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The assembly of the newborn’s gut microbiota during the first months of life is an

orchestrated process resulting in specialized microbial ecosystems in the different gut

compartments. This process is highly dependent upon environmental factors, and many

evidences suggest that early bacterial gut colonization has long-term consequences on

host digestive and immune homeostasis but also metabolism and behavior. The early

life period is therefore a “window of opportunity” to program health through microbiota

modulation. However, the implementation of this promising strategy requires an in-depth

understanding of the mechanisms governing gut microbiota assembly. Breastfeeding

has been associated with a healthy microbiota in infants. Human milk is a complex

food matrix, with numerous components that potentially influence the infant microbiota

composition, either by enhancing specific bacteria growth or by limiting the growth of

others. The objective of this review is to describe human milk composition and to discuss

the established or purported roles of human milk components upon gut microbiota

establishment. Finally, the impact of maternal diet on humanmilk composition is reviewed

to assess how maternal diet could be a simple and efficient approach to shape the infant

gut microbiota.
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INTRODUCTION

Under normal circumstances, the gut microbiota has a symbiotic relationship with the host.
However, many chronic human diseases, including obesity, diabetes, cirrhosis, rheumatoid
arthritis, and inflammatory bowel disease, have been associated with alterations in gut microbial
communities (1). The infant gut microbiota is shaped in the first thousand days of life (2). Growing
body of evidence revealed that altered neonatal colonization and disturbed interactions between
the gut microbes and the host during the neonatal period could affect health later in life (3). The
microbial colonization process is an orchestrated phenomenon resulting in specialized microbial
ecosystems in the different gut compartments. However, this colonization process can be influenced
by numerous environmental factors (4). One of the preponderant factors is neonatal diet, and it
is largely accepted that human milk (HM) is the optimal diet that stimulates the most adequate
microbiota development for the infant. Contrary to what is recommended by the World Health
Organization (5), HM is provided for <6 months for a large percentage of children in Western
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countries (6). However, even if breastfeeding does not cover the
whole microbiota maturation period, breastfeeding status was
more associated with the infant gut microbiota composition than
solid food introduction in a cohort of 323 healthy infants (7). The
importance of HM upon shaping of the infant gut microbiota is
also highlighted by the fact that cessation of breastfeeding, rather
than introduction of solid food, was required for maturation
into an adult-like microbiota in a cohort of 100 Swedish
infants (8).

HM is a complex biofluid that provides all the nutrients
required to promote infant growth. Beyond HM nutritional
properties, the beneficial properties of breastfeeding on risk
reduction of infant disease are well-recognized. HM is composed
of a large diversity of components classified by their size into two
main groups: macronutrients (fat, proteins, and carbohydrates)
and micronutrients (vitamins, minerals, etc.), both dispersed
between aqueous and colloidal phases (9, 10). HM also contains
many bacterial species (11), immunomodulatory components
(12), and hormones (13). HM composition is influenced by
many factors such as the lactation period, with a different
composition whether colostrum (first 48–72 h), transitional milk,
and mature milk (from the second week of lactation until
the end of lactation) are considered (14). Length of gestation,
time of the day, phase of the nursing process (foremilk and
hindmilk), and geographical and/or genetic female background
also influence HM composition (15–18). Maternal diet also
impacts HM composition, mainly fat composition as well as
immunomodulatory components and bacterial species, whereas
carbohydrate and protein contents seem less sensitive to the
maternal diet (19, 20). The beneficial role of HM on gut
microbiota development has been mainly attributed to the
presence of oligosaccharides (21). However, the contribution
of other HM components is also supported by the literature
data. Although most of these data are associations between
HM components and the infant gut microbiota or are derived
from in vitro studies, thus not showing causal relationships,
they are sometimes supported by human and animal model
data. Moreover, most of the HM compounds, except milk
oligosaccharides, are likely to be digested and absorbed before
reaching the colon. However, a small fraction of the nutrients
escapes small intestinal digestion. The amount of total lipids and
proteins that reaches the colon under physiological conditions
in adults has been evaluated to be between 5 and 8 g per
day for dietary lipids (22) and 2–5 g per day for dietary
proteins (23). In infants, data are scarce, but piglet studies
revealed the presence of small fractions of dietary di- and
monoacylglycerides and polar lipids as well as dairy proteins,
either intact or as peptides in the ileum of piglets (24). Thus,
a role of these HM compounds’ fraction on infant colonic
microbiota can be purported. The objective of this review is
therefore to present the available data suggesting a role of
various HM components on shaping the infant gut microbiota.
The second objective is to evaluate how maternal diet, through
its effect on these HM components, could be a potential
leverage to orientate the infant gut microbiota and ensure
optimal health.

HUMAN MILK COMPOSITION

Macronutrients
HM macronutrients are composed of lipids, proteins, and
carbohydrates. Their concentrations vary over the lactation
period from colostrum to mature milk (Figure 1): lipids and
lactose content increase while proteins and oligosaccharide
content decrease mainly during the first month of lactation and
very slightly during mature milk stage (25, 26). Macronutrient
concentration and type, especially lipid and protein contents,
are slightly variable due to the multiple factors impacting HM
composition including lactation time, feeding time, or mother’s
diet for example (15).

Lipids
Lipids are the main macronutrient in terms of energy. They
represent 40–60% of energy in mature milk (26–28) and are the
second most abundant macronutrient. They provide essential
nutrients like polyunsaturated fatty acids and complex lipids
(29). Lipids consist of 98% of triacylglycerides; the remaining
is composed of diacylglycerides, monoacylglycerides, free fatty
acids, phospholipids, and cholesterol. HM contains more than
200 fatty acids present in different concentrations (18). Oleic,
palmitic, and linoleic acids, respectively, located in sn-1, sn-
2, and sn-3 positions of triacylglycerides (30), are the highest
concentrated ones. HM lipids are endogenously produced by
the mammary gland or derived from maternal plasma (31). HM
fat is packaged into lipid globules with triacylglycerols found in
the core and surrounded by a bulk of phospholipids (32). The
diameter of milk fat globules varies from 1 to 10µm with an
average diameter of 4µm in mature milk (33).

Lipid content and composition are affected by many
parameters: (i) feed phase (foremilk or hindmilk), respectively,
32 and 56 g/L (34, 35); (ii) lactation stage, lipid content being
greater in mature milk than in colostrum; and (iii) maternal diet,
which does not impact lipid content but impacts fatty acid profile
and particularly that of the long-chain polyunsaturated fatty acids
(17, 19, 31).

Proteins and Nitrogen
HM contains a wide range of proteins classified into three major
classes: whey proteins, caseins, and mucins. Whey protein is
the major fraction of HM proteins and is mostly represented
by α-lactalbumin, lactoferrin (LF), lysozyme, and secretory
immunoglobulin A (SIgA) (see below for their specific immunity
role). α-Lactalbumin is involved in lactose synthesis (36) and
has an amino acid composition similar to the amino acid
requirement of the infant (37). Casein fraction includes α-, β-,
and κ-casein with a predominance of β- and κ-casein (12). They
are the main sources of minerals for the infant, including calcium
and phosphorus. Casein function is mainly nutritive (38). The
whey protein:casein ratio varies with lactation stage from 90:10
in colostrum to 60:40 in mature milk (12, 37, 39). Moreover,
total protein level decreases from the first to sixth month of
lactation (18). Protein content contributes to the infant growth,
particularly by providing essential amino acids, and participates
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FIGURE 1 | Macronutrient composition of colostrum and mature term human milk.

in immune protection and gut development (25, 39). HM also
contains mucins, which belong to the glycoprotein family and are
located in themilk fat globulemembrane (25).Mucins 1 and 4 are
the most studied mucins. Finally, 600 peptides have been recently
identified in HM, which have an array of bioactive functions,
including antimicrobial activity (40, 41).

