gridding algorithm (1-km² grid) based on more than 1,000,000 national and subnational 

geographic units. Focusing on central Africa, we compared this product with the Natural 

Earth Populated Places product (version 3.0.0; 

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populated-

places/; last access the 07/10/2018) derived from the LandScan 

(https://earthworks.stanford.edu/catalog/stanford-yj715rc4110#iso-metadata-reference-

info) dataset (pixels with fewer than 200 persons per km² were discarded). The total 

number of populated points in central Africa (longitude 5.6 to 39.8, latitude -9.8 to 7.5 in 

decimal degrees) was 807 and 376 for the Grumpv1 and Natural Earth products, 

respectively. We thus performed a random manual check of the populated places 

present in Grumpv1 and absent from Natural Earth (the reverse rarely occurred) using 

Google Earth images and found that in all cases Grumpv1 was correct. We thus finally 

used the Grumpv1 dataset, which mostly provides information on populated places with 

more than ca. 1000 people. Because smaller populations may have a significant impact 

on forests, we added to this dataset the populated locations of the category “towns” 

from OpenStreetMap (https://data.maptiler.com/downloads/planet/#1.59/-17.3/19.7; last 

access 02/10/2018) assuming by default that they all contained 500 people 

(OpenStreetMap does not provide systematic information on population size).
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The road network was extracted from the Global Roads Open Access Data Set, version 

1 (https://data.maptiler.com/downloads/planet/#1.59/-17.3/19.7; last access the 

14/09/2018) a dataset combining road data by country. Note that logging roads are not 

fully represented in this dataset, so we may underestimate their effect in this study. A 

few roads from the northern Republic of Congo were corrected using data from 

OpenStreetMap. Preliminary analyses revealed that further accounting for the railway 

and river networks did not improve predictions of tree taxon and community 

distributions.

Our index was thus calculated as followed. Let zi ,i=1 ,…,n be n random variables 

indicating the disturbance status of pixel i: 0 if the pixel is undisturbed and 1 if disturbed.

We assumed that z i is distributed as a Bernoulli variable: z i=Bern (p i ) with  pi=
IPi (θ )

IPi (θ )+ IRi
r

where IPi (θ ) is a synthetic index describing the influence of the population density of all 

populated places on pixel i (see below), θ is an unknown parameter to be inferred, and

IRi
r expresses the road influence on pixel i, defined as the normalized square root 

distance of pixel i to the nearest road r:

IRi
r
=

min
r∈R

√DRi
r

max i=1 ,… ,n(minr∈R
√DR i

r

)

where DR denotes the distance to the nearest road in the study area and R denotes all 

roads in the study area.

Population influence, IPiθ, is defined as the normalized square root of the weighted sum 

of the population size of place j. Note that the weight depends on both the distance 

between pixel i and populated place j, δ i j, and on the population size N j:
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IPi
θ
=

√∑
j

n

N j e
−

δ i j
log (N j)

θ

+1

max√∑
j

n

N j e
−

δ i j
log (N j)

θ

+1

We finally calibrated the θ parameter using two reference areas of ca. 190,000 km2 (Fig.

S6). These two areas were chosen because they cover contrasting conditions, are well 

known by our team and were found to be little influenced by atmospheric pollution in the

MODIS data. Degraded versus intact forests were identified from a recently published 

MODIS-based regional vegetation map20. Using a likelihood optimization approach in 

these two areas, we obtained θ=1.27 and 1.71 in calibration areas 1 and 2, respectively,

indicating that under a similar anthropogenic context, forests tend to be disturbed at a 

greater distance from anthropogenic disturbance sources in the second calibration area.

The final human-induced forest disturbance intensity index was thus calculated with θ

=1.49, the average estimate for the two calibration areas, over the whole central African 

forest domain, thus avoiding the risk of artefacts related to atmospheric pollution from 

which suffer satellite products, especially over Gabon.

This index, built independently from our floristic dataset, outperformed previously 

published indices to predict floristic composition in our study area. Using a simple linear 

model, with individual anthropogenic indices as single predictors, the mean wood 

density of tree communities was better predicted with our new index (r=0.33) than with 

the WorldPop75 (r=0.30), LandScan (r=0.15) and Venter72 (r=0.23) indices. Similarly, 

using a simple generalized linear model with a Poisson distribution to predict the 

abundance of Musanga cecropioides, the most widespread and abundant short-lived 

pioneer taxon over central African forests, revealed a better performance of our index 

(r=0.35) compared to previous indices (r=0.31, 0.11, 0.26 for WorldPop, LandScan and 

Venter, respectively).

