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 10 

Abstract 11 

Conservation agriculture has been developed as a means to improve the sustainability of 12 

agricultural systems and reduce drawbacks of conventional agricultural practices. Cropping 13 

practices can have a large influence on soil properties such as water retention. Proper tools are 14 

needed to assess and model effects of conservation agriculture on soil properties. As measuring soil 15 

water retention is expensive and time consuming, pedotransfer functions (PTFs) are now commonly 16 

used to predict them. The objectives of this study were to (i) present a new dataset of conservation 17 

agriculture data, (ii) assess performances of existing PTFs in predicting soil water retention of soils 18 

under conservation agriculture and (iii) develop new specific PTFs to predict water retention in 19 

conservation agriculture more accurately. We used data collected only in fields under conservation 20 

agriculture in France to evaluate several published PTFs with three evaluation criteria (RMSE, 21 

prediction bias (ME) and Nash-Sutcliffe Efficiency (EF)). We then developed new PTFs using three 22 

methods − multiple linear regression, regression tree and random forest − to predict soil water 23 

content at matric heads of -100 (θ100, field capacity for sandy soils), -330 (θ330, field capacity for 24 

other soils) and -15 000 cm (θ15 000, wilting point). Soil tillage, presence of a cover crop, rotation 25 

length and previous reduced/no tillage were used as predictors in addition to basic soil properties 26 

for regression trees and random forests. The quality of prediction (RMSE, ME and EF) was 27 

calculated for each new PTF using a cross-validation procedure. Generally, predictions of wilting 28 
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point had lower absolute error than those of sandy-soil field capacity (RMSE = 0.044 and 0.066 29 

cm3/cm3, respectively). EF was usually negative for all water contents. The cross-validation 30 

performance of the new PTFs was similar for multiple linear regression (RMSE: 0.028, ME: 0.000, 31 

EF: 0.34 for θ100) and random forest (RMSE: 0.027, ME: 0.000, EF: 0.36 for θ100), and generally 32 

worse for regression tree (especially EF). Multiple linear regression that did not consider cropping 33 

practices performed as well as random forest and thus did not identify any major influence of 34 

agricultural management on predicted water content. Future research on developing PTFs should 35 

focus on identifying more relevant predictors. 36 

 37 

Keywords: soil water content, pedotransfer functions, available water capacity, soil tillage, linear 38 

regressions, regression trees, random forests 39 

 40 

1. Introduction 41 

Conservation agriculture was developed to enhance the sustainability of agricultural systems 42 

and reduce drawbacks of conventional agriculture, especially soil degradation due to erosion 43 

(Hobbs et al., 2008). Conservation agriculture combines three main interrelated soil conservation 44 

techniques: (i) little or no soil disturbance, (ii) permanent soil cover by crop residues and/or living 45 

cover crops and (iii) diversification of plant species (FAO, 2016). Interactions among these three 46 

techniques lead to complex and interrelated modifications in soil physical, chemical and biological 47 

properties. Considering these changes is crucial to assess performances of such agricultural systems 48 

properly. However, studies of impacts of conservation agriculture on soil properties show many 49 

inconsistencies, especially for soil hydraulic processes (Green et al., 2003; Strudley et al., 2008; 50 

Verhulst et al., 2010). 51 

Effects of soil cultivation practices on soil properties has received much research attention in 52 

recent decades, but clear trends have not been established due to differences in location, soils and 53 

agricultural practices (Green et al., 2003; Strudley et al., 2008). Tillage tends to decrease bulk 54 
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density and increase macroporosity, thus increasing the saturated and near-saturated hydraulic 55 

conductivity of the tilled layer. These effects are, however, strongly time-dependent and usually 56 

disappear rapidly after tillage (Mapa et al., 1986), due to natural soil reconsolidation caused by 57 

wetting and drying cycles (Ahuja et al., 1998). Simultaneously, tillage interrupts macropore 58 

connectivity between the soil surface and the untilled deeper soil, thus decreasing water movement 59 

throughout the entire soil profile (Cameira et al., 2003). Conversely, untilled soils have higher bulk 60 

density and greater pore connectivity (Gozubuyuk et al., 2014). Cover crops may (partially) 61 

counterbalance negative effects of no tillage on bulk density by, for example, creating stable 62 

biopores through their root development during the growing season (Williams and Weil, 2004; 63 