Proteins and Peptides With Immunomodulatory and Growth

Promotion Activities
LF (20% of total proteins) is found at high concentrations (5
g/L) in colostrum compared with mature milk (3 g/L). LF is a
multifunctional protein of the transferrin family and is widely
represented in various secretory fluids, like HM (42). LF has both
bacteriostatic and bactericidal activities, limiting the growth of
several pathogens and killing others. SIgAs in HM are one of the
most abundant Igs (43) and the predominant antibody-mediated
immune protection in mucosal surfaces of suckling infants. SIgA
concentration is high in colostrum (5 g/L) and decreases in
mature milk (1.5 g/L) (44). SIgAs provide specific protection
against pathogens to which the mother has been previously
exposed, via the entero-mammary pathway (45, 46). Activated B
cells differentiate into plasma cells that synthesize high-affinity
dimeric IgA in the mammary gland, transported into HM across
epithelial cells by the polymeric Ig receptor (pIgR) (47). SIgAs
may also inactivate viruses (e.g., rotavirus and influenza) within
epithelial cells and carry these pathogens and their products
back into the lumen, thereby avoiding cytolytic damage to the
epithelium. Lysozyme (0.32 g/L in colostrum), another major
component in HM, is an enzyme capable of degrading the outer
cell wall of Gram-positive bacteria (48).

Cytokines, present in picograms in HM, are small soluble
glycoproteins that act as autocrine–paracrine factors by binding
to specific cellular receptors, operating in networks and

orchestrating immune system development and function (49).
They act as messengers to boost the neonatal immune system
by communicating with other immune components (50). More
particularly in colostrum but also in mature HM, a range
of inflammatory cytokines are present in free forms, such as
interleukin (IL)-1β, IL-6, IL-8, IL-12, tumor necrosis factor
(TNF)-α, and interferon (IFN)-γ, and potentially enhance
inflammation (i.e., following bacterial lipopolysaccharides)
unlike the immunosuppressive cytokine IL-10, which decreases
such inflammatory conditions (51). The primary source of these
cytokines is the mammary gland, but leukocytes recovered from
HM are capable of secreting them (52). HM also contains an
ensemble of growth factors, present at very high concentrations
after birth but whose concentrations generally decrease during
lactation. Some of these growth factors favor the proliferation and
differentiation of epithelial cells and modulate mucosal immune
response, such as transforming growth factor (TGF)-β (1–2
µg/L), which is one of the most abundant in HM (53). TGF-β is
also an immunosuppressive cytokine involved in the induction
and function of regulatory T cells, as well as the regulation
of other immune cells such as lymphocytes, macrophages,
and dendritic cells, which could induce excessive inflammatory
responses to stimuli in the infant gut (53). Colostrum TGF-β is
involved in switching IgM to IgA in B lymphocytes of the infant
gut mucosa (54).

Non-protein Nitrogen
The nitrogen HM content is also composed of non-protein
nitrogen (NPN), which represents 5–10% and 20–25% of the
total nitrogen in colostrum and mature HM, respectively. It is
composed of urea, creatinine, nucleotides, choline and amino
alcohols, amino sugars, carnitine, polyamines (see Metabolites
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and Bacterial Metabolites section), N-glycans (see Carbohydrates
section), free amino acids, and peptides (55). Large individual
differences in NPN content in HM are observed, likely because
this fraction is composed of a heterogeneous mixture of N-
containing substances, such as free amino acids that are known
to be influenced by several maternal variables. The origin of
many NPN compounds in HM is thought to be the metabolic
breakdown products, which filter directly from the maternal
plasma and/or derive from normal or pathological metabolism
within the mammary gland itself (56). Nucleotides are likely to
originate from intact or lysed cells in HM. The exact role of most
of the NPN compounds is not yet fully established.

Carbohydrates

Lactose
Lactose is the major constituent and the main carbohydrate
of HM. It represents 30–40% of HM energy content (57).
Lactose concentration increases with lactation stage, with the
lowest concentration (around 56 g/L) in colostrum to reach
an average content of 69 g/L at 120 days postpartum (58).
Nevertheless, lactose has the least variable concentration among
HMmacronutrients throughout lactation.

Oligosaccharides
HM oligosaccharides (HMOs) are the third major constituent of
HM. The amount of HMOs is generally higher in the early stages
of lactation, from 20 to 25 g/L in colostrum to 5–15 g/L in mature
milk (59–61).

HMOs are defined as unconjugated molecules with a high
level of structural diversity as well as major properties and
functions (62, 63). All HMOs contain the disaccharide lactose,
branched at the reducing and/or non-reducing ends by a
single residue or more, generating more than 100 structurally
distinct oligosaccharides. The reducing end glucose (Glc) can
be fucosylated in α1-3 linkage, while the non-reducing end
galactose (Gal) can be fucosylated in α1-2 linkage, sialylated
in α2-3 or α2-6, or even elongated in β1-3 by lacto-N-
biose I (Galβ1,3-GlcNAc) or in β1-6 by N-acetyl-lactosamine
(Galβ1,4GlcNAc). Additional branching can occur with fucose,
sialic acid (Neu5Ac), and/or N-acetyl-lactosamine. Thus, HMOs
are named as fucosylated neutral HMOs, non-fucosylated neutral
HMOs, and sialylated HMOs. Fucosylated and non-fucosylated
neutral HMOs encounter 35–50% and 42–55% of total HMOs,
respectively (64). Despite the identification of so far more than
150 structurally different HMOs, the main fraction (∼90%) is
composed of >20 different ones (65–67) (Figure 2).

Overall, the composition in HMOs in HM depends on genetic
and environmental factors. The most important variability in
HMO composition remains the genetic capacity of individual
women to express α1-2-fucosyltransferase FUT2 (secretor gene,
Se) and/or α1-3/4-fucosyltransferase FUT3 (Lewis gene, Le) in
the mammary gland (2, 64). Fucosyltransferase (FUT-2 and/or
FUT-3) polymorphisms result in four distinct milk groups:
Se+Le+, Se–Le+, Se+Le–, and Se–Le–, which, respectively,
represented 72–75, 11–18, 7–11, and 3.5% of European or
Brazilian mothers (66, 67). The composition in HMOs in the
milk of Se+Le+ mothers presents a higher diversity than the

composition of HMOs in the milk of Se–Le– ones. Moreover,
non-secretor mothers (Se–Le+ and Se–Le–) secrete a lower
amount of HMOs than secretor ones (66, 67). The quantification
of 20 HMOs from the milk of 290 European mothers during
the first 4 months of lactation showed that 2′-fucosyllactose
(FL) and lacto-N-fucopentaose (LNFP) I are the most abundant
oligosaccharides in milk from secretor mothers (67). On the
other hand, the highest oligosaccharides in milk of non-secretor
mothers are, respectively, 3′-FL/LNFP II and lacto-N-tetraose
(LNT)/disialyllacto-N-tetraose (DSLNT) (67). However, the
genetic mother status (Se/Le) does not affect the concentrations
of 3′-sialyllactose (SL) and lacto-N-neodifucohexaose (LNnDFH)
as well as the total neutral core and the total acidic HMOs
(66, 67). Despite these general profiles, HMO concentrations
present a great variability even in the milk of mothers with the
same Se/Le status (66). Beside genetic factors, time and mode of
delivery also affect the amount and the composition of HMOs.
The milk of women with preterm infants is overrepresented by
sialylated HMOs, and the concentrations of total HMOs are
lower than those of women with term infants (64, 68). Samuel
et al. showed that the composition of HMOs is also affected by the
mode of delivery at day 2 and day 30 of lactation, specifically with
a lower amount of 2′-FL, 3′-SL, and 6′-SL in the milk of women
who gave birth through caesarian section (67).

In addition to free oligosaccharides, N-glycans are
oligosaccharides attached to the asparagine residues of a
protein via N-acetylglucosamine linkages. Glycosylation is an
important post-translational modification of proteins. More than
70% of HM proteins are highly glycosylated (69). They include
LF, lactadherin, SIgAs, mucins, α-lactalbumin, various Igs, and
at least 26 other proteins in the whey fraction (70).

Micronutrients
HM micronutrients include vitamins and minerals. Vitamins
provided by HM are all the essential vitamins needed for infant
growth. Vitamin composition is linked to maternal nutritional
status, specifically liposoluble vitamins like vitamins A and D
(10). Furthermore, breastfeeding provides a wide range of trace
elements (copper, zinc, barium, iron, cobalt, manganese, cesium,
etc.) to the infant. Their concentrations vary throughout lactation
and are higher in colostrum than in mature milk, but their
concentration is not affected by maternal intake (9, 10).

