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Abstract

The gradostat consists of multiple chemostats interconnected by mass flows and diffusion. It has been used to model
biochemical systems such as wastewater treatment networks and microbial activity in soil. In this paper we maximize
the production of biogas in a gradostat at steady state. The physical decision variables are the water, substrate, and
biomass entering each tank and the flows through the interconnecting pipes. Our main technical focus is the nonconvex
constraint describing microbial growth. We formulate a relaxation and prove that it is exact when the gradostat is
outflow connected, its system matrix is irreducible, and the growth rate satisfies a simple condition. The relaxation
has second-order cone representations for the Monod and Contois growth rates. We extend the steady state models to
the case of multiple time periods by replacing the derivatives with numerical approximations instead of setting them to
zero. The resulting optimizations are second-order cone programs, which can be solved at large scales using standard
industrial software.

Keywords: Gradostat; second-order cone programming; convex relaxation; wastewater treatment; biogas.

1. Introduction

The gradostat consists of multiple chemostats intercon-
nected by mass flows and diffusion, and is mathematically
represented by a networked nonlinear dynamical system.
In each chemostat, microbial growth converts a substrate5

to biomass. This also produces biogas, a useful energy
source. Our primary motivation for this setup is the de-
sign and operation of a network of wastewater treatment
plants [1].

We seek to maximize the production of biogas in gra-10

dostats with two standard growth rates: Monod [2] and
Contois [3]. There are several physical decision variables,
including the inflows of water, substrate, and biomass at
each tank, and the installation of pipes between tanks. To
make the problem more tractable, we start with a steady15

state model obtained by setting the derivatives in the gra-
dostat to zero. The resulting algebraic equations specify
a feasible set, which is nonconvex due to the nonlinear
growth in each tank and, in some setups, discrete and bi-
linear mass flows between the tanks.20

Nonconvex optimization can be difficult even at small
scales (see, e.g., [4]). Second-order cone programming is
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a convex optimization class that is often used to approx-
imate nonconvex problems [5]. We will use the acronyms
SOC to refer to the phrase ‘second-order cone’ and SOCP25

to refer to ‘second-order cone programming.’ SOCP is
tractable in that it can be solved efficiently at large scales
and, due to convexity, all optima are global. In this paper,
we construct SOC and mixed-integer (MI)SOC relaxations
of the gradostat. Our main original contributions, listed30

below, center on the convexification of the growth rate
constraint.

• In Section 3, we formulate a simple relaxation of the
gradostat. The relaxation is obtained by allowing
the conversion of substrate to biomass to be less than35

or equal to the growth kinetics. In Theorem 1, we
prove that when the gradostat is outflow connected,
its system matrix is irreducible, and a simple condi-
tion on the growth rate is satisfied, this relaxation is
exact, which is to say that the inequality is satisfied40

with equality.

• In Section 4, we identify original SOC representa-
tions of the relaxed growth constraints. Specifically,
the Contois growth constraint is exactly representable
as an SOC constraint. The Monod growth constraint45

is SOC under a constant biomass approximation. We
use the convex envelopes of [6] to obtain an SOC
outer approximation of the Monod growth constraint
in the general case.
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• In Section 6, we give two extensions. In Section 6.1,50

we give simple linear underestimators of the growth
constraints for when the relaxations are not exact.
In Section 6.2, instead of setting the derivatives in
the gradostat to zero, we replace them with linear
numerical approximations. This leads to an opti-55

mization with multiple time periods, which can ac-
commodate transient conditions.

The end result is a family of SOCPs and MISOCPs for
optimizing the gradostat in steady state. Today, SOCPs
with tens of thousands of variables and constraints can be60

solved in seconds on a typical personal computer. MIS-
OCPs are also reasonably tractable because, like mixed-
integer linear programs, there are powerful mathematical
tools for speeding up their solution [7, 8, 9], and they are
handled by industrial solvers such as Gurobi [10]. This65

enables us to solve each MISOCP to optimality in seconds
to minutes at moderate scales, typically up to one hundred
binary variables.

We now review some relevant literature. We refer the
reader to [11, 12] for comprehensive coverage of the chemo-70

stat. The gradostat was originally formulated in [13] as a
single series of tanks and later generalized to a network
of interconnected chemostats. Chapter 6 in [11] contains
many of the known technical results, as well as illustra-
tions of some relevant concepts. There is an ongoing lit-75

erature stream focusing on its nonlinear analysis [14] and
control [15]. To date, there have been no applications of
numerical convex optimization to the gradostat in steady
state.

From a technical viewpoint, the nearest topic to ours is80

the optimization of chemical process networks [16]. Com-
mon features include bilinear mass flows, which we simi-
larly linearize using disjunctive programming [17, 18], and
quotients of variables, which we approximate with convex
envelopes [6, 19, 20] in Section 4.2.2. The main feature of85

the gradostat that is not present in chemical process net-
works is the microbial growth in the tanks, which is the
core focus of this paper.

The design of chemical reactors has been studied for
decades, see, e.g., [21]. A handful of papers within this90

stream have focused on optimal design, some using the
chemostat and gradostat. An early text is [22], which uses
dynamic programming, but not the chemostat. Several
later studies model growth with the Monod equation and
derive analytical expressions for parameters such as con-95

centration, residence time, and tank volume [23, 24, 25,
26]. References [27, 28, 29] build on this approach, de-
riving numerical and qualitative conditions for optimizing
reactors modeled as ‘steady-state equivalent biological sys-
tems.’100

More recent studies have explicitly optimized the de-
sign and operation of interconnected tanks. The volumes
of series bioreactors with Monod and Contois growth are
optimized in [30, 31] for a given output substrate concen-
tration at steady state. The operation of two chemostats105

in series is optimized in [32], and the volumes and diffusion
rate of a chemostat with a side compartment are optimized
in [33]. Of particular relevance are [34, 35], which model
interconnected wastewater treatments plants as a grado-
stat. The latter formulates inflow management as a model110

predictive control problem, which it solves using particle
swarm optimization. While closely related to our perspec-
tive, these papers focus on different problem statements
with specific network structures, and do not employ con-
vex relaxations or SOCP.115

The rest of the paper is organized as follows. Section 2
covers the relevant background and states the nonconvex
optimization problem. Section 3 gives a simple relaxation
and analyzes when it is exact. SOC representations of
the Monod and Contois growth constraints are given in120

Section 4, and the bilinear mass balance constraints are
linearized in Section 5. Section 6 gives linear underesti-
mators of the growth constraint and extends the models
to the case of multiple time periods. In Section 7, we sum-
marize the models and implement those that are SOCPs125

and MISOCPs in numerical examples.