Abdollahi and Munkholm, 2014). Moreover, after cover crop destruction, the dead residues form a 64 

mulch that physically protects the soil surface from crusting (Baumhardt and Lascano, 1999). 65 

Maintaining crop residues on the soil surface also leads to accumulation of soil organic matter in 66 

topsoil layers (Kay and VandenBygaart, 2002) and improves aggregate stability (Devine et al., 67 

2014). In parallel, increased macrofauna activity (especially of earthworms) in conservation 68 

agriculture systems forms biomacropores that improve water infiltration (Shipitalo et al., 2000). 69 

Finally, soils under conservation agriculture also tend to have a larger proportion of finer pores 70 

(micropores) (Hill et al., 1985). These changes in pore-size distribution could improve the storage 71 

of plant-available water (Bescansa et al., 2006). 72 

The variety and complexity of the counteracting effects of conservation agriculture on soil 73 

properties call for developing new tools to properly assess and model these effects. Development of 74 

water- and solute-transport models has received much research attention in recent decades. The lack 75 

of accurate data on soil hydraulic properties, especially for soils under conservation agriculture, 76 

however, hinders the use of models, as they require water-retention and hydraulic conductivity data 77 

as inputs (Wösten et al., 1999). Despite significant improvements in measuring techniques, 78 

researchers agree that directly measuring water-retention curves remain expensive, time consuming 79 
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and impossible at a large scale (Wösten et al., 2001; Vereecken et al., 2010; Román Dobarco et al., 80 

2019). 81 

Predicting hydraulic properties may be accurate enough to be used in water- and solute-82 

transport models (Wösten et al., 2001). One promising solution to managing the scarcity of 83 

hydraulic data is to use pedotransfer functions (PTFs), which relate easily available soil properties 84 

to properties that are more difficult to measure, such as hydraulic ones (Al Majou et al., 2008b). 85 

Many PTFs have been developed, and two main groups of water-retention PTFs can be 86 

distinguished: “point” PTFs, which predict volumetric water content at a given matric head, and 87 

“parametric” PTFs, which predict parameters of the water-retention curve as described by van 88 

Genuchten (1980). In addition, depending on the type of input data used, PTFs can be further 89 

divided into “class-PTFs” and “continuous-PTFs”. Class-PTFs predict mean volumetric water 90 

content at a given matric head or mean water-retention curve parameters using information such as 91 

textural class, type of horizon and bulk density class (Al Majou et al., 2008b; Bruand et al., 2004). 92 

Continuous-PTFs are regression equations that predict volumetric water content at a given matric 93 

head or water-retention curve parameters using continuous input variables such as granulometric 94 

fractions, bulk density and soil organic carbon content (Al Majou et al., 2008a; Rawls et al., 1982). 95 

More recently, novel machine-learning methods have been used to develop PTFs based on 96 

regression trees (i.e. “tree-PTFs”) (Toth et al. 2015). 97 

Although PTFs have significantly facilitated widespread application of water- and solute-98 

transport models at the field scale and larger scales (Vereecken et al., 2010), some of their limits 99 

have been identified. Several authors suggested that using information in addition to the commonly 100 

used sand, silt and clay contents, bulk density and organic matter could improve prediction accuracy 101 

(Vereecken et al., 2010). Water contents at selected matric heads (Rawls et al., 1983; Al Majou et 102 

al., 2008a) or terrain attributes (Obi et al., 2014) have been proposed as additional information. 103 

Land cover (Nemes et al., 2003) or soil management (Tóth et al., 2015) have also been proposed, 104 

but they may create PTFs that are less applicable than those that use only soil properties as 105 
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parameters. Whether the available PTFs apply equally to soils under conservation or conventional 106 

agriculture has not yet been explored. The type of agriculture under which the soils used to develop 107 

a particular PTF is rarely specified, but most PTFs seem to have been developed from soils under 108 

conventional agriculture. To our knowledge, no one has attempted to develop specific tools to 109 

predict water content in conservation agriculture systems. Chen et al. (1998) did observe that the 110 

relevant properties for describing hydraulic conductivity differed between tilled and untilled soil, 111 

which highlights the importance of soil management and supports the need for additional data and 112 

specific tools to predict water dynamics in soils under conservation agriculture. 113 