Hormones
Many hormones are present in HM, the vast majority being
transported into HM from the maternal circulation but several of
them being also synthetized within the mammary gland (13, 71).
In general, their concentrations in HM are higher than in plasma
and in colostrum and transition milk than in mature milk. Their
structure may differ from that in plasma due to glycosylation or
phosphorylation within the mammary gland before secretion
into HM (13). HMhormones include pituitary (prolactin, growth
hormone, and thyroid-stimulating hormone), hypothalamus
(thyroid-releasing hormone, luteinizing hormone-releasing
hormone, somatostatin, gonadotropin-releasing hormone, and
growth hormone-releasing hormone), thyroid (thyroxine and
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FIGURE 2 | Human milk concentrations of the top human milk oligosaccharides (HMOs) over the first 4 months of lactation (n = 290 European healthy mothers),

adapted from (67) and (64). [1, 2, 3, and/or 4] indicate the highest HMO concentration in milk of secretor [α1-2-fucosyltransferase FUT2 secretor (Se) gene] and Lewis

[α1-3/4-fucosyltransferase FUT3; Lewis (Le) gene] groups (1, Se+Le+; 2, Se–Le+; 3, Se+Le–; 4, Se–Le–).

triiodothyronine), parathyroid (parathormone, parathormone-
related peptide, and calcitonin), steroid (estrogen, progesterone,
and adrenal steroids), gut (insulin, ghrelin, and obestatin), and
adipocyte (leptin, adiponectin, and resistin) hormones as well as
growth factors [epidermal growth factor (EGF), nerve growth
factor, insulin-like growth factor (IGF)-I and II, relaxin, and
TGF-α and β] (13).

The presence of leptin (72, 73), ghrelin (74), and adiponectin
(75) in HM has deserved great interest and has been
extensively studied in the last 15 years due to their key role
in regulating eating behavior and metabolism (76). Leptin is
transferred from the maternal circulation to HM (72), and
HM leptin concentration correlates with maternal plasma leptin
concentration and maternal body mass index (BMI) (73). Leptin
is also produced bymammary epithelial cells and secreted inmilk
fat globules (77, 78). The production of leptin in breast tissue
might be regulated physiologically according to the nutritional
state of the infant, as suggested by Dundar et al., who showed
different leptin levels in maternal milk of small for gestational
age (SGA), large for gestational age, or appropriate for gestational

age (AGA) infants (79). Similarly, a remarkable decrease in
leptin levels from colostrum to mature milk was also observed
in mothers who delivered SGA infants and not in mothers who
delivered AGA infants, which may contribute to early catch-
up growth of SGA infants (80). Leptin concentrations are also
higher in term milk compared with preterm milk (81, 82) even
if some contradictory results exist (83). Similar to HM leptin,
HM ghrelin comes from maternal plasma (74) and is likely
synthesized and secreted from the breast (84). Adiponectin has
been measured in skim milk at concentrations higher (more
than ×40) than that of the other major adipokines leptin and
ghrelin and correlated positively with maternal obesity (74, 75,
85). Adiponectin concentrations were higher in preterm HM
compared with term HM (82). HM growth factors (IGF-I, IGF-
II, EGF, and insulin) have also been extensively studied due to
their gut trophic effects (86). IGF-I and EGF were particularly
high in colostrum, while insulin seems to be provided at relatively
constant level in colostrum, transitional milk, and mature milk in
preterm milk, with their concentrations decreasing postpartum
in term milk only, with no difference between term and preterm
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milk insulin concentrations at delivery (87). In SGA infants,
however, a decrease in insulin level from colostrum to mature
milk was reported (80). Insulin content in HM is directly in
relation with its actual concentration in maternal blood (88).

Bacteria
Although HM, like other human fluids, has long been considered
sterile, microorganisms have emerged as a natural part of
HM [for a detailed review on milk microbiota composition
and origin, please refer to dedicated reviews (89, 90)]. The
first studies focused on the presence of bacteria during
intra-mammary infections and the transmission of pathogens
through breastfeeding (91, 92). The presence of a complex
microbial moiety consisting of commensal bacteria associated
with healthy HM is now widely accepted, at least once
milk is expressed. Whether a complex and living microbial
community can be associated with milk inside the breast
and the mammary ducts remains to be determined. The
presence of a complex microbial moiety in HM, hereafter
referred to as “milk microbiota,” is supported by numerous
studies, especially in the last decade, through the use of
high-throughput sequencing approaches (89, 90, 93–104)
but also culture-dependent analyses (96, 105–107). Some
studies considered bacteria isolated from HM as contaminants
originating from mother skin and infant oral cavity (11);
others suggest that HM bacteria partly originate from maternal
gut through a yet-hypothetical entero-mammary pathway.
Several questions remain on this complex microbial moiety
of HM, in relation to its origin, the factors shaping its
composition, its viability, and on its contribution to the
establishment of the gut microbiota and subsequent health
outcomes in infant.

Characterization of HM microbiota relies on different
types of approaches, including culture-dependent and culture-
independent approaches such as metataxonomics, based on 16S
rRNA gene amplicon sequencing (89). Milk is generally collected
after cleaning the breast, by manual expression or using a
pump, although some studies also chose to collect milk in a
non-aseptic environment and to characterize the “breastfeeding-
associatedmicrobiota of HM,” as it is transmitted to infants (103).
Methods used to explore HM microbiota are likely to introduce
major differences in its composition between studies. Culture-
dependent approaches will allow the identification of a fraction
of viable bacteria, i.e., those who are cultivable in the growth
conditions used, whereas culture-independent approaches will
detect DNA of the total bacterial population, independently of
their physiological state. Most of the latest approaches rely on
amplicon sequencing targeting, mostly the bacterial fraction of
microbiota and to lesser extent the fungal community. A few
studies based on shotgun metagenomic approaches are now
available, giving access to archaeal, fungal, and viral communities
and to a prediction of functions of these bacteria (108–110).
Besides, within molecular approaches, several technical factors
related to sample preparation, sequencing platform, or analytical
pipelines may introduce some variability (111–113). Due to the
low HM microbial load and the use of PCR-based techniques,
these molecular approaches are subject to environmental

contaminations during sampling or sample processing, notably
by kit reagents, as was established for the “placenta microbiota”
(114, 115). The inclusion of negative controls (“reagent only”)
is thus important to determine background contamination and
ensure subsequent removal of “contaminant reads.” Despite all
these sources of variations, the large number of studies has
allowed a better characterization and understanding of this
complex microbial moiety.

HM microbiota is characterized by a low bacterial load but
a high diversity. The total bacterial load was evaluated to be
∼103–104 cfu/ml (range 101–106) in healthy HM by numeration
on non-selective media, depending on the media used or the
collection mode (manual expression vs. pump) and ∼105–
106 cfu/ml by qPCR on total DNA (96, 105, 106, 116). This
observation suggests that a part of HM microbiota is either
non-viable or non-cultivable. Of note, these bacterial cells were
mostly shown to exist in HM in a free-living state and not to be
associated with human cells (116). Despite this low bacterial load
as compared with the well-characterized gut microbiota, HMwas
found to harbor a complex and diverse microbiota with several
dozens of genera and more than 200 species identified so far
(90, 104, 106, 117, 118).

Among the most frequently cited taxa, Staphylococcus and
Streptococcus have been identified as universally predominant
in HM (97). Several additional taxa have been frequently cited,
including Corynebacterium, Bifidobacterium, Propionibacterium,
Bacteroides, Enterococcus, Faecalibacterium, Lactobacillus,
Veillonella, Serratia, Ralstonia, Acinetobacter, Rothia, and
several members of the Lachnospiraceae and Ruminococcaceae
families, suggesting the existence of a core HM microbiota
(85, 89, 91, 100, 103) (Figure 3). Pseudomonas has also
frequently been proposed to be part of HMmicrobiota, although
its presence may be attributed to contamination issues (106).