2. Setup

2.1. Definitions

We consider a gradostat with n interconnected tanks,
and denote the set of tanks N . Tank i has water inflow Qin

i130

and outflow Qout
i . The concentrations of the substrate and

biomass inflows are Sin
i and X in

i . The tank is assumed to
be perfectly mixed and has substrate and biomass concen-
trations Si and Xi. We suppress the subscript to denote
the vectors of these quantities in Rn. We use s and x to re-135

fer to generic scalar substrate and biomass concentrations.
V ∈ Rn×n is a diagonal matrix in which Vii is the volume
of tank i.

The substrate in tank i is converted to biomass at the
rate r(Si, Xi)/y = µ(Si, Xi)Xi/y, where the growth rate,140

µ(s, x), is positive for s > 0 and x > 0, and y is the yield.
We refer to µ(s, x)x as the kinetics. We will focus on the
following two growth rates.

• Monod [2]:

µM(s) =
µmaxs

K + s
.

• Contois [3]:

µC(s, x) =
µmaxs

Kx+ s
.

We let all tanks have the same µmax, K, and y, and note
that our results straightforwardly extend to the case where145

they are not identical due to, for instance, temperature or
pH variation. Some of our results apply to other growth
rates as well. We refer the reader to Appendix 1 of [36]
for a comprehensive list.

The Monod growth rate, µM(s), is concave. The cor-150

responding kinetics, µM(s)x, are quasiconcave [37], but
not concave. The Contois growth rate, µC(s, x), is not

2



concave. Observe that the corresponding kinetics can be
written µC(s, x)x = µM(s/x)x. This is the perspective
of the Monod growth rate. The kinetics corresponding to155

the Contois growth rate are therefore concave because the
perspective of a concave function is always concave (see,
e.g., Section 3.2.6 of [37]).

We let Qij denote the flow from tank i to tank j. Flow
conservation implies that

Qin
i +

∑
j∈N\i

Qji = Qout
i +

∑
j∈N\i

Qij (1)

for i ∈ N . Let d̃ij denote the diffusion between tanks i

and j, where d̃ij = d̃ji. Note that this could represent the160

sum of the diffusions in multiple pipes. For example, if dij
is the diffusion in a pipe with flow from i to j, and dji for

another with flow from j to i, then d̃ij = dij + dji. We
encounter this scenario in Section 5, in which one has the
decision to build a pipe in either direction.165

Let C = diag
[
Qin

i

]
, G = diag [Qout

i ], and

Mij =

{
Qji, i 6= j
−Qout

i −
∑

k∈N\iQik, i = j

=

{
Qji, i 6= j
−Qin

i −
∑

k∈N\iQki, i = j

Lij =

{
d̃ij , i 6= j

−
∑

k∈N\i d̃ik, i = j
.

M and L are respectively matrices of forced flows and dif-
fusions between tanks. Together they specify the network
structure of the gradostat. Let 1 ∈ Rn be the vector of all
ones. In matrix form (1) is given by (M + C)1 = 0. Ob-
serve that because L1 = 0, we also have (M+L+C)1 = 0.170

Similarly, 1>(M +G) = 0 and 1>(M + L+G) = 0.
The gradostat is a type of compartmental system, and

M is a compartmental matrix. A compartmental system
is outflow connected if there is a directed path from every
tank to a tank with outflow, i.e., a tank i with Qout

i >175

0. A key property of compartmental matrices is that the
matrix M is invertible if and only if the system is outflow
connected. M is irreducible if it cannot be made block
lower triangular by reordering its indices. In the gradostat,
this means that there is a directed path from each tank180

to every other tank. Note that if the gradostat is outflow
connected and M is irreducible, then M+L is respectively
invertible and irreducible. We refer the reader to [38] for
a thorough discussion of compartmental systems.

We henceforth assume that all gradostats are outflow
connected. The matrices M and M+L are invertible, and
therefore

−(M + L)−1C1 = 1 (2a)

−
(
M> + L

)−1
G1 = 1. (2b)

We also know that −M and −M −L are M -matrices [38].185

This implies that −M−1 and −(M+L)−1 are nonnegative
matrices. If M is irreducible, then −M−1 and −(M+L)−1

are positive matrices [39].

2.2. Equilibria of the gradostat

The dynamics of the gradostat are

V Ṡ = −1

y
V r(S,X) + (M + L)S + CSin

V Ẋ = V r(S,X) + (M + L)X + CX in,

where˙denotes the time derivative, and, with a slight abuse190

of notation, we let r(S,X) denote the vector of growth
kinetics in all tanks. We obtain a steady state model by
setting the derivatives to zero. We now briefly discuss
when the solution to the steady state model corresponds
to a unique, stable equilibrium of the gradostat.195

Let Z = X + yS. Z does not depend on the kinetics
and evolves as a linear time invariant system, which makes
it straightforward to analyze. The dynamics of (Z,X) are

V Ż = (M + L)Z + C
(
X in + ySin

)
V Ẋ = V r((Z −X)/y,X) + (M + L)X + CX in.

Because the gradostat is outflow connected, M +L is neg-
ative definite and Z is globally asymptotically stable with
equilibrium Z̄ = −(M + L)−1C

(
X in + ySin

)
. Due to the

cascade structure, the dynamics of X are asymptotically
equivalent to those obtained by replacing Z with Z̄. We200

assume that Z̄ > 0; the following are two simple conditions
that guarantee this.

• If C
(
X in + ySin

)
is not the zero vector and M is

irreducible, then (M + L)−1 is strictly negative [39]
and Z̄ > 0.205

• Because M is a negative definite M -matrix, (M +
L)−1 is negative definite and nonpositive [39]. If
C
(
X in + ySin

)
> 0, i.e., there is inflow of substrate

and/or biomass at every tank, then Z̄ > 0.

We now briefly describe the equilibria of the gradostat,210

and refer the reader to [40] and Chapter 9 of [11] for more
thorough discussions. If X in = 0, a ‘washout’ equilibrium
with X = 0 always exists. A positive equilibrium with
S > 0 and X > 0 exists if µ

(
Z̄i/y, 0

)
> −Mii −Lii for all

i ∈ N . Intuitively, this means that the system can convert215

substrate to biomass faster than it ejects biomass. In this
case, the washout equilibrium is repulsive in the positive
domain. If r

(
Si, Z̄i − ySi

)
is increasing in Si and strictly

concave on
[
0, Z̄i/y

]
, then there is at most one positive

equilibrium. It is easy to verify that this last condition220

holds for Monod and Contois growth.
The steady state approximation by definition limits the

range of scenarios we can consider. For example, a wastew-
ater treatment system is clearly not in steady state during
a storm surge. On the other hand, it may be a useful225

approximation when choosing where to install new pipes
to improve efficiency under average operating conditions.
Later in Section 6.2 we drop the steady state assumption
and instead numerically approximate the derivatives. This
enables us to optimize trajectories of the gradostat under230

time-varying conditions.
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2.3. Objectives

The objective is to maximize the production of biogas.
This amounts to maximizing the conversion of substrate
to biomass at a subset of output tanks, M ⊆ N . The
corresponding objective is

max
∑
i∈M

Viir(Si, Xi). (3)

All formulations in this paper are valid with the objective
(3), but the theoretical results of Section 3 might not hold
if M⊂ N . If M = N , mass conservation implies that∑

i∈N
Qin

i S
in
i =

∑
i∈N

Qout
i Si +

1

y
Viir(Si, Xi).