Statistical model
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To predict the joint taxa distributions we relied on a recently developed methodology 

called supervised component generalized linear regression (SCGLR)17, which identifies 

the most predictive dimensions among a large set of potentially multicollinear predictors.

SCGLR is an extension of partial least-squares regression (PLSR) to the uni- and 

multivariate generalized linear framework. PLSR is particularly well suited for analyzing 

a large array of correlated predictor variables, and many studies have demonstrated its 

ability for prediction in various biological fields, such as genetics76 or ecology77. While 

PLSR is well adapted for continuous variables, SCGLR is suited for non-Gaussian 

outcomes and noncontinuous covariates. It is a model-based approach that extends 

PLSR78, PCA on instrumental variables79, canonical correspondence analysis80, and 

other related empirical methods by maximizing a trade-off between goodness of fit of 

the model and the quantity of information the components capture from the climatic 

variables. This information is measured through an indicator of “structural relevance” 

(SR)81, which uses bundles of highly correlated variables to attract components to rich 

and robust informational dimensions.

The components are sought as K  linear combinations of environmental variables 

common to all species with coefficient vectors denoted u=(u1 ,…,uK ) (under norm and 

orthogonality constraints). SCGLR also estimates the corresponding q× K (number of 

species by number of components) matrix of unknown parameters γ to maximize the 

following convex sum:  

s logψ (u , γ )+ (1−s ) log ϕl (u )

where ψ is the likelihood and ϕl is the SR. s and l are tuning parameters. s is related to 

the trade-off between goodness of fit and structural relevance. l is a nonnegative scalar 

related to the narrowness of the bundles of climatic variables the components are 

wanted to align with. The K  climatic components (CCs) are then equal to

CCk=Xuk , k=1 ,…,K  and can be understood as the main environmental directions 

predicting all species simultaneously, while γ j , j=1…,q are the magnitude of the effects 

of the K  components on the abundances of each species. Then, the species 
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abundances of each taxon j=1, , 193 on the grid cell i =1, , 1571 are modeled using a 

generalized linear Poisson regression such that:

y i j∼P (S i λ i j )

l o g (λi j )=X i β j+T iα j=X i uγ j+T iα j=C Ci γ j+T iα j

where X  denotes climatic variables (Extended data Table 2), Si is an offset 

corresponding to the number of plots within each grid cell, and T  is a set of covariates 

known to impact species abundances: here, the soil type and the human-induced forest 

disturbance intensity index, as well as its logarithm to account for nonlinear responses.

The number of components (K ) as well as the tuning parameters (l and s) must 

appropriately be chosen. This was done with a 10% cross-validation procedure in which

the criterion used was the harmonic mean of the mean square prediction error (MSPE) 

across the 194 taxa. A dedicated R package, SCGLR82, is available (see also 

https://github.com/SCnext/SCGLR).

To assess the predictive power of our model, we performed a leave-one block out 

cross-validation in which our dataset was divided into 40 spatial clusters identified with a

Ward’s hierarchical clustering83 of plot coordinates (Fig. S7). All clusters but one were 

used for training the model (i.e., calibration dataset) and the remaining cluster was used

for validating the model. We repeated this procedure 40 times such that all clusters 

were used once in the validation dataset and participated in the model assessment. 

Model validation was performed through the use of the nonparametric Spearman’s rank 

correlation coefficients between observations and predictions. For individual taxon 

abundances, correlations were estimated using observed and predicted abundance per 

taxon. For taxon assemblages, a correspondence analysis (CA) was performed on the 

grid cell × observed species abundance matrix, providing the observed CA axes. The 

predicted site scores on each CA axis were then obtained by projecting the grid cell × 

predicted species abundance matrix in the observed CA planes. Correlations were 

computed on the observed and predicted site scores (i.e., loadings) enabling us to 

assess the ability of our model to predict the main floristic gradients across our area. 
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Finally, for the three functional traits, correlations were estimated on the grid cell-based 

community weighted mean (CWM) traits27 calculated on observed and predicted taxon 

assemblages.