A cross-species analysis of milk microbiota even suggested
that some of these frequently cited taxa could be universally
shared within species, thus constituting an inter-species
core milk microbiota (89). HM microbiota composition
was globally confirmed by culture-dependent studies, albeit
with overrepresentation of easily cultivable aerobic or
aerotolerant members such as Staphylococcus, Streptococcus,
and Propionibacterium (96, 105, 106). In a study of 31 HM,
the combination of cultivation with matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometry identification allowed the identification of more
than 1,000 colonies (106). In addition to Staphylococcus and
Streptococcus isolates, which were dominant in all HM samples,
other highly abundant genera, present in >50% of the samples,
belonged to Acinetobacter, Gemella, Rothia, Corynebacterium,
Veillonella, Lactobacillus, Enhydrobacter, and Propionibacterium
(Figure 3). Isolation of obligate anaerobic species such as strict
anaerobic Bacteroidetes or Clostridium members was improved
following milk storage for 6 days at 4◦C, suggesting that these
taxa also belong to the viable fraction of milk microbiota
despite poor retrieval up to now (105). The fungal and viral
HM communities have also started to be explored (122–124).
The presence of fungi including Saccharomyces species has been
reported in HM samples (122).
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FIGURE 3 | Milk microbiota major taxa and overlap with infant feces and mouth and maternal skin microbiota. Overview of milk microbiota major taxa and their

possible origin [based on the reviews by Oikonomou et al. (89) and Jost et al. (90) for milk microbiota and Byrd et al. (119) and Xiao et al. (120) for maternal skin and

infant oral microbiota, respectively, and based on comparative studies between microbiota associated with these different sites (98–100, 106, 121)]. The taxa in bold

correspond to those for which isolates have been obtained (∼viable fraction of milk microbiota). aTaxa for which shared strains between milk and infant feces have

been reported; *generally considered as a contaminant.

The origin of HMmicrobiota remains a matter of debate. HM
microbiota is likely a combination of microorganisms originating
from maternal skin or even mammary tissue (125) and infant
oral cavity. It may also result from the maternal digestive tract
through a yet-hypothetical entero-mammary pathway involving
immune cells (90). In agreement with the two former sources,
Propionibacterium sp., Staphylococcus sp., or Corynebacterium
sp. are usual members of the adult skin microbiota, and the
presence of several members of the infant oral cavity in HM has
been reported (104, 118). The infant oral microbiota contribution
to HM microbiota was evaluated to be ∼21 and 66% 2 days and
5 months after birth, respectively (101). In agreement with the
inoculation of HM microbiota by the infant mouth through a
retrograde flow back into the mammary duct during suckling,
Biagi et al. reported enrichment of HM microbiota by typical
oral bacteria such as Streptococcus and Rothia, after the infant
latching to the mother’s breast, compared with HM microbiota
collected by pump (99). Kordy et al. (126) also reported maternal
areolar skin and infant oral cavity as major source of the breast
milk microbiota, with an average contribution of 46 and 26%,

respectively. Albeit controversial, the existence of an entero-
mammary pathway has been proposed (127). This route is
supported by a partial overlap between maternal feces and HM
microbiota compositions (101, 128). In a study comparing the
milk, vaginal, and fecal microbiota, Avershina reported a low
redundancy in terms of bacterial species between these three
microbiota, but HM had higher intra- than inter-individual
similarities toward both vaginal and stool samples, supporting,
to a certain extent, the translocation of gut microbiota to the
milk (128). Using shotgun metagenomic sequencing, Kordi et al.
identified the same strain of Bifidobacterium breve in maternal
rectum, breast milk, and the stool of an infant delivered via
caesarian section, suggesting direct transmission from maternal
gut (126). The existence of the endogenous route is also
supported by the isolation of common strains of Bifidobacterium
longum from maternal and neonatal feces as well as from HM
(46). Additionally, oral administration of some lactobacilli strains
to lactating women led to their presence in milk (129, 130).
This entero-mammary pathway may account for the presence of
DNA corresponding to major gut-associated obligate anaerobes,

Frontiers in Nutrition | www.frontiersin.org 7 March 2021 | Volume 8 | Article 629740

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Boudry et al. Human Milk and Infant Microbiota

including Bacteroides, Prevotella, Blautia, Clostridium, Dorea,
Eubacterium, Coprococcus, Faecalibacterium, or Roseburia (90).

Several factors have been proposed to shape HM microbiota
composition. Strong inter-individual variations may be the result
of both mother-related and environmental factors (89, 102, 104,
131). HM microbiota changes with time and notably between
colostrum and mature milk (104, 116, 118). Differences were
also reported in relation to the delivery mode, BMI, and parity
(102, 104, 132–134). However, depending on the study design or
methods used, contradictory results reporting the lack of effect
of most of these factors have also been proposed, including the
lactation stage (102), the delivery mode (caesarian section vs.
vaginal delivery), the gestation length (preterm vs. term) (135),
or the mother’s BMI (136). The mode of breastfeeding itself was
shown to affect HMmicrobiota. PumpedHMwas associated with
a higher abundance of potential pathogens and lower abundance
of bifidobacteria and oral cavity-related species (99, 106, 134).
Finally, HM microbiota is clearly affected by the mother health
status including mastitis development and antibiotherapy or
chemotherapy, which can directly affect microbial diversities and
profiles (89, 108, 137–139).

Metabolites and Bacterial Metabolites
HM also contains many small molecules (<1,500 Da), which
have recently deserved much interest due to their potential
role on infant growth as well as on the development of
the gut, immune, and nervous systems and other tissues
(140). These small molecules include molecules found in
milk fat globules (triacylglycerol species, glycerophospholipid
species, sphingomyelin species, cholesterol, etc.) as well as
proteins and peptides (proteinogenic amino acids), disaccharides
and oligosaccharides (glucose, galactose, fucose, etc.), and
other components dissolved in HM (amino acids, creatinine,
urea, citrate, 2-keto-glutarate, choline, nucleotides, polyamines,
etc.) (140). They have been identified using metabolomics
methodologies (nuclear magnetic resonance spectroscopy or
mass spectrometry); and depending on the technique and
HM sample preparation, from hundreds (141, 142) to more
commonly dozens of metabolites have been described in HM
(143, 144). HM metabolite concentrations change with the
duration of lactation (143), notably carbohydrates and amino
acids during the first month of lactation (140), with high levels of
amino acids in colostrum and high levels of saturated acids and
unsaturated acids inmature milk (145). There are also differences
in preterm and term HM metabolite concentrations, mainly in
early lactation (140, 146). HM metabolites differ across specific
geographical locations (China vs. Finland vs. South Africa, for
instance) (144, 147). The pathophysiologic status of the mother
influences the metabolite content of HM. HM of women with
irritable bowel syndrome displays less sugar metabolites (lactose)
and 2-aminobutyrate and more energy metabolites (succinate
and lactate) than HM of healthy mothers (148). Likewise,
gestational diabetes mellitus is associated with alterations in the
metabolome of HM, especially the colostrum (145).

HMmetabolites may be filtered from the mother bloodstream
through the mammary epithelium, may originate from different
metabolic processes within the mammary gland, or may be

produced through the metabolic processes of resident microbes
in HM (149). It is difficult to ascertain the microbial origin
of HM metabolites, as many metabolites can be produced by
both bacteria and eukaryote cells, but some HM metabolites are
more likely to be of bacterial origin. This is the case of biogenic
amines including the polyamines (spermine, spermidine, and
putrescine), together with the monoamines (tyramine) and
diamines (histamine and cadaverine) (149). Enterococcus, a major
bacteria group in HM, are the main producers of biogenic
amines, mainly putrescine and tyramine (150). A positive
correlation between putrescine concentration and Pseudomonas
fragi, a Gammaproteobacteria, has recently been described
in HM (151). HMOs could also be a direct substrate for
HM bacteria, which would produce metabolites. However,
to our knowledge, the correlation between specific products
of HMO fermentation and HM bacterial strains has never
been described. In a recent study, Mai et al. demonstrated
in vitro that HM promoted the growth of probiotic Lactobacillus
reuteri DSM 17938, a strain originally isolated from HM,
and its secretion of potentially beneficial metabolites (such as
succinate, glutamine, N-acetylcysteine, citrulline, spermidine,
and lactate) (152), suggesting that HM could indeed favor the
growth and metabolism of HM bacteria, generating specific
bacterial metabolites.