If the left hand side is fixed andM = N , (3) is equivalent
to

min
∑
i∈N

Qout
i Si.

This corresponds to minimizing the substrate leaving the
network.

To streamline exposition, we use the new variable T235

represent the growth kinetics, i.e., T = r(S,X). We hence-
forth focus on maximizing the generic objective F(T ).
This corresponds to biogas production if F(T ) =

∑
i∈M ViiTi.

It can also accommodate additional features, e.g., concav-
ity could reflect diminishing returns due to limited ability240

to store biogas.

2.4. Problem statement

The full problem is given by

P : max F(T ) (4a)

such that Ti = r(Si, Xi), i ∈ N (4b)

1

y
V T = (M + L)S + CSin (4c)

− V T = (M + L)X + CX in (4d)

0 = (M + C)1 (4e)(
d,Q,Qin, S, Sin, X,X in

)
∈ Ω. (4f)

The variables are d, Q, Qin, S, Sin, X, X in, and T . The
growth constraint, (4b), equates Ti to the kinetics in tank
i. (4c), (4d), and (4e) balance the substrate, biomass, and245

water in each tank. The set Ω in (4f) represents generic
constraints on design and/or operation. Several possibil-
ities are listed in Use Case 1 below. Note that the tank
volumes are not variables, but could in principle be in-
corporated in a tractable manner using the techniques of250

Section 5.

Use Case 1. The following are operational constraints that
could be represented by the set Ω.

• X in = 0. All biomass in the system either is con-
verted from substrate or was already present before255

the system came to steady state.

• For each i ∈ N , Qout
i Si ≤ Ši. The mass of the

substrate released from each tank per unit of time
cannot exceed some limit.

• Qin>Sin = S̄. The total mass of substrate that enters260

the network per unit of time, S̄, is allocated over the
tanks. This could also be the case with biomass.

• 1>Qin ≤ Q̄. The total inflow (and, by conservation,
ouflow) of water is limited. Observe that if the inflow
is too small, the system will run inefficiently, but if265

it is too large, washout will be a stable equilibrium.

• For each i ∈ N , µ
(
Z̄i/y, 0

)
> −Mii − Lii. This

ensures that the gradostat has a positive equilibrium
and that the washout equilibrium, if it exists, is re-
pulsive. Note that here Z̄ is an optimization variable,
subject to the constraints

0 = (M + L)Z̄ + C
(
X in + ySin

)
µ
(
Z̄i/y, 0

)
≥ δ −Mii − Lii,

where δ is a small positive constant that makes the
inequality strict. If µ(s, 0) is concave in s, then this
is a convex constraint. In the case of Contois growth,
µC

(
Z̄i/y, 0

)
is a constant. In the case of Monod270

growth, the latter constraint has an SOC representa-
tion, which has the same form as that given in 4.2.1.

The growth constraint in P, (4b), is nonconvex. Sec-
tions 3 and 4 construct SOC relaxations of this constraint.
We consider two cases for the rest of the problem.275

• When the variables d, Q, and Qin are constant, (4c)
and (4d) are linear. Then the resulting relaxations
of P are SOCPs. In this case, the physical decisions
are the concentrations of the substrate and biomass
inflows, Sin and X in. Note that S, X, and T are280

also optimization variables, but are not under direct
control of a system operator.

• When d, Q, and Qin are discrete variables, (4c) and
(4d) are bilinear. We use disjunctive programming
to linearize these constraints in Section 5. In this285

case, the relaxations of P are MISOCPs. The phys-
ical decisions are Sin, X in, the flows between tanks,
Q, and the flows into the tanks, Qin. Qij could rep-
resent, for example, the decision to turn on a fixed
speed pump in the pipe from tank i to j, or the de-290

cision to build a pipe from i to j. We give more
detail on the forms of d, Q, and Qin in this case in
Section 5.

Use Case 2. Microbial activity in soil produces biogas,
which, because it is not captured, contributes to the green-295

house effect. This is often modeled with Monod dynam-
ics [41]. It has also been shown to be dependent on spatial
heterogeneity [42, 43], motivating the use of compartmen-
tal modeling. While there are no true design variables, it
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is of interest to understand which spatial structures lead300

to the greatest release of biogas. We can estimate this by
maximizing a gradostat’s biogas production over its wa-
ter inputs, Qin, and flows, Q and d. The biomass in soil
evolves slowly [44] and is thus often treated as a constant
parameter [42, 43]. We model this by dropping constraint305

(4d) from P and setting X = Xc. In Section 4.2.1, we
show that in this case the kinetics corresponding to the
Monod growth rate have an SOC representation.

3. Relaxation of the growth constraint

The growth constraint, (4b), is a nonlinear equality,
and hence specifies a nonconvex set. We relax (4b) by
replacing it with the inequality

Ti ≤ r(Si, Xi), i ∈ N . (5)

We refer to P with (5) instead of (4b) as PR. Unlike the310

equality (4b), (5) is convex for some growth rates, and can
sometimes be represented as an SOC constraint; this is the
focus of Section 4. In this section, we analyze when PR is
exact, which is to say has the same optimal solution as P.

First, observe that if the optimal solution to PR sat-315

isfies (5) with equality for all i ∈ N , then PR is exact.
Given a solution to PR, we can therefore determine if it is
feasible and optimal for P by simply checking if (5) binds.

Definition 1. Let E ⊆ N be such that for each i ∈ E,
Qji + dji = 0 for all j ∈ N , i.e., it receives no flow from320

other tanks. A gradostat is fully fed if for each i ∈ E,
Qin

i > 0, Sin
i > 0, and X in

i > 0.

Lemma 1. Suppose the gradostat is fully fed and outflow
connected. Then S > 0 and X > 0.

Proof. Consider a path, L, from tank s to tank t. As-325

sume that Sin
s > 0, X in

s > 0, and Qout
t > 0, and that for

each edge ij ∈ L, Qij + dij > 0. We proceed by induction
on the path.

Observe that because flow must enter every tank and
Sin
s > 0 and X in

s > 0, we must have Ss > 0 and Xs > 0330

for (4c) and (4d) to be feasible at tank s. Now suppose
that jk ∈ L and that Sj > 0 and Xj > 0. Then Sk > 0
and Xk > 0 for (4c) and (4d) to be feasible at tank k.
Therefore, by induction, Si > 0 and Xi > 0 for each i ∈ L.

