Africa is forecasted to experience large and rapid climate change 1 and population growth 2 during the XXIst century, threatening the world's second largest rainforest. Protecting and sustainably managing these forests requires an extended understanding of their current compositional heterogeneity, environmental drivers and vulnerability to ongoing changes. Here, using an unprecedented dataset of 6 million trees in more than 180,000 field plots, we jointly model the distribution in abundance of the most dominant central African tree taxa and produce the first continuous maps of the floristic and functional composition of central African forests. Our results show that the uncertainty in taxon-specific distributions averages out at the community level, revealing highly deterministic assemblages. We uncover contrasting floristic and functional compositions across climate, soil types and anthropogenic gradients, with functional convergence among floristically dissimilar forest types. Combining these spatial predictions with global change scenarios suggests a high vulnerability of the northern and southern forest margins, the Atlantic forests and of most forests from the Democratic Republic of Congo where both climate and anthropogenic threats are expected to increase sharply by 2085. These results constitute key quantitative benchmarks for scientists and policy makers to shape transnational conservation and management strategies aiming at providing a sustainable future for central African forests.

Concomitant increases in climate stress, human population needs and resource

 . This limits our ability to understand how forest composition and functions vary regionally, to forecast how these forests will face upcoming global changes and, ultimately, to anticipate, on scientific bases, how to protect and manage them beyond national boundaries.

In this study, we used an unprecedented forest inventory dataset to (1) model the main floristic and functional gradients over central African forests, and (2) assess their expected vulnerability under forecasted global (climatic and anthropogenic) change conditions. We compiled the abundance distributions of 193 dominant tree taxa in

185,665 field plots (ca. [START_REF]U. World population prospects: The 2017 revision, key findings and advance tables[END_REF] , 000 ha) from commercial forest inventories spread over the five main forested countries in central Africa (Extended Data Fig. 1). We modeled the joint distributions of taxon abundances at a 10-km resolution using supervised component generalized linear regression (SCGLR) [START_REF] Bry | Supervised component generalized linear regression using a pls-extension of the fisher scoring algorithm[END_REF] , a modelling method that extends partial least squares (PLS) regression to the multivariate generalized linear framework.

SCGLR models a set of responses (here the abundances of taxa) from synthetic orthogonal explanatory components derived from 24 climatic variables (hereafter, climatic components, CCs) and additional soil type (here, sand vs. clay) and anthropogenic pressure covariates. We developed for this study an index based on population density and road network specifically designed and calibrated to predict recent human-induced forest disturbance intensity in central Africa -see Methods.

Finally, thanks to the huge size of the dataset, the predicted floristic and functional gradients were cross-validated with spatially independent observations using Spearman correlation coefficients, ρ C V .

Floristic composition in central Africa

Our model predicted individual taxon abundances with an overall median correlation ρ C V of 0.48 (range of -0.11 to 0.83). This median was still as high as 0.45 when unoccupied sites were removed, showing that, beyond presence-absence, our model also captured variations in abundances within taxon's distributional range. A correspondence analysis (CA) performed on the predicted taxon abundances revealed major regional floristic gradients (Fig. 1; Extended Data Fig. 2 and3) highly correlated with the observed gradients ( ρ C V =0.89, 0.71 and 0.6 for CA axes 1 to 3, respectively; Fig. 1B-D). Contrary to Amazonian and Southeast Asian forests, where soil was shown to be the primary large scale driver of tree community composition [START_REF] Steege | Continental-scale patterns of canopy tree composition and function across Amazonia[END_REF][START_REF] Slik | Soils on exposed Sunda Shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia[END_REF] , the most prominent floristic gradient predicted here (CA axis 1) was highly related to climate, in particular to the first predictive CC (Pearson's r=0. [START_REF] Réjou-Méchain | Maps of central African rainforest composition and vulnerability[END_REF], contrasting areas with a cool and light-deficient [START_REF] Philippon | The light-deficient climates of western Central African evergreen forests[END_REF] dry season (coastal Gabon) and areas with high evapotranspiration rates (northern limit of the central African forests; Extended Data Fig. 4). The second predicted floristic gradient (CA axis 2) was highly correlated with the two other CCs (r=-0.86 and -0.72 for CC2 and CC3, respectively) related to seasonality and maximum temperature, thus contrasting equatorial areas with a low water deficit and areas with a high water deficit towards the limits of the tropics. Climate seasonality was also found to be an important driver of tree community composition in Amazonia [START_REF] Steege | Continental-scale patterns of canopy tree composition and function across Amazonia[END_REF] and maximum temperature has been recently identified as the most important pantropical driver of forest biomass, impacting woody productivity [START_REF] Sullivan | Long-term thermal sensitivity of Earth's tropical forests[END_REF] . The third predicted floristic gradient (CA axis 3) revealed more local floristic variations highlighting human-impacted forests (r=0.67 with our index of human-induced forest disturbance intensity).

As already shown in previous studies [START_REF] Beale | Opening the climate envelope reveals no macroscale associations with climate in European birds[END_REF][START_REF] Deblauwe | Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics[END_REF] , the association between taxon distributions and climate patterns may appear by chance because both are spatially autocorrelated at the regional scale. We thus used a spatially explicit null model that randomized the predictive CCs while preserving their spatial (co)structures. When keeping the soil and human impact on forests unchanged, the null model did not predict significantly different abundances (P>0.1) from those predicted with original CCs for 67% of the taxa. This suggests that variation in taxon abundances directly depends on climate for a minimum of only one-third of the taxa, while for most of them, abundance may correlate with climate by chance only. In contrast, the association between climate and the main gradients of floristic assemblages was robust to autocorrelation artifacts (P=0.028, 0.006 and 0.06 for CA1 to 3, respectively). This result confirms that extrapolating assemblages from climate variables is more reliable than extrapolating individual taxon abundances [START_REF] Maguire | Controlled comparison of species-and community-level models across novel climates and communities[END_REF] . Indeed, individual taxon abundances are likely less predictable on the basis of only current drivers since they are also affected by unknown past human disturbances [START_REF] Morin-Rivat | Present-day central African forest is a legacy of the 19th century human history[END_REF] , biotic interactions and biogeographical history [START_REF] Ricklefs | Intrinsic dynamics of the regional community[END_REF] , the idiosyncratic effects of which tend to average out at the community level.