ROLE OF THE DIFFERENT BREAST MILK
COMPONENTS IN SHAPING THE INFANT
GUT MICROBIOTA

Oligosaccharides
Among HM components, HMOs, which are both non-digestible
molecules utilized by commensal infant bacteria in the large
intestine and free competitor to enteric pathogens, are known to
strongly influence the composition of the infant gut microbiota.
Several studies have shown that the fecal bacterial composition
of breastfed infants is different from that of formula-fed infants
(64, 153). The fecal microbiota composition of formula-fed
infants devoid of HMOs is poorer in bifidobacteria than that
of breastfed infants. While the microbiota of breastfed infants
was represented by 90% of bifidobacteria and lactobacilli, that of
formula-fed infants was composed of 40–60% bifidobacteria and
lactobacilli, and the remaining represented by Enterobacteriaceae
and Bacteroides. In addition, the rate of establishment of gut
microbiota in infants breastfed by secretor mothers is faster
than in those breastfed by non-secretor mothers (64, 154).
Furthermore, the microbiota composition of breastfed infants
from non-secretor mothers was shown to be slightly different
from themicrobiota of infants breastfed by secretor mothers with
higher colonization by Bifidobacterium adolescentis and absence
of Bifidobacterium catenulatum (155). These latter observations
demonstrated the major role of HMOs in the establishment of
the infant gut microbiota.

The predominant members of the early gut microbiota,
Bifidobacterium, Bacteroides spp., and Lactobacilli, possess
the ability to utilize HMOs by fermentation, while other
members, including Clostridium, Enterococcus, Escherichia,
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Eubacterium, Staphylococcus, Streptococcus, and Veillonella spp.,
do not (64, 90, 156–159). In vitro analyses showed that
the major Bifidobacterium strains (Bifidobacterium breve and
Bifidobacterium bifidum) present in the infant gut microbiota
were also the major strains able to ferment HMOs (159).
Moreover, Borewicz et al. showed a relation between HMO
consumption patterns and specific microbial groups affecting
both bacteria possessing the ability to utilize HMOs and the
others (160).

The prebiotic role of HMOs on the infant microbiota
can be partly attributed to their specific structures. HMO
consumption is mainly associated with Bifidobacterium genus
but is also found in a few Bacteroides and Lactobacillus species.
However, the ability to consume HMOs is not characteristic
of all bifidobacterial isolates, and certain HMOs are more
utilized by bifidobacteria than others (161). Moreover, cross-
feeding between HMO degraders and non-HMO users has been
observed (162). Genomics, transcriptomics, and glycobiology
methods have been useful to study the molecular basis of
this preferential utilization of HMOs by bifidobacteria species,
especially the induction of specific genes in the presence of
HMOs, which confer a selective advantage on this substrate
(161). As a consequence of this preferential use of HMOs by some
specific strains, analyses of the HMOs and the fecal microbiota
composition of 1- and 3-month-old breastfed infants showed that
2′-FL and LNFP-I, which are the main oligosaccharides found
in the milk of secretor mothers, affect the infant gut microbiota
(160, 163). Among the synthetized HMOs, 2′-FL and lacto-N-
neotetraose (LNnT) are widely studied and are considered safe
for infant nutrition. Fecal microbiota composition of 2′-FL- and
LNnT-supplemented formula-fed infants was more similar to
that of breastfed infants, in terms of microbial diversity, global
composition at the genus level, and abundance of several major
genera than that of infants fed a non-supplemented formula
(64, 164, 165). Moreover, 2′-FL and LNnT supplementation
was associated with lower prescription of antibiotics during the
first year of life, although fecal microbiota profiles no longer
differed between supplemented and non-supplemented infants
at 12 months of age (165). Likewise, sialic acid is known to be
an essential nutrient during periods of rapid neural growth and
brain development in the newborn (166). α2-6-Linked sialylated
oligosaccharides were present in greater proportion than the α2-
3-linked structures during early lactation (167, 168). Recently,
Bondue et al. demonstrated the ability of a specific Bifidobacteria,
Bifidobacterium mongoliense, to utilize 3′-SL as the main source
of carbon (169).

Individual or mixed HMOs also have a preventive role in
the attachment of pathogens in the infant gut. Some HMOs
mimic lectins or glycan-binding proteins, preventing pathogen
attachment on epithelial surfaces. 2′-FL was reported to alleviate
inflammation, lower allergic reaction, and prevent enteric
pathogens (such as Campylobacter jejuni or Escherichia coli)
attachment on epithelial surfaces (170, 171). α1-2-Fucosylated
HMOs act as antiadhesive antimicrobials against C. jejuni (170,
171). For some pathogens such as Entamoeba histolytica, complex
HMOs containing Gal/GlcNAc patterns (LNFP II and LNFP III
but not LNFP I, which contain α1-2-fucose residue) are required

to block attachment or cytotoxicity (172). Interestingly, 2′-FL
and 6′-SL were found to directly bind to TLR4 and inhibit
TLR4 signaling in ex vivo gut tissue and organoid cultures,
explaining the protection against the necrotizing enterocolitis in
newborn mice and premature piglets (173). Recently, Wang and
collaborators demonstrated in mice that 2′-FL intake increased
the abundance of Akkermansia spp., a probiotic potentially
involved in the expression of mucins in goblet cells and thus
the reduction of the colonization of the harmful bacteria E. coli
O157 (174).

Milk Bacteria
Considering an estimated daily ingestion of log 5 to 7 HM-
associated bacteria, HM microbiota is a continuous source of
commensal or probiotic microbes able to colonize the gut or
influence the infant gut microbiota during the first stage of
life (90, 101, 118). Strong overlap exists between milk and the
infant gut microbiota when considering major taxa of milk
microbiota (Figure 3). Several studies intended to evaluate the
role of HM microbiota in the infant gut colonization, revealing
some discrepancies between them due to both the methods and
the taxonomic levels used to compare microbiota. A strong
overlap between the infant gut and milk microbiota was pointed
out by Pärnänen et al. in a metagenomic analysis, as 76% of
the species found in milk were present in the infant gut (110).
In this study, a strong overlap was also revealed for antibiotic
resistance genes (ARGs) and mobile genetic elements (MGEs)
between milk and infant feces, as 70% of the ARGs detected
in milk were present in infant feces. Conversely, infant feces
shared 20% of their ARGs and 12% of their MGEs with HM.
William et al. estimated a direct contribution of only 4.9% of
HM microbiota to the infant gut microbiota and suggested
indirect contribution through an effect on microbiota in the
upper part of digestive tract, including the oral microbiota
(101). Despite this low direct contribution of HM microbiota
to the infant gut microbiota, these two communities were
found to be intimately linked as revealed by correlation analyses
(101). Using a similar tool (i.e., SourceTracker), Pannaraj et al.
estimated the proportion of bacteria in infant stool originating
from HM to be 27.7 and 10.4% for primarily breastfed and
non-primarily breastfed infants in the first month of life,
and this contribution decreased thereafter (175). In agreement
with the role of HM microbiota in shaping the infant gut
microbiota, the infant gut microbiota and even the resistome
were more similar to each infant own mother’s gut microbiota
than to unrelated women (99, 110). Likewise, Biagi et al. (99)
investigated the relation between HM, oral microbiota, and
fecal microbiota in preterm infants whose breastfeeding mode
changed from indirect intake through breast pump to direct
breastfeeding. A non-supervised approach allowed defining three
HM bacteria community types that were more or less related to
the breastfeeding mode. Interestingly, compositional differences
between these milk community types were associated with
compositional differences in infant fecal and oral microbiota.
Similar conclusions were supported by a study based on nearly
400 mother–infant dyads in 11 international sites (100). In this
study, despite limited associations between individual genera in
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HM and fecal microbiota, community-level analyses suggested
strong, positive associations between these two microbiota.
Similar conclusions were drawn regarding the viral communities,
which were distinguishable between HM and infant feces, but
with a significant number of shared viruses in HM and feces from
all mother–infant dyads (109). Thus, although all these studies
differ in their rates of overlap and contribution, depending
on the methods used, the cohorts, and whether the reference
is HM or infant feces, they support partial overlap between
HM and infant gut microbiota and suggest that they are both
positively linked.