Because we have assumed that the gradostat is outflow335

connected and fully fed, all tanks must lie on a path like
L. Therefore, S > 0 and X > 0. �

In an outflow connected gradostat, there can only be
zero substrate and biomass at tanks which have no inflow
of substrate or biomass and receive no flow or diffusion340

from other tanks. Such tanks cannot exist in a fullly fed
gradostat. Observe that another sufficient condition for
S > 0 is for the graph of diffusive couplings to be con-
nected, which is equivalent to rank(L) = n− 1.

Assumption 1. r(s, x) is concave, differentiable, and for
all s ≥ 0 and x ≥ 0, one has

1

y

∂r(s, x)

∂s
− ∂r(s, x)

∂x
≥ 0.

We will discuss Assumption 1 for specific growth rates in345

Section 4.
In Theorem 1 below, S, X, and T are the only vari-

ables in PR, the remaining variables in P are regarded to
be constant, and we drop the operational and design con-
straints in (4f). We will discuss how the theorem extends350

to the general case after the proof.

Theorem 1. PR is exact if F(T ) is concave and differ-
entiable, the gradostat is outflow connected, Assumption 1
holds, and either of the following is true:

• M is irreducible and
(
M> + L

)
V −1∇F(T ) ≤ 0 and355

is not uniformly zero for all T ≥ 0; or

• the gradostat is fully fed and
(
M> + L

)
V −1∇F(T ) <

0 for all T ≥ 0.

Proof. PR is convex due to Assumption 1. If PR satisfies
a constraint qualification such as Slater’s condition, any360

optimal solution must satisfy the Karush-Kuhn-Tucker (KKT)
conditions [37].
PR satisfies Slater’s condition if there is a feasible so-

lution for which (5) is strict. Because the gradostat is
outflow connected and either is fully fed or has an irre-365

ducible M , if there is any inflow of substrate and biomass,
then we must have S > 0 and X > 0 for (4c) and (4d)
to be feasible. Therefore r(Si, Xi) > 0 for all i ∈ N . We
obtain a feasible solution for which (5) is strict by setting
T = 0. Therefore, a Slater point exists, and any optimal370

solution of PR satisfies the KKT conditions.
Let ρ ∈ Rn

+ be the vector of dual multipliers of con-
straint (5), and let σ ∈ Rn and ε ∈ Rn be the respective
multipliers of (4c) and (4d). Let US and UX be diagonal
matrices with

US
ii =

∂r(Si, Xi)

∂Si
, UX

ii =
∂r(Si, Xi)

∂Xi

for each i ∈ N . The KKT conditions for PR are given by

(4c), (4d), (5)

ρ = ∇F(T ) + V

(
1

y
σ − ε

)
(6a)

USρ =
(
M> + L

)
σ (6b)

UXρ =
(
M> + L

)
ε (6c)

0 = ρi (Ti − r(Si, Xi)) , i ∈ N . (6d)

The complementary slackness condition, (6d), implies that
if ρ > 0, then constraint (5) binds for all i ∈ N and PR is
exact.

Let U = 1
yU

S − UX and W =
(
M> + L

)
V −1 − U . U

is positive semidefinite due to Assumption 1. Because the
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gradostat is outflow connected,
(
M> + L

)
V −1 is negative

definite, and therefore so is W . Arithmetic with (6a)-(6c)
yields

ρ = W−1
(
M> + L

)
V −1∇F(T ), (7)

Because −W is a positive definite M -matrix, W−1 is non-375

positive. We have ρ > 0 in both of the following two cases.

• If M is irreducible, W−1 is strictly negative [39].
Therefore, if

(
M> + L

)
V −1∇F(T ) ≤ 0 and is not

uniformly zero for all T ≥ 0, then ρ > 0.

• If
(
M> + L

)
V −1∇F(T ) < 0 for all T ≥ 0, then ρ >380

0 because W−1 is negative definite and nonpositive.

These are the two conditions we assumed in the theorem.
Therefore, ρ > 0, constraint (5) is met with equality, and
PR is exact. �

We now discuss Theorem 1 and its proof. We have385

regarded all variables except S, X, and T to be fixed.
The theorem therefore indicates when a solution to PR,
(S,X, T ), solves equations (4b)-(4d). Theorem 1 also holds
when d, Q, Qin, Sin, and X in are variables, so long as its
assumptions hold at their optimal values. If constraint390

(4f) only affects d, Q, Qin, Sin, and X in, it will not change
the exactness. However, if (4f) constrains S or X, then
Theorem 1 is not guaranteed to hold.

Corollary 1. Suppose that

F(T ) =
∑
i∈N

ViiTi.

PR is exact if the gradostat is outflow connected, Assump-
tion 1 holds, and either of the following is true:395

• M is irreducible; or

• the gradostat is fully fed and Qout > 0.

Proof. The result is obtained by substituting ∇F(T ) =
V 1 in (7) and using (2b) to simplify the right hand side
to ρ = W−1Qout. �400

There are likely further possible refinements and gener-
alizations. For example, if F(T ) is not differentiable, then
the conditions of Theorem 1 need to hold for all of its sub-
gradients, or, alternatively, some subgradient at the opti-
mal solution. On the other hand, there are surely systems405

of interest for which the relaxation is not exact. From this
point of view, Theorem 1 does not specify the entire set of
gradostats for which PR is an exact relaxation. Rather, it
is theoretical evidence that PR is exact for a meaningful
class of gradostats and may be a high quality approxima-410

tion for others.

4. SOC representations of PR

In this section we construct original SOC representa-
tions and approximations of the growth constraint in PR,
(5).415

4.1. Contois growth

With the Contois growth rate, constraint (5) takes the
form

Ti ≤
µmaxSiXi

KXi + Si
, i ∈ N . (8)

This is a convex constraint because, as discussed in Sec-
tion 2.1, the right hand side is concave.

Theorem 2. (8) is equivalent to the hyperbolic constraint

S̃2
i + T̃ 2

i ≤
(
S̃i − T̃i

)(
2µmaxKXi + S̃i − T̃i

)
(9a)

0 ≤ S̃i − T̃i, (9b)

where S̃i = µmaxSi and T̃i = KTi, i ∈ N .

This can be shown straightforwardly by simplifying (9a),420

i.e., using arithmetic to show that it is equivalent to (8).
Note that (9b) ensures the nonnegativity of both multi-
plicative terms on the right hand side of (9a), and is im-
plied by (8). We refer to PR with (9) in place of (5) as
PRC.425

Hyperbolic constraints are a special case of SOC con-
straints. In standard SOC form, (9a) is written∥∥∥∥∥∥

 S̃i

T̃i
µmaxKXi

∥∥∥∥∥∥ ≤ µmaxKXi + S̃i − T̃i.