Functional composition in central Africa

From the predicted floristic assemblages, we computed the community weighted mean [START_REF] Violle | Let the concept of trait be functional![END_REF] of three functional traits known to play an important role in ecosystem processes: wood density, deciduousness and maximum diameter (Fig. 2). The predicted functional composition was consistent with the observations (ρ C V =0.47, 0.75 and 0.45 for the three traits, respectively; Extended Data Fig. 5). As in Amazonia [START_REF] Steege | Continental-scale patterns of canopy tree composition and function across Amazonia[END_REF] , community wood density varies with soil type with the highest values found on sandy soils, at the boundaries of Cameroon, Republic of Congo and Central African Republic, where tree species with conservative resource use strategies predominate [START_REF] Réjou-Méchain | Tropical tree assembly depends on the interactions between successional and soil filtering processes[END_REF] . However, larger scale variations in wood density were primarily driven by human-induced forest disturbances, with a lower community wood density in human-impacted forests, indicating that they are mostly composed of fast-growing taxa [START_REF] Díaz | The global spectrum of plant form and function[END_REF] . However, these areas also feature a high proportion of trees that can potentially reach a large diameter. These two results indicate that humanimpacted forests are dominated by long-lived pioneer taxa, which are characterized by a low wood density but a large potential stature, offering a fast and relatively long-lasting carbon sink potential in absence of disturbances [START_REF] Rüger | Demographic trade-offs predict tropical forest dynamics[END_REF] . Finally, a marked deciduousness gradient ran from the highly evergreen forests of coastal Gabon to the northern limit of the central African forests with, again, a well-known exception on the northern sandy soil plateau [START_REF] Réjou-Méchain | Tropical tree assembly depends on the interactions between successional and soil filtering processes[END_REF][START_REF] Ouédraogo | The determinants of tropical forest deciduousness: Disentangling the effects of rainfall and geology in central Africa[END_REF] .

A reference map of forest types

To ease practical applications, we performed hierarchical clustering of the predicted floristic gradients (pixel scores on the first five CA axes), which are continuous by nature, and identified ten major forest types (Fig. 3; Extended Data Table 1). The strongest floristic dissimilarity appeared between Atlantic forests (types 1 to 3) and the other forest types (4 to 10), within which semideciduous seasonal forests were clearly distinguished (types 4 to 6). We also observed functional convergences among floristically dissimilar forest types and vice versa. For example, despite having a regional species pool similar to deciduous forests (types 4 and 6), sandstone forests (type 5) have a functional composition closer to remote forest groups (e.g. types 2, 3, 7 and 8), with high wood density and low deciduousness. Soil filtering indeed modifies the relative abundance of species (rather than their presence or absence [START_REF] Shipley | From plant traits to vegetation structure: Chance and selection in the assembly of ecological communities[END_REF] ) favoring suitable functional attributes in poor sandy soils [START_REF] Réjou-Méchain | Tropical tree assembly depends on the interactions between successional and soil filtering processes[END_REF] . By contrast, while Atlantic forests (types 1 to 3) have little taxonomic affinity with the east-central and southern forests (types 7 and 8), they display similar functional composition due to more similar climate conditions, as represented on the first predictive CC (Extended Data Table 1). This confirms that while taxonomic composition has an important biogeographical component, the functional composition of tree communities can converge in similar environmental conditions.

Vulnerability to global change

For the ten forest types, most climate models predict current climate conditions either to virtually disappear from central Africa (e.g., types 2 and 5; Extended Data Fig. 6), or to move at spatial and temporal scales incommensurate with tree dispersal ability (e.g. types 4 and 6). This suggests that current forest communities will not be able to track their present climate envelopes and will face the emergence of novel climates, making the prediction of taxon distributions under future climate projection highly risky [START_REF] Feeley | Biotic attrition from tropical forests correcting for truncated temperature niches[END_REF] .

We thus assessed the vulnerability of central African forests to climate change through their sensitivity, exposure, and adaptive capacity, following the recommendation of the IPCC [START_REF] Parry | Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC[END_REF] .

We quantified sensitivity at the community level using the inverse of the current climate niche breadth of taxa (Fig. 4C) and assuming that assemblages dominated by taxa with narrow environmental tolerances will be more vulnerable to upcoming changes [START_REF] Foden | Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals[END_REF] .

Sensitivity appeared to be high in coastal Gabon (type 2), where a high level of species endemism exists [START_REF] Lachenaud | The littoral forests of the Libreville area (Gabon) and their importance for conservation: Description of a new endemic species (Rubiaceae)[END_REF] and in the driest northern margin of central African forests. Recent studies consistently showed that drier tropical forests exhibited larger functional changes than wetter forests in response to a long-term drought in west Africa [START_REF] Aguirre Gutiérrez | Drier tropical forests are susceptible to functional changes in response to a long-term drought[END_REF] and are likely to be more sensitive to global warming [START_REF] Sullivan | Long-term thermal sensitivity of Earth's tropical forests[END_REF] . By contrast, forests from the northwest Cameroon displayed a relatively low sensitivity to current climate conditions, probably because these forests are dominated by widespread tree taxa adapted to anthropogenic pressure (Fig. 2). Long-lived pioneers, typical of these human-impacted forests, are also expected to be favored by a possible acceleration in forest dynamics induced by global change [START_REF] Claeys | Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century[END_REF][START_REF] Mcdowell | Pervasive shifts in forest dynamics in a changing world[END_REF] .