The aims of this study were to (i) present a dataset of water retention data from soils under 114 

conservation agriculture (ii) assess performances of existing PTFs in predicting soil water retention 115 

of these soils and (iii) develop new PTFs using several statistical techniques to improve 116 

representation of the hydraulic properties of soils under conservation agriculture. 117 

 118 

2. Materials and methods 119 

2.1 Description of the dataset on conservation agriculture 120 

Information on farming operations and soil chemical and physical characteristics were 121 

collected from 2009-2011 in 47 fields under conservation agriculture in the central basin of the 122 

Occitanie region in south-west France. Soil types there are mainly hypereutric cambisols, luvisols 123 

and calcaric cambisols (IUSS Working Group WRB, 2015). All fields had been cultivated using 124 

conservation practices since 1987-2003. Four types of tillage were used: deep tillage (DT), with a 125 

working depth >15 cm (n=7 fields); reduced tillage (RT), with a working depth of 5-15 cm (n=18); 126 

strip-till (ST), with tillage restricted to the future row (n=3); and no tillage (NT) (n=19). In addition 127 

to tillage, cover crops were used on 35 of the fields. Four classes of crop rotation were defined: 128 

rotation length > 4 years (n=24); > 2 years to ≤ 4 years (n=15); ≤ 2 years (n=2); and not fixed (n=6). 129 
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In each field, soil samples were collected from the topsoil (0-30 cm) and then divided into 130 

three layers: 0-10 cm (47 samples), 10-20 cm (47 samples) and 20-30 cm (46 samples). Several 131 

physicochemical properties were determined using international and French norms (NF) published 132 

by the French national organization for standardization (AFNOR) from one bulk sample per layer. 133 

The granulometric distribution of five decarbonated fractions (clay (<2 µm), fine silt (2-20 µm), 134 

coarse silt (20-50 µm), fine sand (50-200 µm), coarse sand (200-2000 µm)) was determined using 135 

NF X31-107. Soil samples from the fields were concentrated in the silty and clayey zones of the 136 

texture triangle (Fig. 1). NF ISO 10694 was used to determine carbon content and estimate organic 137 

matter content. NF ISO 10390 was used to determine pH (in water). NF ISO 11263 was used to 138 

determine phosphorus content (P2O5) using the Olsen method. NF ISO 10693 was used to 139 

determine total calcium carbonate content. Cation exchange capacity (CEC) and exchangeable CaO, 140 

Na2O, K2O and MgO were determined using NF ISO 23470. When CaO content was found to be 141 

saturated (i.e. not quantifiable by this method), it was calculated as CEC minus the sum of Na2O, 142 

K2O and MgO. The Kjeldahl method was used to determine nitrogen content. 143 

In addition, for each topsoil layer, soil bulk density was determined from undisturbed soil 144 

samples collected with 250 cm3 cylinders (8 cm in diameter, 5 cm high), and the soil water-145 

retention curve was determined from undisturbed soil samples collected with 50 cm3 cylinders (5 146 

cm in diameter, 2.5 cm high). Bulk density was measured in triplicate for each layer. Soil water 147 

retention was usually measured in duplicate or triplicate (rarely, only one sample was available) and 148 

recorded in the dataset as a mean value. Volumetric water content (θ, cm3/cm3) was measured 149 

successively at 0 (θ0), -100 (θ100), -330 (θ330), -3300 (θ3300) and -15 000 (θ15 000) cm of matric head. 150 

θ0 was measured after the cylinders were saturated for two days on a tray filled with glass beads 151 

(diameter ≈ 0.45 μm). The other water contents were measured using pressure plates. The resulting 152 

data were used to fit water-retention curve parameters using the RETC program (van Genuchten et 153 

al., 1991) based on the van Genuchten (1980) equation (eq. 1): 154 
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  (1) 155 

where  [cm3/cm3] and  [cm3/cm3] are the residual and saturated volumetric water content ( ) 156 

respectively,  is matric head [cm], and  [cm-1]  [-], and  [-] are shape parameters of the curve. 157 