We now test Assumption 1 for PRC. We have

1

y

∂r(s, x)

∂s
− ∂r(s, x)

∂x
=
µmax

(
Kx2 − ys2

)
y (Kx+ s)

2 .

Clearly this is negative for some s ≥ 0 and x ≥ 0, and
hence does not perfectly satisfy Assumption 1. However,
given that there is usually more biomass than substrate,
y < 1, and typically K ≈ 1, we expect it to hold around
the optimal solution for most realistic systems. Therefore,430

we expect Theorem 1 to hold most of the time for PRC.

4.2. Monod growth

With the Monod growth rate, constraint (5) takes the
form

Ti ≤
µmaxSiXi

K + Si
, i ∈ N . (10)

We refer to PR with (10) in place of (5) as PRM.
Because the right side of (10) is not concave, Assump-

tion 1 is not fully satisfied, and Theorem 1 does not di-
rectly apply. However, it is differentiable, which means
that the KKT conditions hold at any local optimum. If
the derivative condition in Assumption 1 is satisfied along
with the other conditions of Theorem 1 or Corollary 1,
then PRM is exact. Evaluating the derivative condition in
Assumption 1 yields

1

y

∂r(s, x)

∂s
− ∂r(s, x)

∂x
=
µmax

(
Kx2 − ys(K + s)

)
y (K + s)

2 .

6



As with the Contois growth rate, this is negative for some
s ≥ 0 and x ≥ 0, but is likely to be nonnegative around435

the solution for a realistic system. Therefore, we expect
PRM to be exact, albeit at a possibly local optimum.

Unfortunately, without a more tractable representation
of (10), PRM will be difficult to solve at larger scales. In
Sections 4.2.1 and 4.2.2, we construct two different SOC440

approximations of PRM.

4.2.1. Constant biomass

In some applications, the biomass, X, does not change
significantly relative to S. We now assume that biomass is
constant, i.e., X = Xc. Given this assumption, (5) takes
the form

Ti ≤
µmaxSiX

c
i

K + Si
, i ∈ N . (11)

This is a convex constraint because the right hand side, a
Monod function, is concave.

Theorem 3. (11) is equivalent to the hyperbolic constraint

Ŝ2
i + T̂ 2

i ≤
(
Ŝi − T̂i

)(
2µmaxKXc

i + Ŝi − T̂i
)

(12a)

0 ≤ Ŝi − T̂i, (12b)

where Ŝi = µmaxSiX
c
i and T̂i = KTi, i ∈ N .445

As with Theorem 2, this can be shown by simplifying.
We refer to PR with (12) in place of (5) and without the
biomass balance, (4d), as PRMX . In standard SOC form,
(12a) is written∥∥∥∥∥∥

 Ŝi

T̂i
µmaxKX

c
i

∥∥∥∥∥∥ ≤ µmaxKX
c
i + Ŝi − T̂i.

Theorem 1 does not directly apply to PRMX because
X = Xc. The proof may be adapted by simply disre-
garding constraint (4d) in PR; we omit the details because
they are straightforward. Evaluating Assumption 1 for
(11) yields

1

y

∂r(s, x)

∂s
− ∂r(s, x)

∂x
=
µmaxXcK

y (K + s)
2 ,

which is always nonnegative. Therefore, (a slightly modi-
fied version of) Theorem 1 always holds for PRMX . Given
the approximation X = Xc, PRMX is exact.

4.2.2. Convex envelopes

As stated above, the relaxed Monod constraint (10)
does not lead to a tractable optimization problem. In
this section, instead of making a physical approximation,
we construct an SOC approximation of the non-relaxed
Monod constraint,

Ti =
µmaxSiXi

K + Si
, i ∈ N . (13)

Note that (13) is an equality, whereas (10) is an inequal-450

ity. We relax this constraint using the concave and convex
envelopes in Sections 3.1 and 3.2 of [6]; see also [19, 20].

We can rewrite (13) as µmaxXi = Ti +KTi/Si, i ∈ N .
The only nonconvexity is due to the term Ti/Si. To apply
the convex envelopes, we need upper and lower bounds of
the form Si ≤ Si ≤ Si and Xi ≤ Xi ≤ Xi for each i ∈ N .
Given such bounds, we use (13), and the fact that the right
hand side is increasing, to obtain the following upper and
lower bounds on Ti:

T i =
µmaxSiXi

K + Si

, T i =
µmaxSiXi

K + Si

. (14)

We know that S ≥ 0, X ≥ 0, and therefore T ≥ 0. We
now derive several other bounds.

Lemma 2. For each i ∈ N , in steady state,455

1. Si ≤ maxj∈N S
in
j ,

2. Xi ≥ minj∈N X
in
j , and

3. Xi ≤ maxj∈N X
in
j + ySin

j .

Proof. We proceed casewise.

1. Starting from (4c), because T ≥ 0 we have (M +460

L)S + CSin ≥ 0, which implies that (M + L)S +
C1 maxj∈N S

in
j ≥ 0. Applying (2a), we have S ≤

1 maxj∈N S
in
j , i.e., Si ≤ maxj∈N S

in
j for i ∈ N .

2. Starting from (4d), because T ≥ 0 we have (M +
L)X + CX in ≤ 0, which implies that (M + L)X +465

C1 minj∈N X
in
j ≤ 0. As above, this leads to X ≥

1 minj∈N X
in
j , i.e., Xi ≥ minj∈N X

in
j for i ∈ N .

3. We combine (4c) and (4d) to obtain (M + L)Z +
CZ in = 0, where Z = X + yS and Z in = X in +
ySin. From here, similar to the previous cases, we470

can show that for each i, minj∈N Z
in
j ≤ Xi + ySi ≤

maxj∈N Z
in
j . Because S ≥ 0, this implies that for all

i ∈ N , Xi ≤ maxj∈N X
in
j + ySin

j . �

Note that if Sin and X in are variables, we can sim-
ply replace them with their upper and lower bounds in
Lemma 2. We can now apply the convex envelopes of [6].
For each i ∈ N , the Monod equation is represented by

µmaxXi = Ti +Kβi. (15a)

βi represents the term Ti/Si. It is constrained by the con-
vex envelope, given below. The concave overestimator is
the pair of linear inequalities

βiSS ≤ STi − TSi + ST (15b)

βiSS ≤ STi − TSi + ST . (15c)
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The convex underestimator is given by

γiψi ≥ T
(
T − Ti
T − T

)2

(15d)

(βi − γi)(Si − ψi) ≥ T
(
Ti − T
T − T

)2

(15e)

ψi ≥ max

{
S
T − Ti
T − T

, Si − S
Ti − T
T − T

}
(15f)

ψi ≤ min

{
S
T − Ti
T − T

, Si − S
Ti − T
T − T

}
(15g)

βi − γi ≥ 0, γi ≥ 0. (15h)

The first two constraints are hyperbolic SOC like (9) and
(12), and the rest are linear. ψi and γi are auxiliary vari-475

ables.
We refer to P with (15) instead of (4b) as PRME. PRME

may be a very good approximation to P, but there are no
theoretical results guaranteeing exactness.