Shared species betweenHM and infant gut include the pioneer
genera initiating gut microbiota assembly (46). They include
facultative anaerobes such as Staphylococcus, Streptococcus,
Lactobacillus, Propionibacterium, Enterococcus, or Escherichia
species that contribute to generate an anaerobic environment
and favor the subsequent implantation of obligate anaerobes
such as Bifidobacterium, Bacteroides, Blautia, or Veillonella
species (90, 176). Several studies reported the vertical transfer
of Bifidobacterium species, which are dominant in breastfed
infant gut (96, 124, 177). Biagi et al. (98) characterized the
composition of the oral and fecal microbiota of infant and
that of HM microbiota in 36 healthy mother–infant pairs and
reported a limited number of operational taxonomic units
(OTUs) shared among the three microbiota that belonged to
the Bifidobacterium genus, as well as specific Streptococcus and
Staphylococcus OTUs. These Streptococcus and Staphylococcus
OTUs were dominant in the infant mouth ecosystem as well,
supporting the baby’s mouth as a transition point between HM
and infant gut, contributing to both infant gut and mother’s milk
duct colonization.

The use of 16S rRNA gene-based molecular approach
to investigate vertical transfer may be limited and subject
to criticisms. Others studies combining culture-dependent
approaches with genotyping of isolates reported the presence
of the same strains in infant feces and HM, supporting
a vertical transfer of both facultative and strict anaerobes
(46, 90, 124, 178). In particular, few studies reported the
presence of shared strains of B. breve and Bifidobacterium
longum in HM and infant feces (46, 107, 177). Exploration
of the Bifidobacterium and bifidophage population in the
maternal and infant feces and HM of 25 mother–infant
pairs through the combination of molecular and culture-
dependent approaches revealed that similar OTUs or strains
as well as bifidophages were shared between these three types
of samples within mother–infant pairs (124). Apart from
Bifidobacterium species, the presence of shared strains belonging
to Staphylococcus, Enterococcus, and Lactobacillus in HM and
infant feces was also demonstrated through genotyping of
isolates (Figure 3) (90, 107, 178–180). Martin et al. (177)
notably reported the presence of two to four shared strains of
Staphylococcus, Lactobacillus, and/or Bifidobacterium between
HM and infant feces from 19 mother–infant pairs (177).
Transfer of other strict anaerobes such as Bacteroides or
Veillonella species still remains to be clearly demonstrated
by culture-dependent methods. Additional studies based on
high throughput culturomic approaches may help to evaluate

the proportion of shared strains between HM and the infant
gut microbiota.

An alternative to identify HM bacteria that are able to colonize
the gut was proposed byWang et al. (181). By inoculating normal
chow-fed germ-free mice with HM, they reported the presence
in the feces of OTUs belonging to Streptococcus, Staphylococcus,
Corynebacterium, and Propionibacterium genera as well as
anaerobic gut-associated bacteria belonging to Faecalibacterium,
Prevotella, Roseburia, Ruminococcus, and Bacteroides at low
abundance. Bifidobacterium was also isolated from mice feces
at very low abundance, although it was below the detection
limit in HM (181). Of note, although some species were shared
between HM and infant feces, their relative abundance within
microbiota strongly differs. This is the case for Bifidobacterium
whose abundance was low in HM but which became dominant in
the infant gut, due to modifications of growth conditions and to
their ability to metabolize HMOs (4, 90).

Beyond a direct role in seeding the infant microbiota,
HM microbes likely contribute to gut microbiota assembly
through their effects on gut microbes, including competition
for nutrients or gut mucosal binding sites, direct inhibition,
or contribution to trophic chains. Hence Jost et al. (90)
suggested a role of HM bacteria in gut lactate metabolism.
Most of HM bacteria are involved in either lactate production
(Staphylococcus, Streptococcus, and Lactobacillus) or lactate
utilization (Propionibacterium and Veillonella), which could
favor the establishment of balanced metabolic activities in
the gut and prevent disorders related to lactate accumulation
but also influence gut microbiota establishment through this
trophic chain. Regarding inhibition potential of HM microbiota,
HM contains several bacteriocin-producing strains, such as
Enterococcus faecalis, Enterococcus faecium, and Staphylococcus
sp., that may provide them a competitive advantage in
the colonization of the infant gut or contribute to shaping
of the infant gut microbiota (182). Likewise, HM contains
bacteriophages that are partly transmitted to the infant gut
and that could influence the infant gut microbiota composition
(109). Finally, HM microbiota may also influence the infant gut
microbiota assembly through their effect on gut immune system
via their immunomodulation properties (modulation of cytokine
production and induction of SIgAs) or their impact on gut barrier
function (183).

As previously mentioned, part of the HM microbiota is
non-viable or, at least, non-cultivable. This was revealed by
discrepancies between the total bacterial load of HM as
determined by culture-dependent or metataxonomic approaches
and differences in the microbial profile with overrepresentation
of few genera in culture-dependent approaches (96, 105).
However, strains corresponding to obligate anaerobes have been
isolated (105), suggesting that the living part of HM microbiota
is underestimated. Further exploration of HM microbiota using
high-throughput culture-dependent methods is now required
to fully understand the contribution of HM microbiota to
the infant gut microbiota. Moreover, even if the living part
of HM microbiota is underestimated, part of this microbiota
is likely inactivated during the first steps of digestion. This
raises questions about the role of this “non-living” part of the
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microbiota, since bacterial antigens would still be able to interact
with the host immune system and indirectly contribute to the
shaping of infant gut microbiota.

Immune Factors
Lactoferrin
LF has a direct cytotoxic effect against a large panel of
microorganisms (bacteria, viruses, and fungi), mainly in the
gut mucosa. For example, the iron-free form of LF can kill
Streptococcus mutans, Streptococcus pneumoniae, E. coli, Vibrio
cholera, Pseudomonas aeruginosa, and the fungal pathogen
Candida albicans (184). Moreover, LF also has bacteriostatic
properties due, in part, to its ability to bind ferric ions and
most of the iron from HM, thus reducing iron availability
for bacteria. Multiple clinical studies have suggested a number
of potentially favorable biologic effects associated with LF in
infants and children. The first randomized controlled trial
assessing LF supplementation in neonates reported a reduction
in the incidence of late-onset sepsis in bovine LF supplemented
compared with placebo in preterm infants (185). Data from
the recently completed ELFIN (enteral LF in neonates; N =

2,200) and LIFT (LF infant feeding trial; N = 1,500) studies
will help clarify the potential benefits of LF supplementation in
preterm infants (186). Moreover, fragments of human LF and
of pIgR stimulate the growth of a large set of Bifidobacterium
strains. Indeed, the fragments of LF and pIgR are 100 times
more effective to enhance Bifidobacterium growth on a molar
basis than the carbohydrate N-acetyl glucosamine, a currently
known bifidogenic carbohydrate, leading to the assumption that
the bifidogenic activity of HM based on peptides exceeds that of
some HM carbohydrates (187).

Secretory IgA
In suckling infants, SIgAs shape the composition of the
gut microbiota. Immune exclusion is one of the most
commonly proposed mechanisms by which SIgAs block
microbes from attaching to, colonizing, and invading mucosal
epithelial cells. Indeed, SIgAs in HM inhibit the binding
of Clostridium difficile toxin A to enterocyte brush border
membrane receptors (188). Moreover, secretory component (SC)
alone is sufficient to inhibit toxin binding to receptors. SC
is primarily responsible for blocking toxin A attachment to
epithelial cell monolayers. Furthermore, SC may serve as a
decoy receptor for other pathogens, including entero-toxigenic
E. coli (189).

IgG
The presence of IgG in HM helps in counteracting the infant
deficiencies in opsonization and antibody-mediated cytotoxicity.
Antibodies that recognize antigens expressed by entero-toxigenic
E. coli and other Enterobacteriaceae species of the maternal
microbiota are produced and secreted in HM (190). IgG is also
important for establishing homeostasis with regard to the newly
colonizing microbiota by prevention of the activation of the
gut-associated lymphoid tissue (191).

Lysozyme
Lysozyme, also called N-acetyl muramidase, hydrolyses
peptidoglycan polymers of bacterial cell walls at the β1-4 bonds
between N-acetyl muramic acid and N-acetyl glucosamine,
thereby lysing Gram-positive bacteria. In vitro study using
electron microscopy demonstrated that lysozyme can act
synergistically with LF to help in bacterial clearance (192). LF
first binds to the lipopolysaccharides of the outer cell membrane
of the Gram-negative bacteria, creating holes in the membrane.
Lysozyme can then enter and degrade the peptidoglycan of the
bacteria, killing the pathogens (192).