Exposure to climate change was quantified as the extent to which the current climate determinants (CC1 to 3) are expected to change by 2085, using 18 unique biascorrected climate model combinations (under the IPCC-AR5 RCP 4.5 scenario; see Extended Data Fig. 7 for other scenarios). We found that exposure to climate change was mostly driven by an increase in drought stress and maximum temperature (Fig. S2, see also [START_REF] James | Implications of global warming for the climate of African rainforests[END_REF][START_REF] Zhou | Widespread decline of Congo rainforest greenness in the past decade[END_REF] ). The central and east part of central African forests are predicted to be the most exposed, particularly in the south of the Democratic Republic of Congo (DRC) (Fig. 4D). Note, however, that climate change predictions in central Africa are uncertain because meteorological data for model validation are lacking [START_REF] James | Implications of global warming for the climate of African rainforests[END_REF] (Fig. S3).

Finally, we assessed the adaptive capacity of tree communities through their evolutionary potential. We first found highly significant niche conservatism along the first two climate components (P<0.002). This indicates that closely related taxa tend to share similar climate niche spaces at the regional scale and suggests that they could be impacted similarly by future climate change. We thus assumed that higher local phylogenetic diversity provides a wider range of potential responses to novel climate conditions [START_REF] Purvis | Phylogenetic Approaches to the Study of Extinction[END_REF] , similarly to the insurance hypothesis [START_REF] Yachi | Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis[END_REF] . We thus used the phylogenetical diversity of predicted tree assemblages as a proxy of their adaptive capacity to climate change. Undisturbed semideciduous and transitional forests (types 6 and 10 in Fig. 3) appeared phylogenetically more diverse, thus having higher adaptive capacity, than evergreen forests (Fig. 4E). A recent study in Amazonia 42 also found a peak of phylogenetic diversity at intermediate precipitation level, where dry-and wet-adapted lineages are mixing. As expected [START_REF] Letcher | Phylogenetic structure of angiosperm communities during tropical forest succession[END_REF] , we also found that human-impacted areas tended to have a low phylogenetic diversity and hence a lower adaptive capacity to climate change.

The resulting vulnerability of tree communities to climate change did not correlate with the expected human impact on forests in 2085 (ρ= -0.08), here assessed using countryspecific projections of human population (Fig. 4A; Extended Data Fig. 8). Vulnerability to climate change is expected to be higher for communities dominated by hard-wooded taxa (ρ=0.46 with wood density, Table S1). By contrast, forecasted human impact on forests is predicted to be higher in already disturbed communities, i.e., dominated by light-wooded taxa with a large potential size (ρ=-0.4 and 0.43, respectively). However, because we did not account for the appearance of new roads by 2085, we may underestimate the effect of future anthropogenic activities in remote, currently undisturbed forests. Vulnerability to both climate change and anthropogenic activities (pink color in Fig. 4A) is predicted to be high for forests from coastal Gabon, in large areas from DRC and in the northern margin of the forest domain. Forests from Cameroon and in the south of the Republic of Congo mostly appear vulnerable due to the high expected human impact on forests by 2085 (orange patches in Fig. 4A). By contrast, the tri-national Sangha transboundary forest complex and the northeastern part of Gabon appeared as the least vulnerable area in the region (the large green patch in Fig. 4A). Globally, DRC, which comprises most of the central African forests, mainly contains forests that are predicted to be vulnerable to climate change and/or to anthropogenic pressure (blues to pink patches in Fig. 4A).

Conclusions and perspectives

While some country-specific vegetation patterns were already suggested by phytogeographers, here we provide the first synoptic view of central African forest composition at a fine resolution, based on an unprecedented amount of quantitative data. Unveiling the functional composition of central African forests conveys important insights on their functioning, dynamics and carbon uptake potential and on the way they could respond to global change. Accounting for forest functional characteristics can also considerably reduce uncertainty in large-scale vegetation models [START_REF] Fyllas | Deriving Plant Functional Types for Amazonian forests for use in vegetation dynamics models[END_REF] or improve remote sensing approaches, for example, by assimilating large-scale variation in wood density into forest carbon maps [START_REF] Mitchard | Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites[END_REF] . Our maps may also help scientists to design representative sampling to better understand the long-term impact of climate change on tree species and stand dynamics, e.g., monitoring under-represented forest types or areas highly vulnerable to climate change.

The forest types and vulnerability maps should guide the development of new land use plans that preserve the full range of evolutionary and functional potential of today's forests or, at least, that maintain their connectivity to attenuate the threats related to expected changes. In central Africa, protected areas and logging concessions, which cover almost half of the forest domain (14.9% and 32.2%, respectively; Extended Data Fig. 9), are important to consider in such plans. Protected areas do not equally cover the ten identified forest types (4 to 54%; Extended Data Table 1) and should therefore be extended to reach a better representativity. How estimated vulnerability should be accounted for when designing protected areas, e.g., by extending the network in vulnerable areas to minimize biodiversity loss, or in areas with low anthropogenic pressure to improve their protection, is subject to debate [START_REF] Visconti | Habitat vulnerability in conservation planning-when it matters and how much[END_REF] . Logging concessions can also contribute to the maintenance of forest cover and functions, providing that they are well managed [START_REF] Putz | Sustaining conservation values in selectively logged tropical forests: The attained and the attainable[END_REF][START_REF] Gourlet-Fleury | Tropical forest recovery from logging: A 24 year silvicultural experiment from Central Africa[END_REF] , and currently likely act like biodiversity corridors between protected areas [START_REF] Clark | Logging Concessions Can Extend the Conservation Estate for Central African Tropical Forests[END_REF] . However, this will only prove effective in the long term if they strictly comply with legislation and, ideally, with standard certification requirements. These good practices are especially important in forests dominated by evergreen taxa with high wood density, where disturbances may have a higher impact on community composition. In areas expected to be under high anthropogenic pressure, forest connectivity could be preserved by promoting agroforestry and restoration programs, strictly controlling access to logging roads and stabilizing shifting agriculture [START_REF] Curtis | Classifying drivers of global forest loss[END_REF] . Over central Africa, the highest uncertainties for the future of forests remain in DRC, where substantial areas, belonging to the state, are not yet attributed to any land use category and should deserve particular attention due to their high vulnerability (Fig. 4). and maximum diameter in blue (median is reported at the center, the lower and upper hinges correspond to the first and third quartiles and the two whiskers extend from these two quartiles to the largest and smallest values, at most 1.5 times the interquartile range from the hinge). Forest type names and additional information are provided in Extended Data Table 1. Clustering uncertainty is reported in Fig. S1. 