The fit of the curves to the data had a mean R² (± 1 SD) of 0.98 ± 0.02. 158 

Finally, plant available water capacity (AWC, in mm) was calculated as follows: 159 

    (2) 160 

where θFC and θWP are volumetric water content at field capacity and permanent wilting point 161 

(cm3/cm3), respectively, and H is the depth of each of the three layers (here, 100 mm). 162 

According to the literature, θFC can equal either θ100 (for sandy soils) or θ330 (for other soils), and 163 

θWP equals θ15 000 (Hillel, 1971). Both AWC100 and AWC330 were considered for the two definitions 164 

of θFC. However, PTFs are usually used to predict volumetric water content at several matric heads 165 

rather than AWC. The rest of the study thus focused only on the relation between θ100, θ330, θ15 000 166 

and basic soil properties and/or cropping practices. 167 

2.2 Analysis of the dataset 168 

Principal component analysis (PCA) was performed to explore relations among the 169 

explanatory variables, using the “FactoMineR” package of R software (version 3.6.1) (R Core 170 

Team, 2019) using only soil properties. Soil water contents were used only as supplementary 171 

variables. Spearman correlations were calculated between explanatory variables and soil water 172 

content at different matric heads, using the “psych” R package. Unbalanced Type II analysis of 173 

variance (ANOVA) was performed to investigate effects of soil tillage, cover-crop presence, 174 

rotation length and soil depth on soil water contents, using the “car” R package. 175 
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2.3 Published pedotransfer functions 176 

Twenty nine existing PTFs that predict θ100 or θ330, and/or θ15 000 (Table 1) and eight PTFs 177 

that predict three parameters (n, α, and θs) of the van Genuchten (1980) water-retention curve (Eq. 178 

1, Table 2) were taken from the literature and applied to data for the 140 soils in this study. The 179 

study used class-PTFs (Cl), continuous-PTFs (Co) and tree-PTFs (Tr). PTFs were calibrated using 180 

several published databases (Table 1). Of the 26 PTFs that predict θ100, 13 were Cl and 13 were Co. 181 

Of the 28 PTFs that predict θ330, 13, 13 and 2 were Cl, Co and Tr, respectively. Of the 27 PTFs that 182 

predict θ15 000, 13, 12 and 2 were Cl, Co and Tr, respectively. These published PTFs use different 183 

variables as predictors, such as texture/granulometric fractions, bulk density and organic carbon 184 

content. Two PTFs (M2_Co and M3_Co) also use θFC and/or θWP as predictors. However, as a water 185 

content cannot be used to predict itself, M2_Co and M3_Co were not used to predict θ330 or θ15 000. 186 

Most publications identified in the literature (Table 1) also had PTFs for subsoil horizons (> 30 cm). 187 

We used only the published PTFs developed for the topsoil as the dataset contained only topsoil 188 

data. All PTFs were applied to soil data in our dataset to predict θ100, θ330, θ15 000, n, α and θs. 189 

2.4 Development of new pedotransfer functions 190 

Three types of PTFs, which predicted θ100, θ330 or θ15 000, were developed. Redundant properties 191 

(calculated from another property), such as organic matter content and the C:N ratio, were removed 192 

from the input data. Table 3 provides summary statistics of the variables that were used for each of 193 

the following methods. 194 

2.4.1 Multiple linear regression 195 

 We developed multiple linear regressions using stepwise regression with forward selection, 196 

which could include all soil properties as predictors. In this procedure, the Akaike information 197 

criterion (AIC) (Akaike et al., 1998) was used to determine which set of predictors predicted water 198 

content best. AIC is calculated at each step of the stepwise regression to determine the improvement 199 



Soil and Tillage Research 

9 

 

brought by adding the new predictor. The “best” model is the one that helps decrease AIC the most. 200 