5. Linearization of bilinear terms480

When d, Q, and Qin are variables, the mass flow terms
in constraints (4c) and (4d) are bilinear. Bilinear con-
straints are nonconvex and in general difficult to opti-
mize over. Two common ways to deal with bilinearities
are convex relaxations, e.g., McCormick [45] and lift-and-485

project [46], and disjunctive programming [17]. Disjunc-
tive programming techniques have been used in several
mathematically similar problems, including chemical pro-
cess optimization [18] and transmission network expansion
in power systems [47]. Here we let the flows be discrete,490

in which case disjunctive programming leads to exact lin-
earization. We note that relaxations are more appropriate
when the flows are continuous instead of discrete.

We denote the set of pipes J . For each pipe ij ∈ J ,
define the binary variable

λij ∈ {0, 1}. (16)

This could represent the decision to build a pipe, or the
decision to turn on a fixed-speed pump. If both ij ∈ J and
ji ∈ J , we prohibit simultaneous flow in both directions
with the constraint

λij + λji ≤ 1. (17)

The flow rate through pipe ij ∈ J is given by Qij =
Q0

ij + λijQ
1
ij , where the constants Q0

ij and Q1
ij are respec-

tively the base flow and the added flow if λij = 1. In-
troduce the variable FS

ij and the bilinear constraint FS
ij =

λijQ
1
ijSi. The flow of substrate from i to j is Q0

ijSi +FS
ij .

Because λij ∈ {0, 1}, we can rewrite this as the pair of
linear disjunctive [17] constraints

(1− λij)Γ ≥
∣∣Q1

ijSi − FS
ij

∣∣ , λijΓ ≥
∣∣FS

ij

∣∣ , (18a)

where Γ is a large positive number. Hence FS
ij = 0 when

λij = 0, and FS
ij = Q1

ijSi when λij = 1. We can similarly

represent the constraint FX
ij = λijQ

1
ijXi as the pair of

linear constraints

(1− λij)Γ ≥
∣∣Q1

ijXi − FX
ij

∣∣ , λijΓ ≥
∣∣FX

ij

∣∣ . (18b)

The diffusion of substrate in pipe ij ∈ J is
(
d0ij + λijd

1
ij

)
(Si−

Sj). Introduce the variables GS
ij and GX

ij and the bilinear

constraints GS
ij = λijd

1
ij(Si − Sj) and GX

ij = λijd
1
ij(Xi −

Xj). We can similarly represent these as

(1− λij)Γ ≥
∣∣d1ij(Si − Sj)−GS

ij

∣∣ , λijΓ ≥ ∣∣GS
ij

∣∣ (19a)

(1− λij)Γ ≥
∣∣d1ij(Xi −Xj)−GX

ij

∣∣ , λijΓ ≥ ∣∣GX
ij

∣∣ . (19b)

If Sin
i and X in

i are variables, then the products Qin
i S

in
i

and Qin
i X

in
i are bilinear as well. We linearize them by

noting that, due to flow conservation, (1), and the fact

that Qout is fixed, λ fully determines Qin. Let HS,1
ij =

λijQ
1
ijS

in
i , HS,2

ij = λjiQ
1
jiS

in
i , HX,1

ij = λijQ
1
ijX

in
i , and

HX,2
ij = λjiQ

1
jiX

in
i . These are equivalent to

(1− λij)Γ ≥
∣∣∣Q1

ijS
in
i −H

S,1
ij

∣∣∣ , λijΓ ≥ ∣∣∣HS,1
ij

∣∣∣ (20a)

(1− λji)Γ ≥
∣∣∣Q1

jiS
in
i −H

S,2
ij

∣∣∣ , λjiΓ ≥ ∣∣∣HS,2
ij

∣∣∣ (20b)

(1− λij)Γ ≥
∣∣∣Q1

ijX
in
i −H

X,1
ij

∣∣∣ , λijΓ ≥ ∣∣∣HX,1
ij

∣∣∣ (20c)

(1− λji)Γ ≥
∣∣∣Q1

jiX
in
i −H

X,2
ij

∣∣∣ , λjiΓ ≥ ∣∣∣HX,2
ij

∣∣∣ . (20d)

After making the appropriate substitutions, we obtain
the following replacements for constraints (4c)-(4e), which
we write in scalar form for each i ∈ N . For clarity, we
indicate beneath each new term the corresponding entry
in the original constraint. The flow balance, (4e), becomes

Qin
i +

∑
j∈N\i

Q0
ji + λjiQ

1
ji︸ ︷︷ ︸

Qji

= Qout
i +

∑
j∈N\i

Q0
ij + λijQ

1
ij︸ ︷︷ ︸

Qij

.

(21a)
The substrate balance, (4c), becomes

1

y
ViiTi +Qout

i Si +
∑

j∈N\i

Q0
ijSi + FS

ij︸ ︷︷ ︸
QijSi

+ d0ij(Si − Sj) +GS
ij︸ ︷︷ ︸

dij(Si−Sj)

= Qout
i Sin

i +
∑

j∈N\i

(
Q0

ij −Q0
ji

)
Sin
i +HS,1

ij −H
S,2
ij︸ ︷︷ ︸

Qin
i Sin

i

+
∑

j∈N\i

Q0
jiSj + FS

ji︸ ︷︷ ︸
QjiSj

+ d0ji(Sj − Si) +GS
ji︸ ︷︷ ︸

dji(Sj−Si)

. (21b)

The biomass balance, (4d) takes the same form as (21b),
but with X in place of S.495

We now make several comments. Qout
i and Vii are con-

stant. If they were instead binary variables, we could lin-
earize the resulting bilinearities using the same technique.
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The same binary variables, λ, appear throughout (16)-
(21). We could also straightforwardly generalize this to500

integer capacities by associating multiple binary variables
with each pipe.

6. Extensions

We now consider two basic extensions to PR and its
SOC representations.505

6.1. Convex underestimators of the growth constraint

When PR is not an exact relaxation, it is useful to
constrain T from below using an underestimator of the
kinetics. To retain tractability, the underestimator should
be a convex function. There are multiple ways to do this,510

such as using lift-and-project relaxations [46] or convex
envelopes [19].

In this section, we design simple underestimators using
bounds of the form S ≤ S ≤ S, X ≤ X ≤ X, and T ≤
T ≤ T . These bounds could be from Lemma 2, which515

makes no assumption about the growth rate except that it
is nonnegative, and therefore applies for both Monod and
Contois. Alternatively, such bounds might be implied by
operational constraints in (4f).