METHODS

Floristic and functional trait data

Forestry data were extracted from management forest inventories conducted in 105 logging concessions covering ca. 1.6 ×10 5 km 2 (Extended Data Fig. 1). Most companies followed a standardized inventory protocol similar to that described in Réjou-Méchain et al. [START_REF] Réjou-Méchain | Detecting large-scale diversity patterns in tropical trees: Can we trust commercial forest inventories?[END_REF] . In most cases, it consisted of continuous and parallel transects 20 m or 25 m wide, often 2-3 km apart, and subdivided into rectangular 0.4 or 0.5-ha plots. Overall, the full dataset had a total of 192,972 plots. Within each plot, trees with a diameter at breast height (DBH) ≥ 30 cm were allocated into 10-cm wide diameter classes and identified at the species or genus level whenever possible through either commercial or local names [START_REF] Réjou-Méchain | Detecting large-scale diversity patterns in tropical trees: Can we trust commercial forest inventories?[END_REF] . Independent analyses performed on 298 scientific plots (≥ 1 ha in size)

showed that the floristic gradients obtained with large trees are representative of the ones obtained with trees ≥ 10 cm in diameter (Pearson r>0.94; Fig. S4). Overall, ca.

×10

6 trees were recorded. Taxonomy was revised and homogenized using the African Flowering Plants Database (http://www.ville-ge.ch/musinfo/bd/cjb/africa/index.php? langue=an, last access on 01/09/2019) and the Angiosperm Phylogeny Group III for orders and families [START_REF] Chase | An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III[END_REF] . A total of 1,092 taxa were recorded in the original dataset.

Extensive botanical controls demonstrated that the patterns of both intra (alpha)-and inter (beta)-plot diversity extracted from these data were highly reliable [START_REF] Réjou-Méchain | Detecting large-scale diversity patterns in tropical trees: Can we trust commercial forest inventories?[END_REF] .

For the purpose of the present paper, we conducted an additional assessment according to botanical experts and by comparing the distributional range of our taxa with that in other datasets [START_REF] Dauby | RAINBIO: A mega-database of tropical African vascular plants distributions[END_REF][START_REF]African Plant Database (version 3.4.0)[END_REF] to select a set of species and genera deemed to be reliably identified over the whole study area (n=195). The abundances of these taxa were aggregated in 10x10-km 2 grid cells across the study area, but we only kept the taxa occurring in at least 5% of the cells to discard taxa that cannot be studied at the regional scale (n=2). For the statistical analyses, we kept the 10x10-km 2 grid cells having a field plot sampling area ≥ to 10 ha and where the selected taxa represented at least 75% of the total number of individuals originally inventoried to ensure that our dataset was representative of the within-cell tree community composition. The final dataset contains species and 97 at the genus levels (Table S2), recorded in 185,665 plots aggregated in 1,571 10x10-km 2 grid cells. Overall, the selected taxa represented 90% of the total number of individuals originally inventoried in the selected grid cells.

For each taxon, we compiled information on three important functional traits. First, we extracted an average wood density using the global wood density database [START_REF] Chave | Towards a worldwide wood economics spectrum[END_REF][START_REF] Zanne | Global wood density database[END_REF] as well as other wood density data [START_REF] Gourlet-Fleury | Environmental filtering of dense wooded species controls above ground biomass stored in African moist forests[END_REF] . Wood density is an integrative trait that reflects a trade-off between tree growth potential and mortality risk [START_REF] Díaz | The global spectrum of plant form and function[END_REF] and is thus highly informative on community dynamics [START_REF] Westoby | Land-plant ecology on the basis of functional traits[END_REF] . It ultimately directly impacts the amount of carbon that can be stored in the vegetation [START_REF] Chave | Improved allometric models to estimate the aboveground biomass of tropical trees[END_REF] . Second, we extracted the leaf phenology (deciduous or evergreen) of all taxa from the large unpublished CoForTraits database [START_REF] Bénédet | African plant traits information database[END_REF] . This database compiles information on more than 1000 species from central Africa with values extracted from the literature (mostly from local floras, academic papers and unpublished theses). When several values were available for a given species from different sources, we attributed the one with the maximum of occurrences (ambiguities were left as unknown). At the genus level, we first computed this step for all species belonging to the genus and then attributed the phenology with the maximum of occurrences at the species level to the genus so that all congeneric species have the same weight in the phenology attribution. This approach relies on the assumption that leaf phenological traits are highly phylogenetically conserved [START_REF] Davies | Phylogenetic conservatism in plant phenology[END_REF] . For a few taxa (n=5), the phenology information was obtained from Ouédraogo et al. [START_REF] Ouédraogo | The determinants of tropical forest deciduousness: Disentangling the effects of rainfall and geology in central Africa[END_REF] and following these authors we considered Lophira alata Banks ex C. F. Gaertn. and Musanga cecropioides R. Br. as leaf exchangers, i.e., with a trait value of 0.5, intermediate between evergreen (0) and deciduous (1). Leaf phenology is one of the few traits considered in dynamic global vegetation models as it impacts the dynamics of forest productivity [START_REF] Cramer | Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models[END_REF] . In particular, deciduousness indicates that tree photosynthetic activity, and thus growth, is seasonally depressed, which has a direct impact on carbon, water and nutrient cycling [START_REF] Menzel | Phenology: Its importance to the global change community[END_REF] .