The procedure stops when no more improvement can be made by a new predictor or when all 201 

predictors are included. 202 

2.4.2 Regression tree 203 

Regression tree methods consist of recursive binary partitions of a dataset. At each node, 204 

observations are split according to a decision rule based on only one predictor. Splitting continues 205 

until all of the subsets (i.e. “terminal nodes” of the tree) are as homogeneous as possible with 206 

reference to the response variable (Hastie et al., 2009; Prasad et al., 2006). Splitting stops when the 207 

subset reaches a minimum size of 5 data points or when no more improvement can be made. The 208 

criterion used to decide which predictor splits the data best is based on ANOVA. First, a maximum 209 

tree is grown that likely overfits the training data. To reduce the size of the tree and avoid 210 

overfitting, the tree is then pruned using cost-complexity pruning (10 cross validation). Briefly, for 211 

each pair of terminal leaves with a common parent node, the error in classifying the testing dataset 212 

is calculated to see whether the sum of squares would be smaller by turning the parent nodes into a 213 

terminal leaf. The procedure is repeated until the pruning does not decrease the error in the testing 214 

data. The resulting pruned tree is usually smaller than the initial maximum tree, but in theory, 215 

pruned trees can range from the maximum size to minimum size (no partitions, no tree). The size of 216 

the pruned tree can depend on the cross-validation method used. The pruned tree to be used as a 217 

model for each water content was then randomly selected. The response variable was volumetric 218 

water content at a given matric head, and the terminal nodes of the tree represented mean water 219 

content in the partitions. The “rpart” R package (Therneau and Atkinson, 2019) was used to build 220 

the trees. 221 

2.4.3 Random forest 222 

Like for regression tree, random forest is also based on recursive partitions of the data. The 223 

difference is that a forest of multiple decorrelated trees is grown by using a randomly bootstrapped 224 
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subset of data and a random subset of predictors (Hastie et al., 2009; Ließ et al., 2012). The 225 

“randomForest” R package (Liaw and Wiener, 2002) was used to build forests. The forest consisted 226 

of 500 trees, and six of 18 variables were randomly selected to grow each tree. Like for regression 227 

tree, the minimum size of a terminal node was 5 data points. Unlike for regression tree, however, a 228 

single tree cannot be extracted from the forest, but the relative importance of the predictors can be 229 

determined and used to help interpret the results. The relative importance of predictors was 230 

estimated according to how much worse the prediction would be if the data for that predictor were 231 

permuted randomly (Prasad et al., 2006). 232 

2.5 Evaluation of pedotransfer functions 233 

PTFs were evaluated by comparing predicted values to observed values in the dataset according 234 

to three criteria: root mean squared error (RMSE), mean error (ME) (also called “bias”) (Bruand et 235 

al., 2003) and Nash-Sutcliffe efficiency (EF; Nash and Sutcliffe, 1970). They are calculated as 236 

follows: 237 

     (3) 238 

     (4) 239 

      (5) 240 

where  are the values predicted by the PTF,  are the observed values in the conservation 241 

agriculture dataset,  are the input data (basic soil properties) needed by PTF ,  is the mean of 242 

observed values and N is the number of data points. 243 

RMSE = 0 indicates perfect prediction of the observed data, while the ME indicates whether the 244 

PTF overpredicts (positive ME) or underpredicts (negative ME) the observed data. The closer ME 245 

is to 0, the lower the bias is. EF=1 indicates perfect prediction of the observed data, while EF<0 246 
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indicates prediction worse than the that using the mean of observed values (for which EF=0). These 247 

criteria have no thresholds that can be used to conclude whether a prediction is good or not; 248 

nevertheless, to help interpret the results, we arbitrarily defined ranges to indicate satisfactory 249 

prediction of AWC: less than 0.020 cm3/cm3 for RMSE and ME, and greater than 0.50 for EF. 250 

 The three criteria were used to assess the performance of the published and new PTFs. For 251 

published PTFs,  corresponded to predictions using basic soil properties in the conservation 252 

agriculture dataset as input data, assessed with the criteria RMSEP, MEP and EFP. For the new 253 

PTFs, two groups of criteria were used to evaluate their performance. One group of three criteria 254 