Taxon abundances and community composition were predicted across the entire study 

area in a regular 10-km grid. To predict the floristic composition of the existing forests, 

we first used the ESA-CCI landcover product (V.1.6) to only keep grid cells that are 

likely to be forested (i.e., category “broadleaved evergreen”). Then, we only selected 

grid cells that had a combination of predictor values similar to those in the calibration 

dataset. To do this, we used a 3-dimensional convex hull algorithm on the three climatic

components to exclude all the grid cells that had a combination of predictors different 

from that represented in the calibration dataset. This resulted in 12,295 grid cells, 

representing 85% of the central African forests, i.e., an area of ca. 1 ,230 ,000 km2.

We finally used the Ward’s hierarchical clustering method to classify the predicted 

floristic composition into broad floristic types. Group classification was done on the first 

five axes of a CA performed on predicted taxon abundances, accounting for 77% of the 

total inertia. The number of retained types was chosen based on our expert knowledge. 

The uncertainty associated with this classification was then assessed through Gaussian

finite mixture models84 (repeated 500 times) using a spherical, equal volume model 

(EII).

Spatially explicit null models

Whenever predictors and observations are spatially structured, model errors of type I 

(false positive associations) are inflated85, hindering our capacity to extrapolate 

predictions in space or time22. We thus built a spatialized null model to test the degree 

to which the successfulness of our predictions resulted from an actual relationship with 

climatic variables or was simply due to spatial costructures between taxon distributions 

and climatic gradients that arose by chance. We used the RGEOSTAT R package86 to 

simulate sets of SCGLR climatic components (CCs) having similar spatial properties to 

those of the observed CCs as well as similar spatial costructures between them. This 

step consisted of fitting theoretical variograms and covariograms to empirical ones to 
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simulate random realizations that can be then used as “null” spatialized predictors (Fig. 

S8 and S9). We simulated 500 sets of “null” spatialized predictors and used them as 

predictors in our GLMs using the leave-one block out cross-validation described above. 

The resulting correlations between observed and predicted taxon abundances, and 

axes scores (for taxon assemblages) were finally compared with the correlations 

obtained when observed climatic predictors were considered. The resulting p-values 

were calculated as the number of times a simulated correlation was higher than the 

observed one, divided by the total number of realizations (n=501).

Forest vulnerability to global change

Vulnerability to climate change, as assessed through the IPCC framework, is composed

of three components: (1) sensitivity, (2) exposure, and (3) adaptive capacity to climate 

change.

Sensitivity to climate change, Sen s i t i v i t ycl im, was firstly estimated at the taxon level in 

a similar way to Foden et al.34. For each taxon, we calculated the mean of the weighted 

standard deviation (S Dw) of the three climatic components (CCs) at the present time, 

using locally observed taxon abundances as weights. SDw thus represents the width of

the climatic niche currently occupied by the taxa. Taxon-specific climate sensitivity was 

then measured as 1/S Dw (it increases as niche width decreases). To upscale tree 

sensitivity to climate change at the community level and over our study area, sensitivity 

was measured as the community weighted mean (CW M ) of taxon-specific climate 

sensitivity scores, using predicted taxon assemblages.

Exposure to climate change, E x po sur ecl im, was assessed using projected changes in 

climate from 18 unique climate model combinations provided by the AFRICLIM V3.0 

dataset87 (last access on 03/02/2020). These models corresponded to pairwise 

combinations of five regional climate models (RCMs) driven by ten general circulation 

models (GCMs), with an unequal number of GCMs models per RCM (ten models for the

Swedish Meteorological and Hydrological (SMHI) RCM, four for the Climate Limited-

area Modelling Community (CLMCOM) RCM, two for the Royal Netherlands 
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Meteorological Institute (KNMI) RCM, one for the Canadian Centre for Climate 

Modelling (CCCMA) RCM and one for the Danish Meteorological Institute (DMI) RCM). 

These models were generated using change-factor downscaling approaches to model 

spatial variation at local scales while correcting for differences between observed and 

simulated baseline climates (see Platts et al.87 for more details). We here concentrated 

on one representative concentration pathway of the IPCC-AR5 (RCP 4.5) for the late 

21st century (2071-2100, hereafter named 2085) and reconstructed the three SCGLR 

selected CCs from the climatic predictions as follows: let X r c p 4.5 be the predicted future 

climatic conditions. Let m=X and S=sd (X ) be the mean and standard deviation matrices

of the current climatic conditions. The predictive climatic components under future 

scenarios are then equal to f r c p4.5=( X rc p4.5−m ) S û, where û represents SCGLR CCs. We

then calculated the euclidean distance between the three current and the three 

predicted CCs for each of the 18 models and then estimated the exposure to climate 

change as the mean distance over the 18 models.