Deciduousness has often been interpreted as a strategy to avoid water stress and is thus expected to depend on climate and soil conditions [START_REF] Ouédraogo | The determinants of tropical forest deciduousness: Disentangling the effects of rainfall and geology in central Africa[END_REF][START_REF] Borchert | Modification of Vegetative Phenology in a Tropical Semi-deciduous Forest by Abnormal Drought and Rain 1[END_REF] . Lastly, we used the original inventory data to calculate the maximum diameter as the 95th percentile value of the diameter distribution for each taxon. Maximum potential diameter, which is often used as a proxy of maximum height [START_REF] Kraft | Functional traits and niche-based tree community assembly in an amazonian forest[END_REF] , informs both on tree competitive ability for light and on the carbon sequestration potential. At the community level, it is expected to vary along gradients of productivity and disturbance [START_REF] Schamp | The assembly of forest communities according to maximum species height along resource and disturbance gradients[END_REF] . Leaf phenology was successfully assigned to 89% of the taxa (98% of the individuals), wood density to 91% of the taxa (96% of the individuals) and maximum diameter to all taxa.

Climate and soil data

We considered 24 climatic predictors derived from the open Climatic Research Unit (CRU) dataset 67 (Extended Data Table 2). We decided to rely on the CRU dataset as other datasets, such as WorldClim [START_REF] Hijmans | Very high resolution interpolated climate surface for global land areas[END_REF] , contain erroneous observations for some climatic stations (e.g., Ngoundi in Cameroon) that severely impacted our model. Furthermore, our cross-validation approach showed that the CRU database led to higher correlations between observed and predicted taxa abundances, correspondence analyses scores and community weighted trait values than the WorldClim [START_REF] Hijmans | Very high resolution interpolated climate surface for global land areas[END_REF] and CHIRPS 69 databases (results not shown).

Soil maps have been published at the country scale in central Africa and their homogenization is very challenging. We thus relied on a global dataset, the Harmonized World Soil Database (HWSD) [START_REF] Nachtergaele | The harmonized world soil database[END_REF] , to attribute a soil type to each grid cell. A crossvalidation analysis of our joint distribution model revealed that soil significantly improved predictions, mostly due to the contrast between Arenic Acrisols and the other soil types (Fig. S5). To keep the model parsimonious and maximize its robustness, we thus merged all soil categories but the Arenic Acrisols soils into a single category and discarded the permanently flooded areas as mapped in the open ESA-CCI landcover product (V. 1.6), where no tree inventory data were available.

Human-induced forests disturbance intensity

Many studies have attempted to spatialize human impacts on environment at a large scale. In most cases, these human footprint maps have consisted of cumulative threat maps, assuming for instance population density and infrastructure effects [START_REF] Woolmer | Rescaling the human footprint: A tool for conservation planning at an ecoregional scale[END_REF][START_REF] Venter | Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[END_REF][START_REF] Geldmann | Mapping change in human pressure globally on land and within protected areas[END_REF] .

Moreover, most of these maps relied on population statistics obtained at the level of administrative entities, resulting in human footprint indices with sharp changes at administrative boundaries [START_REF] Linard | Population distribution, settlement patterns and accessibility across Africa in 2010[END_REF] . We thus developed a statistical model to link the probability for a forest pixel i to be impacted by anthropogenic activities depending on human population density and road proximity through nonlinear relationships. This resulted in a spatially continuous index representing human-induced forest disturbance intensity that can be projected in space and/or time following predefined human population dynamics scenarios (Extended Data Fig. 8).

We calibrated this index with the "Settlement Points" dataset produced under the "Global Rural Urban Mapping Project" (Grumpv1). This dataset provides estimates of human population (counts, in persons) for the year 2000 using a proportional allocation gridding algorithm (1-km² grid) based on more than 1,000,000 national and subnational geographic units. Focusing on central Africa, we compared this product with the Natural Earth Populated Places product (version 3.0.0; http://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-populatedplaces/; last access the 07/10/2018) derived from the LandScan (https://earthworks.stanford.edu/catalog/stanford-yj715rc4110#iso-metadata-referenceinfo) dataset (pixels with fewer than 200 persons per km² were discarded). The total number of populated points in central Africa (longitude 5.6 to 39.8, latitude -9.8 to 7.5 in decimal degrees) was 807 and 376 for the Grumpv1 and Natural Earth products, respectively. We thus performed a random manual check of the populated places present in Grumpv1 and absent from Natural Earth (the reverse rarely occurred) using Google Earth images and found that in all cases Grumpv1 was correct. We thus finally used the Grumpv1 dataset, which mostly provides information on populated places with more than ca. 1000 people. Because smaller populations may have a significant impact on forests, we added to this dataset the populated locations of the category "towns" OpenStreetMap. Preliminary analyses revealed that further accounting for the railway and river networks did not improve predictions of tree taxon and community distributions.

Our index was thus calculated as followed. Let z i ,i=1 , … , n be n random variables indicating the disturbance status of pixel i: 0 if the pixel is undisturbed and 1 if disturbed.

We assumed that z i is distributed as a Bernoulli variable:

z i =Bern ( p i ) with p i = IP i (θ) IP i (θ)+ IR i r
where IP i (θ) is a synthetic index describing the influence of the population density of all populated places on pixel i (see below), θ is an unknown parameter to be inferred, and IR i r expresses the road influence on pixel i, defined as the normalized square root distance of pixel i to the nearest road r:

IR i r = min r ∈ R √ DR i r m a x i=1 ,… ,n ( min r ∈ R √ DR i r )
where DR denotes the distance to the nearest road in the study area and R denotes all roads in the study area.