We first consider the Contois growth rate, the kinetics
of which are increasing in both Si and Xi. Let

T i =
µmaxSiXi

KXi + Si

, T
S

i =
µmaxSiXi

KXi + Si

, T
X

i =
µmaxSiXi

KXi + Si

.

For each i ∈ N , we have

Ti − T i ≥ max

{
T

S

i − T i

Si − Si

(Si − Si) ,

T
X

i − T i

Xi −Xi

(Xi −Xi)

}
. (22)

The first argument of the maximum is a linear interpolator520

with X fixed at its lower bound, and the latter with S fixed
at its lower bound.

Now consider the Monod growth rate. In the exact
case, an underestimator is given by the convex envelope,
(15). Under the constant biomass approximation in Sec-
tion 4.2.1, X = Xc, the kinetics only depend on S, and we
can again use the linear interpolator. Let T and T be as
in (14). For each i ∈ N , we have

Ti − T i ≥
T i − T i

Si − Si

(Si − Si) . (23)

6.2. Multiple time periods

The steady state approximation in Section 2.2 is not
appropriate if the system is undergoing a transient. In-525

stead of setting the gradostat’s derivatives to zero, we now
replace them with numerical approximations that are lin-
ear in the variables.

Suppose that there are multiple time periods, indexed
by the set T and each of length ∆. We index each time-
varying-quantity by (t), e.g., S(t) is the substrate concen-
tration at time t. The objective is to maximize biogas over
all time periods: ∑

t∈T
αtF(T (t)), (24)

where α ∈ (0, 1) is a discount factor.
Let Dt be a numerical approximation of the derivative

at time t. For example, in the case of Euler’s explicit
method with time step ∆, Dt[S] = (S(t+1)−S(t))/∆. The
substrate and biomass balances, (4c) and (4d), become

VDt[S] = −1

y
V T (t) + (M + L)S(t) + CSin(t) (25a)

VDt[X] = V T (t) + (M + L)X(t) + CX in(t) (25b)

for t ∈ T . Note that there are more accurate choices for530

Dt, e.g., higher order Runge-Kutta schemes [48].
The network, as parametrized by M , L, and C, is con-

stant, but could easily be made time-varying as well. The
remaining constraints in PR are simply enforced for all
t ∈ T .535

Below are three scenarios modeled by this setup.

• M , L, and C depend on a single vector of binary
variables, η. This corresponds to designing the sys-
tem, e.g., adding new pipes, so that its performance
is optimized for a trajectory, e.g., a sequence of op-540

erating points in a representative day.

• M(t), L(t), and C(t) depend on a sequence of vectors
of binary variables, η(t), t ∈ T . This corresponds to
dynamically reconfiguring the system through time,
e.g., choosing which valves to open or which fixed545

speed pumps to run in each time period.

• M , L, and C are constant. This corresponds to op-
timizing the trajectory of the substrate and biomass
over time, subject to other operational constraints.
The physical decisions, Sin(t) and X in(t), t ∈ T ,550

represent schedules of substrate and biomass inflow
concentrations.

The last two scenarios could be implemented via receding
horizon control [49]. In this case, only the decisions cor-
responding to the first time period are implemented. The555

time horizon is then pushed forward by one period, the op-
timization is resolved, the ‘new’ first period’s decisions are
implemented, and so on. This accommodates uncertainty
by allowing the user to update the parameters, e.g., inflows
and constraints on Sin(t) and X in(t), as new information560

becomes available.

7. Examples

We implement PRC, PRMX , and PRME on numerical
examples. We solve each optimization using the parser
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CVX [50] and the solver Gurobi [10]. All simulations565

were run on a personal computer from 2014 with a 1.4
GHz dual-core processor. Table 1 summarizes the fea-
tures of each optimization model. The last column refers
to whether or not the corresponding kinetics satisfy the
derivative condition in Assumption 1.

Model Growth rate Class Assump. 1
P Any NLP
PR Any NLP
PRC Contois (MI)SOCP Usually
PRM Monod NLP Usually
PRMX Monod, constant X (MI)SOCP Always
PRME Monod (MI)SOCP Unlikely

Table 1: Summary of optimization models

570

We measure the quality of the approximations in terms
of the relative difference between the kinetics and the vari-
able T :

E = max
i

|r(Si, Xi)− Ti|
r(Si, Xi)

.

If Theorem 1 holds, then E will be zero for PRC and/or
PRMX . We expect E to usually be positive for PRME be-
cause exactness is never guaranteed.

7.1. Variable flows

In these examples, the flows and diffusions depend on575

binary variables, as described in Section 5. In this case,
PRC, PRMX , and PRME are MISOCPs. MISOCPs are NP-
hard, but can be solved at moderate scales.

We first state the models in full. The objective in each
case is to maximize biogas production, (3), with M = N .580

The constraints are as follows.

• A maximum budget,
∑

ij∈J cijλij ≤ B, where cij is
the cost to install a pipe from tank i and j, and B
is the budget. This corresponds Ω in (4f).

• For each i ∈ N , the SOC growth constraint. If PRC,585

this is (9); if PRMX , (12); if PRME, (15). In the case
of PRMX , X = Xc, and the other constraints on X
are dropped.

• For each i ∈ N , a linear underestimator of the growth
constraint. If PRC, this is (22); if PRMX , (23).590

• Binary and linear disjuctive constraints on the flows
and diffusions. For each ij ∈ J , (16), (17), (18),
(19). Note that we do not include (20) because Sin

and X in are constant in these examples.

• Flow, substrate, and biomass balances. For each i ∈595

N , (21).

7.1.1. Four tanks

We first consider a small, four-tank example. The
growth rate parameters (Monod and Contois) are µmax =
K = y = 1. There is no base network, i.e., Q0 = d0 = 0.600

All pairs of tanks are candidates for new pipes in either
direction, so that there are twelve binary variables. For all
ij ∈ J , Q1

ij = 1 and d1ij = 0.3. The cost of each new pipe
is cij = 1, and the budget is B = 4. The tank parameters
are V = diag[1 2 3 4]>, Qout = [2 1 3 2]>, Sin = [1 3 1 2]>,605

and X in = [4 3 2 1]>. In PRMX , we set Xc = X in. We set
Γ = 50 in all disjunctive constraints.

The results are summarized in Table 2. The last col-
umn shows the new pipes specified in each solution, ex-
pressed in terms of the pairs of tanks they link. PRC and610

PRMX are both exact, as predicted by Theorem 1, and
both result in the same pipe additions. PRME is not exact
and has a slightly different solution.