(RMSEA, MEA, EFA) evaluated the quality of adjustment to the data. In this case,  255 

corresponded to predictions by the new PTF using basic soil properties in the same dataset from 256 

which they had been developed. The second group of criteria (RMSECV, MECV, EFCV) evaluated the 257 

cross-validation quality of prediction. As the dataset contained too few soils (N=140) to split out an 258 

independent validation dataset, leave-one-out cross validation (Hastie et al., 2009) was performed 259 

instead. In it, the dataset was split 140 times into two datasets of 139 and 1 soils, respectively. The 260 

140 datasets of 139 soils were used to calibrate 140 new PTFs. The 140 predictions were then 261 

compared to their corresponding value in the dataset of observed values. 262 

3. Results 263 

3.1 Preliminary analysis of the dataset 264 

AWC100 and AWC330 (in the 0-10, 10-20 and 20-30 cm soil layers) ranged from 10.4-28.6 mm 265 

and 4.2-22.9 mm, respectively, depending on the soil layer. Both varied little as a function of depth, 266 

tillage or cover-crop presence (Fig. 2). However, differences were larger as a function of rotation 267 

length (Fig. 2d, h). Mean AWC100 was ca. 20, 18 and 16 mm when the rotation length was variable, 268 

medium/long and short, respectively. Despite small differences, statistical analysis demonstrated a 269 

significant effect of the three cropping practices (i.e. tillage, cover-crop presence and rotation 270 
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length) (except for tillage for AWC330) and of depth for both AWCs. Both AWC100 and AWC330 271 

were highest (by a small degree) in the 0-10 cm layer (Fig. 2a, e). 272 

The plane defined by the first two axes of the PCA of basic soil properties explained 57% of the 273 

variance of the dataset (Fig. 3a). Of the 14 basic soil properties, only 8 contributed significantly (i.e. 274 

more than if each one had contributed equally (i.e., 7%)) to the first two axes. Strong correlations 275 

were found between CEC, CaO content and clay content ( , 276 

), which contributed the most to the first two axes due to their large 277 

contributions to the first axis (17%, 16% and 16%, respectively). Nitrogen, organic carbon and 278 

phosphorus contents contributed the most to the second axis (22%, 21% and 19%, respectively). 279 

Strong to very strong correlations were found between organic carbon, nitrogen and K2O contents 280 

( , ). Thus, soil layers above the second axis of the PCA had 281 

higher organic carbon, nitrogen and phosphorus contents, which was related to their depth, as most 282 

soil layers above the second axis were 0-10 cm deep (Fig. 3b). This is consistent with the low 283 

mechanical disturbance of the soil surface under conservation agriculture, which results in a thin 284 

horizon 5-10 cm deep that can exhibit different soil properties, especially organic matter. When 285 

projected as supplementary variables on the plane, water contents were poorly represented (Fig. 3a), 286 

which suggested that none of the basic soil properties were strongly related to them, as confirmed 287 

by correlation coefficients. The strongest significant correlations for θ100 were with clay content 288 

( , bulk density ( , sand content (  and CEC ( . Correlations for 289 

θ330 were weaker, not exceeding 0.3 with clay content or -0.3 with bulk density. Correlations for 290 

θ15 000 were the strongest among those for the three water contents: 0.6 with clay content, CEC and 291 

CaO content. 292 

We plotted θ100, θ330 and θ15 000 vs. cropping practices, rotation length, soil tillage and cover-293 

crop presence to identify the influence of conservation agriculture on water contents. We also 294 

investigated the influence of depth, as the PCA indicated a difference between the 0-10 cm layer 295 
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and the other two layers. There were no clear differences between θ100 or θ330 as a function of 296 

agricultural practices, except for rotation length, with water content lower with variable rotations 297 

and higher with short rotations, compared to long or medium rotations (Fig. 4a, b). ANOVA 298 

confirmed a significant effect of rotation length on θ100 (P < 0.001) and θ330 (P < 0.01). For θ15 000, 299 

water content was lower under strip-till than under the other types of tillage and had a trend similar 300 

to those of θ100 and θ330 for rotation length (Fig. 4c, d). All three cropping practices had a significant 301 

effect on θ15 000 (P < 0.01 for soil tillage and P < 0.001 for cover-crop presence and rotation length). 302 

Unlike for AWC, depth had no significant effect on any of the water contents. 303 