Population influence, IP i θ , is defined as the normalized square root of the weighted sum of the population size of place j. Note that the weight depends on both the distance between pixel i and populated place j, δ i j , and on the population size N j :

IP i θ = √ ∑ j n N j e - δ i j log ( N j ) θ +1 max √ ∑ j n N j e - δ i j log( N j) θ + 1
We finally calibrated the θ parameter using two reference areas of ca. 190,000 km 2 (Fig. S6). These two areas were chosen because they cover contrasting conditions, are well known by our team and were found to be little influenced by atmospheric pollution in the MODIS data. Degraded versus intact forests were identified from a recently published MODIS-based regional vegetation map [START_REF] Philippon | The light-deficient climates of western Central African evergreen forests[END_REF] . Using a likelihood optimization approach in these two areas, we obtained θ=1.27 and 1.71 in calibration areas 1 and 2, respectively, indicating that under a similar anthropogenic context, forests tend to be disturbed at a greater distance from anthropogenic disturbance sources in the second calibration area.

The final human-induced forest disturbance intensity index was thus calculated with θ =1.49, the average estimate for the two calibration areas, over the whole central African forest domain, thus avoiding the risk of artefacts related to atmospheric pollution from which suffer satellite products, especially over Gabon.

This index, built independently from our floristic dataset, outperformed previously published indices to predict floristic composition in our study area. Using a simple linear model, with individual anthropogenic indices as single predictors, the mean wood density of tree communities was better predicted with our new index (r=0.33) than with the WorldPop 75 (r=0.30), LandScan (r=0.15) and Venter [START_REF] Venter | Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[END_REF] 

Statistical model

To predict the joint taxa distributions we relied on a recently developed methodology called supervised component generalized linear regression (SCGLR) [START_REF] Bry | Supervised component generalized linear regression using a pls-extension of the fisher scoring algorithm[END_REF] , which identifies the most predictive dimensions among a large set of potentially multicollinear predictors.

SCGLR is an extension of partial least-squares regression (PLSR) to the uni-and multivariate generalized linear framework. PLSR is particularly well suited for analyzing a large array of correlated predictor variables, and many studies have demonstrated its ability for prediction in various biological fields, such as genetics [START_REF] Boulesteix | Partial least squares: A versatile tool for the analysis of high-dimensional genomic data[END_REF] or ecology [START_REF] Carrascal | Partial least squares regression as an alternative to current regression methods used in ecology[END_REF] . While PLSR is well adapted for continuous variables, SCGLR is suited for non-Gaussian outcomes and noncontinuous covariates. It is a model-based approach that extends PLSR [START_REF] Tenenhaus | La régression PLS: Théorie et pratique[END_REF] , PCA on instrumental variables [START_REF] Sabatier | Principal component analysis with instrumental variables as a tool for modelling composition data[END_REF] , canonical correspondence analysis [START_REF] Ter Braak | The analysis of vegetation-environment relationships by canonical correspondence analysis[END_REF] , and other related empirical methods by maximizing a trade-off between goodness of fit of the model and the quantity of information the components capture from the climatic variables. This information is measured through an indicator of "structural relevance" (SR) [START_REF] Bry | THEmatic model exploration through multiple costructure maximization[END_REF] , which uses bundles of highly correlated variables to attract components to rich and robust informational dimensions.

The components are sought as K linear combinations of environmental variables common to all species with coefficient vectors denoted u= ( u 1 , … ,u K ) (under norm and orthogonality constraints). SCGLR also estimates the corresponding q × K (number of species by number of components) matrix of unknown parameters γ to maximize the following convex sum:

s log ψ (u , γ)+(1 -s ) log ϕ l (u )
where ψ is the likelihood and ϕ l is the SR. s and l are tuning parameters. s is related to the trade-off between goodness of fit and structural relevance. l is a nonnegative scalar related to the narrowness of the bundles of climatic variables the components are wanted to align with. The K climatic components (CCs) are then equal to

C C k = X u k , k =1 , … , K
and can be understood as the main environmental directions predicting all species simultaneously, while γ j , j=1… , q are the magnitude of the effects of the K components on the abundances of each species. Then, the species abundances of each taxon j=1, , 193 on the grid cell i =1, , 1571 are modeled using a generalized linear Poisson regression such that:

y i j ∼ P ( S i λ i j ) l o g ( λ i j ) =X i β j +T i α j =X i u γ j +T i α j =C C i γ j +T i α j
where X denotes climatic variables (Extended data Table 2), S i is an offset corresponding to the number of plots within each grid cell, and T is a set of covariates known to impact species abundances: here, the soil type and the human-induced forest disturbance intensity index, as well as its logarithm to account for nonlinear responses.

The number of components (K ) as well as the tuning parameters (l and s) must appropriately be chosen. This was done with a 10% cross-validation procedure in which the criterion used was the harmonic mean of the mean square prediction error (MSPE) across the 194 taxa. A dedicated R package, SCGLR [START_REF] Cornu | Supervised Component Generalized Linear Regression[END_REF] , is available (see also https://github.com/SCnext/SCGLR).

To assess the predictive power of our model, we performed a leave-one block out cross-validation in which our dataset was divided into 40 spatial clusters identified with a Ward's hierarchical clustering [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF] of plot coordinates (Fig. S7). All clusters but one were used for training the model (i.e., calibration dataset) and the remaining cluster was used for validating the model. We repeated this procedure 40 times such that all clusters were used once in the validation dataset and participated in the model assessment.

Model validation was performed through the use of the nonparametric Spearman's rank correlation coefficients between observations and predictions. For individual taxon abundances, correlations were estimated using observed and predicted abundance per taxon. For taxon assemblages, a correspondence analysis (CA) was performed on the grid cell × observed species abundance matrix, providing the observed CA axes. The predicted site scores on each CA axis were then obtained by projecting the grid cell × predicted species abundance matrix in the observed CA planes. Correlations were computed on the observed and predicted site scores (i.e., loadings) enabling us to assess the ability of our model to predict the main floristic gradients across our area.

Finally, for the three functional traits, correlations were estimated on the grid cell-based community weighted mean (CWM) traits [START_REF] Violle | Let the concept of trait be functional![END_REF] calculated on observed and predicted taxon assemblages.