Model Time (s) E Objective New pipes
PRC 6.3 0 8.81 21, 23, 24, 43
PRMX 2.8 0 10.21 21, 23, 24, 43
PRME 5.3 2.19 15.87 21, 23, 24, 41

Table 2: Results for the four-tank system

We now change the objective from
∑4

i=1 ViiTi to
∑4

i=2 ViiTi,
and leave all other parameters the same. In this case,615

Theorem 1 does not apply. The results are summarized
in Table 3. The pipe additions are unchanged, but now

Model Time (s) E Objective New pipes
PRC 6.1 0.66 7.89 21, 23, 24, 43
PRMX 2.8 0.49 8.55 21, 23, 24, 43
PRME 5.2 2.15 14.62 21, 23, 24, 41

Table 3: Results for the four-tank gradostat with modified objective

neither PRC nor PRMX are exact. In both, T1 binds with
its underestimator, (22) or (23), and Ti = r(Si, Xi) for
i = 2, 3, 4. This indicates that the assumptions of Theo-620

rem 1 are somewhat rigid, and that when they are violated,
inexactness tends to occur locally.

7.1.2. n tanks in a wheel

We now look at a larger example to see how the MIS-
OCPs scale, using PRC as the representative model.625

The gradostat has n tanks arranged in a wheel. The
first tank is a central hub, and the other n − 1 tanks are
around rim. There is no base network. A pipe can be
installed in either direction from the hub tank to any rim
tank, i.e., 1i ∈ J and i1 ∈ J for i ∈ N \ 1. A pipe can630

also be installed in either direction between each rim tank
and its neighbor, i.e., 2n ∈ J , n2 ∈ J , and i, i + 1 ∈ J
and i + 1, i ∈ J for i ∈ N \ {1, n}. If there are n tanks,
then there are 4n− 1 binary variables.

We consider an easy case and a hard case. In the easy635

case, for i ∈ N , the volumes are Vii = i and the outflows
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Qout
i = 1. In the hard case, they are Vii = 1 + (i mod 6)

and Qout
i = 1 + (i mod 7). The other parameters, which

are the same in both cases, are Sin
i = i, X in

i = n − i + 1,
and maximum budget B = 1.5n, and the rest are the same640

as in the previous example.
Figure 1 shows the results. In the easy case, the com-

putation time increases roughly linearly, taking around a
minute with with 60 tanks and 236 binary variables. In
the hard case, the computation time increases exponen-645

tially, and more than an hour is needed with 11 tanks and
44 binary variables.
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80S
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Figure 1: Computation time versus number of binary variables for
PRC, an MISOCP, on a wheel gradostat. The hard case is shown
on top and the easy case on bottom. Note that the top plot has a
logarithmic y-axis.

The reason for the difference is that in the easy case,
tanks with larger volumes are significantly better repre-
sented in the objective. This enables the solver to rapidly650

eliminate solutions with many pipes added to the smaller
tanks, whereas in the harder case, the solver must search
the feasible set more evenly. PRC is exact in all cases.

7.2. Constant flows and multiple time periods

We now implement PRC on an example with multiple655

time periods, as described in Section 6.2. The water flows
and diffusions are constant, which makes PRC an SOCP.
Our intention here is to demonstrate that this version of
the problem can be solved at very large scales. This en-
ables us to deal with larger systems and, as in this example,660

to choose the time step small enough that the continuous
dynamics of the gradostat are well-represented.

There are four tanks, all with unit volume and growth
rate parameters. The inflow vector is Qin = [2 1 1 1]>.
The flows between tanks are: Q12 = 1, Q23 = 2, Q34 = 1,665

Q42 = 1, and the diffusion is d = 0.3Q.
There are τ = 1000 time periods of length ∆ = 1.

We approximate the derivative with Euler’s method. The
inflow substrate concentrations, shown in the top plot of

Figure 2, are Sin
1 (t) = 1 + sin(4πt/τ), Sin

2 (t) = 0,

Sin
3 (t) =

{
1/2, τ/4 < t ≤ 3τ/4
0, otherwise

,

and Sin
4 (t) = 1 + cos(4πt/τ) for t ∈ T .

The objective is to maximize the cumulative biogas
production over all time periods, (24). The constraints
are listed below.670

• At each time t ∈ T , the total biomass added must
satisfy Qin>X(t) ≤ 3.

• For each i ∈ N and t ∈ T , the SOC Contois growth
constraint, (9).

• At each time t ∈ T , the dynamic substrate and675

biomass balances, (25). These constraints couple the
variables in consecutive time periods.

• As boundary conditions we require that S(1) = S(τ+
1) and X(1) = X(τ + 1).

There are roughly 16,000 variables in this problem.680

The computation time was 281 seconds, of which only 1.49
were taken by the solver and the rest by the parser. The
optimal objective was 1140.18 units of biogas mass.

Figure 2 shows Sin(t), which is as specified above, and
the optimal X in(t). Figure 3 shows the optimal S(t), X(t),685

and T (t).
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Figure 2: Sin(t) and Xin(t).

X in(t) is zero in tanks 2 and 3, except after Sin
3 (t)

jumps up to 1/2 and briefly when it drops back to zero.
Notice that ∆ is small enough for X in(t) and the curves in
Figure 3 to capture the oscillations caused by these tran-690

sitions.
While Sin

3 (t) = 1/2, the substrate, biomass, and pro-
duction in all tanks except the first jump, although slightly
in tanks 2 and 4. This is because the additional substrate
injected into tank 3 reaches tanks 2 and 4 through the695
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Figure 3: S(t), X(t), and T (t). Note that this figure shares the
legend of Figure 2.

flows. Tank 1 only receives substrate and biomass from
tank 2 through a small diffusive coupling. For this reason
it is not noticeably affected by the change in Sin

3 (t) and
appears to coincide with the horizontal axis.

The solution was exact in all times periods. How-700

ever, we observed that when there were fewer time pe-
riods and a larger time step, the solution was not always
exact, indicating that exactness depends on the discretiza-
tion scheme. We also remark that trajectories produced
by PRC do not necessarily lead to better stability or distur-705

bance rejection. Such control objectives could be incorpo-
rated through a tracking objective and a receding horizon
implementation. Characterizing the exactness of dynamic
optimizations with different objectives is a topic of future
work.710

8. Conclusions

We have formulated SOCPs for optimizing the grado-
stat with Contois or Monod growth rates. The SOCPs
are convex relaxations, which we proved are exact under
simple conditions. We also gave linear underestimators,715

which are useful when the relaxations are not exact, and
a dynamic extension in which the derivatives are replaced
with numerical approximations instead of set to zero.

We now informally discuss some directions of future
work. More physical features could be incorporated, in-720

cluding continuous variable flows via convex relaxations,
recirculation of biomass, multi-reactions with several sub-
strates, and other growth rates such as Teissier and Hal-
dane [36]. Such additional detail is necessary to describe
most real applications, e.g., wastewater treatment. The725

constraints of the SOCPs could be used for a number of
other purposes, such as state estimation, setpoint track-
ing, and receding horizon control. As in this paper, the
KKT conditions could be used to identify conditions un-
der which each of these modifications is exact.730
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