3.2 Evaluation of the performance of published pedotransfer functions 304 

3.2.1 Prediction of volumetric water content at selected matric heads  305 

For prediction of θ100, RMSEP varied from 0.034 cm3/cm3 (M3_Co) to 0.262 cm3/cm3 306 

(M2_Co) (Table 4). These extreme values were exceptions, however; mean (± 1 SD) RMSEP for 307 

most of the PTFs (22 of 26) was 0.055 ± 0.009 cm3/cm3. Of the 26 PTFs, 24 underpredicted θ100, 308 

with MEP ranging from -0.112 to -0.007 cm3/cm3. The same four PTFs that had extreme values of 309 

RMSEP (M1_Co, M2_Co, M3_Co and M10_Co) had extremely high or low MEP. For EFP, 310 

negative or near-zero values showed that none of the PTFs tested predicted θ100 well. According to 311 

the three criteria, M3_Co, despite having been developed from samples from many locations in the 312 

USA, predicted θ100 the best, but used both θ330 and θ15 000 as predictors. However, the other two 313 

PTFs developed from the same data (M1_Co, M2_Co) predicted θ100 the worst. Among the 314 

remaining PTFs, which used only basic soil properties, eight French Cl PTFs (M7_Cl, M8_Cl, 315 

M12_Cl, M13_Cl, M14_Cl, M19_Cl, M20_Cl, M21_Cl) had better RMSEP (0.046 ± 0.004 316 

cm3/cm3) and MEP (-0.028 ± 0.004 cm3/cm3) than the others. However, ME remained 317 

unsatisfactory. All eight PTFs were Cl that used FAO texture or FAO texture and bulk density as 318 

classes. 319 
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For prediction of θ330, RMSEP ranged from 0.037 cm3/cm3 (M4_Cl) to 0.080 cm3/cm3 320 

(M10_Co) and were thus lower overall than those for θ100. Of the 28 PTFs, 16 overpredicted θ330 321 

(MEP=0.017 ± 0.015 cm3/cm3). The worst MEP (-0.069 cm3/cm3) was an underprediction by 322 

M10_Co (Table 4). Four PTFs (M1_Co, M2_Co, M10_Co and M16_Tr) performed worse than the 323 

others for all three criteria, especially M10_Co, a PTF for topsoil layers developed by Al Majou et 324 

al. (2007). Although the RMSEP and MEP of the other 24 PTFs were lower, their EFP never reached 325 

satisfactory values (≥ 0.5), so their potential use remains limited. 326 

For prediction of θ15 000, RMSEP varied from 0.034 cm3/cm3 (M22_Co) to 0.057 cm3/cm3 327 

(M10_Co) and were thus lower overall than those of the other water contents (Table 4). Of the 27 328 

PTFs, 18 overpredicted θ15 000 (MEP=0.008 ± 0.007 cm3/cm3), but there was no systematic bias. 329 

Overall, two groups of performance were identified. The first, with lower RMSEP, low MEP and 330 

positive EFP, were the eight Co of Román Dobarco et al. (2019) and the Co of Tóth et al. (2015). 331 

This group of PTFs could probably be used with lower risk of poor prediction. Nevertheless, even 332 

though their EFP were positive and much higher than those of the other two water contents, they 333 

still had difficulty reaching the satisfactory threshold. 334 

3.2.2 Prediction of water-retention curve parameters 335 

For predicting θs, RMSEP ranged from 0.035-0.439 cm3/cm3, while MEP ranged from -0.438 to 336 

0.010 cm3/cm3 (Table 5). P2_Co and P4_Co had large errors due to physically impossible values of 337 

θs (close to 0 or even negative). For the other PTFs that predicted θs, RMSEP and MEP had 338 

satisfactory performances, with the best performance by P3_Cl, P7_Co, P8_Co and P9_Co 339 

(RMSEP= 0.037 ± 0.001 cm3/cm3; MEP= 0.023 ± 0.010 cm3/cm3; EFP= -0.43 ± 0.12). Negative EFP 340 

values, however, indicated that none of the PTFs performed better than the mean of observed 341 

values. 342 

For predicting α, the French PTF P3_Cl had particularly poor performance according to all 343 

criteria, and P4_Cl predicted physically impossible values. Thus, the best predictions were obtained 344 
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only with PTFs developed at the European scale, all of which performed similarly. For predicting n, 345 