Taxon abundances and community composition were predicted across the entire study area in a regular 10-km grid. To predict the floristic composition of the existing forests, we first used the ESA-CCI landcover product (V.1.6) to only keep grid cells that are likely to be forested (i.e., category "broadleaved evergreen"). Then, we only selected grid cells that had a combination of predictor values similar to those in the calibration dataset. To do this, we used a 3-dimensional convex hull algorithm on the three climatic components to exclude all the grid cells that had a combination of predictors different from that represented in the calibration dataset. This resulted in 12,295 grid cells, representing 85% of the central African forests, i.e., an area of ca. 1 ,230 , 000 km 2 .

We finally used the Ward's hierarchical clustering method to classify the predicted floristic composition into broad floristic types. Group classification was done on the first five axes of a CA performed on predicted taxon abundances, accounting for 77% of the total inertia. The number of retained types was chosen based on our expert knowledge.

The uncertainty associated with this classification was then assessed through Gaussian finite mixture models [START_REF] Scrucca | Mclust 5: Clustering, classification and density estimation using gaussian finite mixture models[END_REF] (repeated 500 times) using a spherical, equal volume model (EII).

Spatially explicit null models

Whenever predictors and observations are spatially structured, model errors of type I (false positive associations) are inflated [START_REF] Dormann | Methods to account for spatial autocorrelation in the analysis of species distributional data: A review[END_REF] , hindering our capacity to extrapolate predictions in space or time [START_REF] Beale | Opening the climate envelope reveals no macroscale associations with climate in European birds[END_REF] . We thus built a spatialized null model to test the degree to which the successfulness of our predictions resulted from an actual relationship with climatic variables or was simply due to spatial costructures between taxon distributions and climatic gradients that arose by chance. We used the RGEOSTAT R package [START_REF] Renard | RGeostats: The Geostatistical package 11[END_REF] to simulate sets of SCGLR climatic components (CCs) having similar spatial properties to those of the observed CCs as well as similar spatial costructures between them. This step consisted of fitting theoretical variograms and covariograms to empirical ones to simulate random realizations that can be then used as "null" spatialized predictors (Fig. S8 andS9). We simulated 500 sets of "null" spatialized predictors and used them as predictors in our GLMs using the leave-one block out cross-validation described above.

The resulting correlations between observed and predicted taxon abundances, and axes scores (for taxon assemblages) were finally compared with the correlations obtained when observed climatic predictors were considered. The resulting p-values were calculated as the number of times a simulated correlation was higher than the observed one, divided by the total number of realizations (n=501).

Forest vulnerability to global change

Vulnerability to climate change, as assessed through the IPCC framework, is composed of three components: (1) sensitivity, (2) exposure, and (3) adaptive capacity to climate change.

Sensitivity to climate change, S e n s it i v it y cl i m , was firstly estimated at the taxon level in a similar way to Foden et al. [START_REF] Foden | Identifying the world's most climate change vulnerable species: A systematic trait-based assessment of all birds, amphibians and corals[END_REF] . For each taxon, we calculated the mean of the weighted standard deviation (S D w) of the three climatic components (CCs) at the present time, using locally observed taxon abundances as weights. S D w thus represents the width of the climatic niche currently occupied by the taxa. Taxon-specific climate sensitivity was then measured as 1/S D w (it increases as niche width decreases). To upscale tree sensitivity to climate change at the community level and over our study area, sensitivity was measured as the community weighted mean (C W M ) of taxon-specific climate sensitivity scores, using predicted taxon assemblages.

Exposure to climate change, E x p o s u r e cl i m , was assessed using projected changes in climate from 18 unique climate model combinations provided by the AFRICLIM V3.0 dataset [START_REF] Platts | AFRICLIM: High-resolution climate projections for ecological applications in Africa[END_REF] (last access on 03/02/2020). These models corresponded to pairwise combinations of five regional climate models (RCMs) driven by ten general circulation models (GCMs), with an unequal number of GCMs models per RCM (ten models for the Swedish Meteorological and Hydrological (SMHI) RCM, four for the Climate Limitedarea Modelling Community (CLMCOM) RCM, two for the Royal Netherlands Meteorological Institute (KNMI) RCM, one for the Canadian Centre for Climate Modelling (CCCMA) RCM and one for the Danish Meteorological Institute (DMI) RCM).

These models were generated using change-factor downscaling approaches to model spatial variation at local scales while correcting for differences between observed and simulated baseline climates (see Platts et al. [START_REF] Platts | AFRICLIM: High-resolution climate projections for ecological applications in Africa[END_REF] for more details). We here concentrated on one representative concentration pathway of the IPCC-AR5 (RCP 4.5) for the late 21st century (2071-2100, hereafter named 2085) and reconstructed the three SCGLR selected CCs from the climatic predictions as follows: let X r c p 4.5 be the predicted future climatic conditions. Let m= X and S=sd ( X ) be the mean and standard deviation matrices of the current climatic conditions. The predictive climatic components under future scenarios are then equal to f r c p 4.5 = ( X r c p 4.5 -m ) S û, where û represents SCGLR CCs. We then calculated the euclidean distance between the three current and the three predicted CCs for each of the 18 models and then estimated the exposure to climate change as the mean distance over the 18 models.

Adaptive capacity to climate change, A d a p t i v e c l i m , was assessed through the phylogenetic diversity of predicted assemblages at the genus level. We used a recently published dated phylogeny [START_REF] Janssens | A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses[END_REF] , covering 167 out of our 180 genera (representing 94% of predicted individuals). We first tested if the studied taxa exhibited a significant conservatism in their climate niches using Abouheif's permutation tests (Abouheif, 1999) on the taxa-specific score (γ) values on the three SCGLR climate components (γ represents the influence of a CC on a given taxa distribution, see above). We then measured the phylogenetic diversity (PD) of predicted assemblages at the genera level using the Chao's PD index with an order q of 1 (equivalent to the Shannon index) [START_REF] Chao | Phylogenetic diversity measures based on Hill numbers[END_REF] that we used as a proxy of adaptive capacity.