Cytokines
Cytokines participate in the establishment and maintenance of
tolerance to harmless food antigens and commensal bacteria (53).
However, their precise role in shaping the infant gut microbiota
still needs to be demonstrated.

Althoughmany data obtained in vitro indicate a possible effect
of HM immune factors in modulating the infant gut microbiota,
this effect is not supported yet by clinical or animalmodel studies,
except for LF. Further studies are therefore needed to fully assess
their role.

Bacterial Metabolites
It is difficult to speculate on the role of HM bacterial metabolites,
as, as seen earlier, the specific bacterial origin of HM metabolites
is still difficult to ascertain. Polyamines are mainly bacterial
end products and do not interfere with bacterial growth. Thus,
HM polyamine content is unlikely to modulate the infant gut
microbiota. If lactate, short-chain fatty acids, and intermediary
metabolites such as succinate, are effectively produced by HM
bacteria and released in HM, then a differential production of
these metabolites could interfere with infant microbiota, but such
a direct link is speculative, and further studies on the specific
role of HM bacterial metabolites on shaping of the infant gut
microbiota are warranted.

Macronutrients
Lipids
The role of HM lipid fraction on the infant gut microbiota
is poorly documented, but several lines of evidence point to a
possible effect. Indeed, in vitro studies reported either bactericidal
activities of milk lipids, including medium-chain fatty acids
(MCFAs), sphingosine, and monoacylglycerols (193), or a
bacterial growth promotion activity, especially a beneficial effect
of oleic acid on Lactobacillus species (194). Accordingly, Nejrup
et al. observed significant changes in infant fecal microbial
communities (increased Lactobacillus and Bifidobacterium
abundances and decreased Enterobacteriaceae abundance)
cultured with selected HM lipids MCFA, monoacylglycerol,
and/or sphingosine during anaerobic in vitro fermentation
(195). Investigations of the effect of lipid fractions of infant
formulas on the infant gut microbiota or of associations between
HM lipid fractions and infant microbiota composition are also
available. Increasing the proportion of palmitic acid in the
sn-2 position of triglycerides in infant formula increased fecal
Lactobacillus and Bifidobacterium counts after 6 weeks (196).
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A significant association between the proportion of decanoic
acid, myristic acid, stearic acid, palmitic acid, arachidonic acid,
and docosahexaenoic acid in the sn-2 position of triglycerides
in HM of Chinese women and Bacteroides, Enterobacteriaceae,
Veillonella, Streptococcus, and Clostridium abundance of their
infant gut microbiota has recently been described (197). HM
gangliosides could also participate in the shaping of the infant
gut microbiota. They are glycosphingolipids consisting of a
hydrophobic ceramide and a hydrophilic oligosaccharide chain
and have been described as putative decoys that interfere with
pathogenic binding. Infant formula enriched in ganglioside
reduced E. coli counts and slightly increased bifidobacteria
counts (+0.5 log/g feces) in preterm infant feces after 30 days
(198). Likewise, the HM sphingolipids could affect the gut
microbiota since several reports in mice indicated an effect
of dietary bovine sphingolipids on microbiota composition
(199). Yet their effect on the infant gut microbiota has not been
investigated to our knowledge. Finally, addition of milk-fat
globule membranes to formulas in neonatal piglets shifted their
fecal microbiota toward the composition of sow-reared piglets as
opposed to plant lipid-based formula (24), with similar results in
rats (200).

Carbohydrates

Lactose
Beside HMOs, whose role in shaping the infant gut microbiota
has been discussed above, HM lactose could also contribute, yet
to a lesser extent, to the infant gut microbiota establishment.
Although large amounts of lactose are unlikely to reach the
large intestine due to its hydrolysis and absorption within the
small intestine, lactose is easily degraded by several bacterial
species (201–203). An association between lactose concentration
and the colonic microbiota composition in formula-fed piglets
has been described (204). In vitro data also suggest a synergy
between lactose and oligosaccharides on B. longum growth (205).
Similarly to lipids, the data on the role of lactose on the infant
microbiota are scarce. Consumption of a lactose-reduced and
added-sugar (corn-syrup solids) formula by infants for 6 months
slightly increased the diversity (+18%) and Acidaminococcaceae
abundance (+0.7 log/mg feces) in feces compared with lactose-
containing formula consumption (206). These effects were not
reproduced in a preterm piglet model where diversity was lower
in corn-syrup solid formula-fed piglets compared with lactose
formula-fed ones (207).

N-Glycans
The role of N-glycans in shaping the infant gut microbiota
has been highlighted in a piglet study evaluating the postnatal
concentration of N-glycans in sow milk and the piglet
microbiota composition in parallel. This study indicated
that milk N-glycome correlated to abundances of certain
gut microbes, either positively or negatively (208). However,
data on correlations between human infant gut microbiota
and HM N-glycans are not available yet to our knowledge.
The enzymatic equipment and catabolic pathways to use
these N-glycans have been identified in certain isolates of
commensal Bifidobacterium (209) and Lactobacillus (210).

Some infant-borne bifidobacteria such as B. longum subsp.
infantis were found to harbor a cell-wall associated endo-β-N-
acetylglucosaminidase able to release oligosaccharides from milk
proteins (209). These milk glycoprotein-derived oligosaccharides
can serve as selective substrates for the growth of these infant-
associated bifidobacteria, similar to HMO (211). However, to
our knowledge, data on correlations between human infant gut
microbiota composition and HMN-glycans are not available.

Proteins and Non-protein Nitrogen
The impact of HM proteins and NPN compounds on the
infant gut microbiota has been suggested for proteins and
peptides with immunomodulatory properties (described above).
Yet other HM proteins and NPN compounds could also affect
the infant gut microbiota composition. Several animal studies
evaluated the impact of whey protein content in formula
on gut microbiota composition. Colonic microbiota diversity
and relative abundances of Clostridiaceae, Enterobacteriaceae,
Streptococcus, and Streptomyceswere increased in preterm piglets
receiving a formula with α-lactalbumin-enriched whey protein
concentrate for 19 days (212). However, this was not reproduced
in term infants since a formula enriched in α-lactalbumin and
glycomacropeptides did not affect fecal microbiota composition
in 6-month-old term infants (213). Likewise, a whey or whey-
and-casein formula did not affect the gut microbiota in preterm
piglets (214). HM mucins may also affect the gut microbiota
implantation or at least protect from pathogens. Indeed, mucins
have been shown to inhibit some pathogens like rotavirus
by inhibiting its replication (215, 216) or Salmonella enterica
serovar Typhimurium by inhibiting its binding properties on
host cells (217).

Although whey protein and casein do not seem to be major
HM components in orientating gut microbiota composition,
other data support a role of NPN compounds. Indeed, recent
work by the Sela group indicated that several B. infantis strains
were competent for urea nitrogen utilization and that urease
gene expression and downstream nitrogen metabolism pathways
were induced during NPN utilization (218). Nucleotides may
also drive the gut microbiota development since a nucleotide-
enriched formula was shown to reduce the Bacteroides–
Porphyromonas–Prevotella group toBifidobacterium species ratio
in the feces of 20-week-old healthy infants, compared with
standard formula (219).

Hormones
HM hormones retain their biological activity in the infant
gut, possibly due to post-transcriptional modification in the
mammary gland before secretion into HM, which may increase
their resistance to digestion (13). If their role in favoring
proliferation of intestinal cells, increasing mucosal growth,
enterocyte migration rates, villus height, brush border enzymes
activity, and expression of glucose transporters (220) as
well as their effects on metabolism through their absorption
in infant plasma (76) is well documented, their role as
contributors to the colonization patterns of the infant gut
microbiome is much less documented. A recent study by
Lemas et al. in 2-week-old exclusively breastfed infants
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highlighted a positive association between HM insulin and
both microbial taxonomic diversity and Gammaproteobacteria
abundance (e.g., Enterobacteriaceae), whereas HM insulin
was negatively associated with Lactobacillales abundance (e.g.,
Streptococcaceae) (221). As suggested by the authors, this may be
due to a direct role of insulin to regulate enterocyte maturation
and/or the ability of oral insulin to increase glucose concentration
in the gut lumen. As Enterobacteriaceae are a family of glucose
metabolizers, their gut colonization could therefore be favored.