Adaptive capacity to climate change, Ad a p t i vec l im, was assessed through the 

phylogenetic diversity of predicted assemblages at the genus level. We used a recently 

published dated phylogeny88, covering 167 out of our 180 genera (representing 94% of 

predicted individuals). We first tested if the studied taxa exhibited a significant 

conservatism in their climate niches using Abouheif’s permutation tests (Abouheif, 

1999) on the taxa-specific score (γ) values on the three SCGLR climate components (γ

 represents the influence of a CC on a given taxa distribution, see above). We then 

measured the phylogenetic diversity (PD) of predicted assemblages at the genera level 

using the Chao’s PD index with an order q of 1 (equivalent to the Shannon index)89 that 

we used as a proxy of adaptive capacity.

Vulnerability to climate change, V u lne r abi l i t yc l im, was finally estimated as the sum of 

the three standardized (0 to 1) components:

V u lne r abi l i t yc l im=(Se ns i t i v i t yc l im
s t

+Ex posur ec l im
s t − A da pt i v ecl im

s t ).

V u lne r abi l i t yc l im theoretically ranges from -1 (low vulnerability) to 2 (high 
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vulnerability) and, due to the standardization of its three components, it expresses a 

relative vulnerability over the study area and is thus little impacted by the IPCC scenario

chosen (RCP 4.5 or 8.5) because different scenarios predict different amplitudes of 

changes but similar spatial patterns (Extended Data Fig. 7).

Forecasted human impact on forests in 2085 was assessed using our human-induced 

forest disturbance intensity index combined with country-specific projections of human 

populations in 2085. We assigned to each current town a country-specific relative 

population increase drawn from the World population prospects (United Nations)90 and 

rebuild our index based on this modified dataset. This approach did not account for new

roads that may established by 2085, and thus tended to underestimate the increase in 

anthropogenic pressure.

Software and packages

All analyses were performed and figures were created with the R statistical software91, 

mostly using the ade492, alphashape3d93, ggplot294, raster95, RgeoStat96, entropart97 and 

SCGLR (https://github.com/SCnext/SCGLR/) packages. Data are archived in a public 

repository98.

Data availability

All maps and data used for this article are accessible online in a public repository at 

http://dx.doi.org/10.18167/DVN1/UCNCA7. Raw floristic data are, however, archived in 

a private data repository, due to the highly sensitive nature of commercial inventory 

data, and access may be granted for research purpose using the form provided in the 

public repository.

Code availability

R scripts are available at https://github.com/MaximeRM/ScriptNature.
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Extended data figure/table legends:

Extended Data Table 1 | Characteristics of the floristic groups. For each floristic 

group information is given on the three most abundant families (APGIII classification, 

except for the subfamilies Caesalpiniaceae and Mimosaceae, which were considered 

here independently due to their different ecological strategies), the five most 

representative taxa (i.e., taxa having the highest A score of the Dufrêne and Legendre 

index), the total area (km 2 ) covered by each group, the percentage of the area 

covered by protected areas (PA) and dedicated to logging activities (Logging), the mean

probability of being impacted by human activities (phum, this study) and the mean value

of the three climatic components (CCs) that best explain the current distribution of 

central African trees (this study).
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Extended Data Table 2 | Climatic predictors. Correlations with the three climatic 

components (CCs) are given in the last three columns (see also Extended Data Fig. 4). 