Vulnerability to climate change, V u ln e r a bi li t y c l i m , was finally estimated as the sum of the three standardized (0 to 1) components:

V u ln e r a bi li t y c l i m =( S e n s i t i v i t y c l i m s t + E x p o s u r e c l im s t -A d a p t i v e cl i m s t ).

V u ln e r a bi li t y c l i m theoretically ranges from -1 (low vulnerability) to 2 (high vulnerability) and, due to the standardization of its three components, it expresses a relative vulnerability over the study area and is thus little impacted by the IPCC scenario chosen (RCP 4.5 or 8.5) because different scenarios predict different amplitudes of changes but similar spatial patterns (Extended Data Fig. 7).

Forecasted human impact on forests in 2085 was assessed using our human-induced forest disturbance intensity index combined with country-specific projections of human populations in 2085. We assigned to each current town a country-specific relative population increase drawn from the World population prospects (United Nations) [START_REF]U. World population prospects: The 2017 revision, key findings and advance tables[END_REF] and rebuild our index based on this modified dataset. This approach did not account for new roads that may established by 2085, and thus tended to underestimate the increase in anthropogenic pressure.

Software and packages

All analyses were performed and figures were created with the R statistical software [START_REF] Core | R: A language and environment for statistical computing[END_REF] , mostly using the ade4 92 , alphashape3d [START_REF] Lafarge | Alphashape3d: Implementation of the 3D alphashape for the reconstruction of 3D sets from a point cloud[END_REF] , ggplot2 [START_REF] Wickham | Ggplot2: Elegant graphics for data analysis[END_REF] , raster [START_REF] Hijmans | Raster: Geographic data analysis and modeling[END_REF] , RgeoStat [START_REF] Renard | RGeostats: Geostatistical package[END_REF] , entropart [START_REF] Marcon | entropart: An R package to measure and partition diversity[END_REF] and SCGLR (https://github.com/SCnext/SCGLR/) packages. Data are archived in a public repository [START_REF] Réjou-Méchain | Maps of central African rainforest composition and vulnerability[END_REF] .
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 2 Figure 2: Predicted functional composition of central African forests. A-C, Predicted community weighted functional trait values at 10-km resolution.
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 3 Figure 3: Main forest types across central Africa and their functional composition. A, Forest type classification obtained by hierarchical clustering of the predicted floristic gradients. Colors represent a RGB composite of the mean values of the three functional traits per forest type (see Fig. 2), viz. wood density (red), deciduousness (green) and maximum diameter (blue). Thus similar colors illustrate similar functional composition. B, Taxonomic relationships among the forest types illustrated by a clustering dendrogram (top) and a boxplot of the standardized predicted functional composition over the 12,295 grid cells (bottom), with wood density in red, deciduousness in green
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 4 Figure 4: Predicted vulnerability of central African tree communities to global changes. A, Composite map of the vulnerability to climate change and of the forecasted human-induced forest disturbance intensity by 2085. B, Projected humaninduced forest disturbance intensity in 2085. Vulnerability to climate change was estimated as the sensitivity to current climate (C) plus the exposure to forecasted climate changes by 2085 (under RCP scenario 4.5) (D) minus the adaptive capacity of tree communities using phylogenetic diversity as a proxy (E).

  (r=0.23) indices. Similarly, using a simple generalized linear model with a Poisson distribution to predict the abundance of Musanga cecropioides, the most widespread and abundant short-lived pioneer taxon over central African forests, revealed a better performance of our index (r=0.35) compared to previous indices (r=0.31, 0.11, 0.26 for WorldPop, LandScan and Venter, respectively).

  

  

  

  

  

  

  

  The road network was extracted from the Global Roads Open Access Data Set, version 1 (https://data.maptiler.com/downloads/planet/#1.59/-17.3/19.7; last access the 14/09/2018) a dataset combining road data by country. Note that logging roads are not fully represented in this dataset, so we may underestimate their effect in this study. A few roads from the northern Republic of Congo were corrected using data from

	from OpenStreetMap (https://data.maptiler.com/downloads/planet/#1.59/-17.3/19.7; last
	access 02/10/2018) assuming by default that they all contained 500 people

(OpenStreetMap does not provide systematic information on population size).
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Extended data figure/table legends:

Extended Data Table 1 | Characteristics of the floristic groups. For each floristic group information is given on the three most abundant families (APGIII classification, except for the subfamilies Caesalpiniaceae and Mimosaceae, which were considered here independently due to their different ecological strategies), the five most representative taxa (i.e., taxa having the highest A score of the Dufrêne and Legendre index), the total area (km 2 ) covered by each group, the percentage of the area covered by protected areas (PA) and dedicated to logging activities (Logging), the mean probability of being impacted by human activities (phum, this study) and the mean value of the three climatic components (CCs) that best explain the current distribution of central African trees (this study). 2 | Climatic predictors. Correlations with the three climatic components (CCs) are given in the last three columns (see also Extended Data Fig. 4).

Extended Data Table

1 meanET0 was calculated using the Hargreaves formula with meanET 0= 1

where ET0 i is the evapotranspiration of month i calculated as ET0 i = 0.0023*0.408RA i * (Tavg i + 17.8)*TD i 0.5 with RA i the mean extrasolar radiation of month i in MJ m -2 d -1 , Tavg i the average daily temperature of month i in °C, computed as the average of the mean maximum and minimum temperature of month i, and TD i the mean temperature range of month i in °C, computed as the difference between mean maximum and minimum temperature of month i. 

To compute CWD i , the wettest month was set as i=1 at the grid cell level. [START_REF] Abernethy | Environmental issues in central Africa[END_REF] MCWD= ∑ i=1 n min ( 0 , P i -ET 0 i ) . S2.