In the same study, metagenomic analysis showed that HM
leptin and insulin were associated with decreased bacterial
proteases implicated in gut permeability and reduced
concentration of pyruvate kinase, a biomarker of pediatric
gut inflammation (221). There was no association between
HM leptin and microbiota (221) even if a role of leptin in
modulating gut microbial composition has been suggested in
rodent; but this effect, mediated by differential expression of
the mRNA expression of gut antimicrobial peptides, did not
imply gut leptin receptors (222). However, it has recently been
evidenced in rats that supplementation during the first 21 days
of life with leptin or adiponectin decreased the abundance
of the Proteobacteria phylum and the presence of Blautia
(223). Moreover, leptin-supplemented rats had lower relative
abundance of Sutterella and a higher proportion of Clostridium
genus, among others. Supplementation with adiponectin
resulted in lower abundance of the Roseburia genus and a higher
proportion of the Enterococcus genus (223). Oral insulin may
also have an antimicrobial action against potential pathogens
through upregulation of a specific endotoxin receptor on the
gut brush border membrane, as demonstrated in suckling mice
receiving insulin orally every day (224).

IMPACT OF MATERNAL DIET ON MILK
COMPOSITION: A NUTRITIONAL
STRATEGY TO SHAPE THE INFANT GUT
MICROBIOTA ASSEMBLY

The impact of maternal diet upon HM macronutrient,
micronutrients, and immune factors has been reviewed
recently (20). But it is not presented here, so to concentrate on
the impact of maternal diet on HMOs, bacteria, hormones, and
bacterial metabolites, which are less documented.

Human Milk Oligosaccharides
Besides genetic factors presented above, physiological and
environmental factors such as maternal nutritional status,
geographical origin, or type of delivery were shown to affect
the composition and amount of HMOs. However, only few
studies investigated the impact of maternal diet on HMO
composition. In extreme environmental conditions, maternal
nutritional status, due to seasonal fluctuations that affect food
reserves and diversity in Gambia, was shown to affect the
amount of HMOs. Gambian mothers (n = 12) who gave birth
during the wet season where food is highly depleted had a
lower amount of HMOs than mothers who gave birth during
the dry season (n = 21) (61). An effect of high protein or

fiber content in maternal diet during pregnancy and lactation
was also suggested in a rat study, with an increase of a
neutral oligosaccharide and an acidic oligosaccharide among
identified oligosaccharides (225). A recent study observed the
presence of the diet-derived sialic acid Neu5Gc in HMOs in
16 samples of HM (226). Because of the human inability to
synthesize Neu5Gc, its presence in HM is a clear evidence
of a direct influence of maternal diet on HMO biosynthesis,
although the positive association observed between ingested
and observed (in HMOs) Neu5Gc levels was not significant.
In addition, total fruit intake and cured meat intake, positively
and negatively, respectively, correlated with the abundance of
several HMOs, while cheese intake positively correlated with
Neu5Gc levels (226). Moreover, a preliminary study showed that
lower BMI (14–18 compared with 24–28) correlates with a lower
amount of HMOs (62). Since then, several studies confirmed
that pre-pregnancy BMI impacts the composition and the
concentrations of HMOs during the first 4 months of lactation
(67, 227, 228). Negative associations of maternal fat mass with
fucosylated HMOs were also highlighted, reinforcing the role
of maternal nutritional status before and during pregnancy
on the composition of HMOs (172, 229). Finally, a recent
interventional study using a crossover design in two different
cohorts tested the effect of glucose or galactose-enriched diet
for 30–57 h (n = 7) or a high-fat or high-carbohydrate diets
for 8 days (n = 7) with 1–2 weeks washout between diets.
Interestingly, HMO-bound fucose concentration was reduced
with the glucose-enriched diet, while HMO-bound sialic acid
was reduced with the high-fat diet (230). Although the cohort
was relatively small and dietary intervention short, this type
of clinical interventional studies with a crossover design would
be insightful to fully assess the role of maternal diet upon
HMO composition.

Milk Bacteria
Factors such as geography have been shown to play a role in
HM microbiota composition (144, 231, 232), although several
factors may be indirectly responsible for these geographical
differences, including lifestyle, environment, or diet. The
relationship between maternal diet and HM microbiota was
indirectly reported by Kumar et al. (231), who established
a correlation between HM microbiota and specific fatty acid
profiles. Likewise, HM microbiota composition was related to
fatty acids, carbohydrates, and protein intake as observed by
Williams et al. (102). However, the impact of maternal diet
on HM bacteria deserves further investigations. Seferovic et al.
in their crossover study investigating the impact of glucose or
galactose on the one hand and of high-fat vs. high-carbohydrate
diets in two small cohorts revealed overall minimal discernable
impact of maternal diet on taxonomic composition of HM
(shotgun metagenomic sequencing). However, the abundance
of multiple metabolic pathways was influenced by maternal
diets, including pathways involved in amino acid metabolism
(230). Once again, well-powered and long-duration intervention
clinical trials are warranted to further explore the role of maternal
diet upon HMmicrobiota.
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FIGURE 4 | Human milk components shaping the infant gut microbiota and influence of maternal diet and nutritional status. The different components of human milk

(HM) that have been shown or are suspected to influence the infant gut microbiota establishment are represented. Their size in the milk drop is proportional to their

suspected role in shaping the infant gut microbiota. The influence of maternal diet or nutritional status on these HM components concentrations is depicted with

arrows.

Bacterial Metabolites
The impact of maternal diet on HM metabolites has been
indirectly studied through their characterization in HM from
different geographical (and therefore different diets) locations
(cf.Metabolites and Bacterial Metabolites section) and comparing
HM metabolites in lean and obese mothers (229). At 1
month postpartum, 10 HM metabolites differed between
overweight/obese and lean mothers: 4/10 metabolites were
nucleotide derivatives, 3/10 were HMOs, and one was a
butyrate derivative (2-aminobutyrate) (229). In another study,
the total polyamine content was lower at 3 days, 1, and 2
months after delivery in HM from obese mothers compared
with HM from lean mothers (233). Spermine levels did not
differ between groups at any time in contrast to the levels of
putrescine and spermidine. The obese mothers who received
dietary advice during pregnancy based on the Nordic Nutrition
Recommendations had higher concentrations of putrescine and
spermidine in their milk than the obese mothers without
any intervention, suggesting that the low levels in obesity
were at least partly associated with food habits. However, the
consistency of spermine suggested a special metabolic function
of this polyamine (233). Finally, a choline supplementation
during the second half of gestation and the first month and
a half of lactation increased HM choline and its derivatives’
concentration (234).

Hormones
As discussed earlier, HM hormones arise from maternal
plasma. Thus, HM hormone concentrations are directly linked
to maternal plasma concentrations (13) and thus maternal
nutritional status. A direct role of maternal diet on HM hormone
concentration is unknown.

CONCLUSION

HM is not only a biofluid that provides the nutrients required
to promote infant growth. It also contains many components
whose impact on the infant gut microbiota establishment
starts to be recognized. Data on causal relationships between
these compounds and the infant microbiota are scarce.
Current evidences rely on in vitro data, animal models, or
association studies in humans, which highlights the need
for strong convincing studies. Moreover, the amount of HM
compounds reaching the colon, the role of partly digested
compounds (for example, HM-derived peptides) reaching the
colon, and the role of intact HM compounds on small
intestine microbiota composition also need to be investigated
to fully appreciate the role of HM in shaping the infant
gut microbiota.

At the maternal level, a better understanding of the factors
influencing compounds’ concentration in HM, the interactions
between them, and the persistence of the effects could open
avenues to strategies to modulate the infant gut microbiota
toward compositions beneficial to their health. Among the
influencing factors, lifestyle and diets could be used to shape HM
components toward a targeted composition that could, in turn,
shape the infant gut microbiota and more largely be beneficial
to infant health (Figure 4). However, studies investigating the
role of maternal diet upon the main contributors to the infant
gut microbiota (i.e., HMOs, bacteria, and immune factors) are
still lacking. Interventional trials in large cohorts with long
dietary interventions, covering both gestation and lactation
and/or observational studies with well-designed frequency food
questionnaires to get an in-depth characterization of mothers’
eating profiles, are needed to fully understand and use the
maternal diet as a leverage to shape the infant gut microbiota.
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