1meanET0 was calculated using the Hargreaves formula with meanET 0=1
n
∑
i=1

n

ET 0i 

where ET0i is the evapotranspiration of month i calculated as ET0i= 0.0023*0.408RAi * 

(Tavgi + 17.8)*TDi
0.5 with RAi the mean extrasolar radiation of month i in MJ m-2 d-1, 

Tavgi the average daily temperature of month i in °C, computed as the average of the 

mean maximum and minimum temperature of month i, and TDi the mean temperature 

range of month i in °C, computed as the difference between mean maximum and 

minimum temperature of month i. 2meanCWB=
1
n
∑
i=1

n

P i−ET 0iwhere Pi is the precipitation 
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of month i. 3,4 sumCWD=∑
i=1

n

CWDiand maxCWD=max (CWDi )where sumCWB=∑
i=1

n

CWD i

with WDi=WDi −1+Pi−ET 0iif WDi=WDi−1+Pi−ET 0i or WDi=0if (WD i− 1+P i−ET 0i )≥0. To 

compute CWDi, the wettest month was set as i=1 at the grid cell level. 5

MCWD=∑
i=1

n

min (0 , Pi−ET 0i ).  
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Extended Data Figure 1 | Study area and sampling plots. In green, the current 

distribution of tropical forests following the European Space Agency Climate Change 

Initiative (ESA-CCI) landcover (V.1.6) with a dark green-to-white gradient representing 

anthropogenic pressure (see methods) and non-forested areas represented in beige; 

the sampling grid cells (n=1,571 10x10-km2 grid cells) are in black and the flooding 

forests, as proposed by the ESA-CCI landcover, are in blue.
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Extended Data Figure 2 | Taxon CA planes 1-2 (A) and 1-3 (B) with labels for the 

12 most representative taxa on each axis.  Color code corresponds to that reported 

in Fig. 1. The first eigenvalues are reported in the B panel, highligthing in black the first 

three axes. Taxon codes and scores of the 193 taxa are given in Table S2.

Extended Data Figure 3 |  Individual predicted floristic gradients illustrated by the 

three first axes of the correspondence analysis (CA) performed on predicted 

taxon abundances. A composite map of these three axes is given in Fig. 1 and the 

corresponding taxon CA planes are provided in Extended Data Fig. 2.
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Extended Data Figure 4 | Plans 1-2 (A), 1-3 (B) and 2-3 (C) of the SCGLR climatic 

components (CCs). All climatic variables having a correlation < 0.75 with the two 

components (dashed circle) were excluded for the sake of clarity. For abbreviations, see

Extended Data Table 2.

Extended Data Figure 5 |  Spatial cross-validation results of the predictions of 

functional assemblages. The observed and predicted community weighted mean trait 

values within the 1,571 10x10-km2 grid cells are given for (A) wood density; (B) 

deciduousness and (C) maximum diameter. The 1:1 line is displayed in red.
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Extended Data Figure 6 | Projected changes under RCP scenario 4.5 in 2085 of 

the climatic conditions of the ten forest types. Areas where climate models predict 

similar climatic components (CCs) values as those currently found within forest types (in

black) are illustrated with a color gradient indicating the level of agreement amongst the 

18 climate models (in %; no color indicates that none of the original 18 climate models 

predicted similar conditions). More specifically, we used 3D concave hull (alpha shape) 

models to assess where the combinations of current Ccs corresponding to each forest 

type are predicted to be represented in 2085.
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Extended Data Figure 7 | The vulnerability map under two different RCP 

scenarios, RCP 4.5 and RCP 8.5, and for two years, year 2055 and year 2085. As 

can be seen, the predicted vulnerability is little impacted by the IPCC scenario chosen 

because it expresses a relative vulnerability over the study area and, if different 

scenarios predict different amplitudes of climate change, spatial patterns of climate 

exposure remains similar (see Methods).
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Extended Data Figure 8 | Current and projected anthropogenic pressure over 

central Africa predicted from our index of human-induced forest disturbance 

intensity.
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Extended Data Figure 9 | Protected area network (blue) and areas dedicated to 

logging activities (orange and red) in central Africa. Data on protected areas were 

obtained from the World Database on Protected Areas (last access: 14/08/2018) 

excluding marine, hunting and game-oriented areas except for the Democratic Republic 

of Congo where data from the World Resource Institute were used and downloaded 

from ArcGIS hub (last access: 01/06/2019). Logging activity data were kindly provided 

by the Observatoire des Forêts d’Afrique Centrale based on an unpublished work 

completed in June 2018, except for DRC where more updated data (June 2019) were 

provided by the AGEDUFOR national project. Areas in orange illustrate forest 

concessions that are known to have, or to be in the process of having, an officially 

validated sustainable forest management plan. Red areas illustrate forest areas that are

currently dedicated to logging but that either do not have an official management plan or

have an uncertain status.
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