RMSEP varied from 0.305-0.366. The nine PTFs always underpredicted n (negative MEP), except 346 

for P8_Co, which had the only satisfactory MEP (0.003) and the best RMSEP. The two PTFs 347 

developed from soil samples from France performed slightly worse according to all criteria. 348 

 3.3 Development of new pedotransfer functions  349 

3.3.1 Multiple linear regression 350 

All regressions developed from our dataset (N=140) included clay content and bulk density 351 

as predictors (Table 6). The sign of the coefficients associated with these two variables was similar 352 

in each regression and indicated that water content increased as clay content increased and bulk 353 

density decreased. Regressions for θ100 and θ15 000 also included silt content as predictor, with a 354 

positive effect. Other predictors were included only once in the regressions. Of the 14 potential 355 

predictors, only five, four and four were kept in the θ100, θ330 and θ15 000 regressions, respectively. 356 

The qualities of adjustment and cross-validation did not differ greatly, except for slightly better EFA 357 

than EFCV (Table 7, Fig. 5a). Predictions of θ330 had worse EFA (and EFCV) than the other water 358 

contents did. 359 

3.3.2 Regression tree 360 

The maximum tree grown for θ100, θ330 and θ15 000 had 11, 9 and 8 partitions, respectively, 361 

despite the inclusion of 18 potential predictors. After pruning, the θ330 tree was reduced to the 362 

minimum size (no partitions); thus, the mean of θ330 was the best compromise between a suitable 363 

tree size and low error in predicting the testing data. Consequently, only the trees that predicted θ100 364 

and θ15 000 were evaluated (Fig. 6). The pruned θ100 and θ15 000 trees were split 7 and 4 times, 365 

respectively, and had three predictors in common: rotation length, clay content and bulk density. 366 

Both trees were first split according to rotation length, which split variable length from the other 367 

lengths. No other cropping practices appeared in the pruned trees. According to the criteria, all trees 368 
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had satisfactory quality of adjustment to observed data, with MEA=0 and EFA≥0.5 (Table 7). All 369 

criteria except MEA were slightly higher for θ15 000 than for θ100. The criteria for cross-validation 370 

quality of prediction had similar trends, with low MECV, but the trees did not predict well according 371 

to EFCV (<0.21) (Table 7). Prediction performance thus decreased between adjustment and cross 372 

validation (Fig. 5b). 373 

3.3.3 Random forest 374 

Clay content was one of the two most important predictors in the θ100, θ330 and θ15 000 375 

random forests (importance of 11%, 10% and 21%, respectively) (Fig. 7). Bulk density was the 376 

most important predictor for the θ100 and θ330 random forests (importance of 14% and 11%, 377 

respectively) but not for the θ15 000 random forest (only 5% importance). Sand content also had 378 

significant importance in each random forest, while organic carbon was significant only in the θ100 379 

random forest. Rotation length was one of the most important variables in the θ15 000 random forest 380 

(importance of 12%), but the other cropping practices had low importance. All random forests fit 381 

well to the data, with low RMSEA, MEA=0 and EFA>0.83 (Table 7). The cross-validation quality of 382 

prediction showed satisfactory RMSECV and MECV, but EFCV remained less than 0.5, which 383 

indicated limited performance of the models. Prediction performance thus decreased strongly 384 

between adjustment and cross validation (Fig. 5c). 385 

4. Discussion 386 

4.1 Evaluation of the performance of published pedotransfer functions 387 

Most PTFs (24 of 26) underpredicted soil volumetric water content at -100 cm of matric 388 

head, while no clear trend (overestimation or underestimation) was observed at -330 and -15 000 389 

cm. The RMSEP for predicting volumetric water content were largest for the -100 and -330 cm 390 

matric heads. Although EFP was higher for several PTFs at -15 000 cm, it was never satisfactory (≥ 391 

0.5). Overall, none of the 29 published PTFs provided satisfactory prediction of the volumetric 392 
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water content at the selected matric heads (-100, -330 and -15 000 cm) according to any of the 393 

criteria, which limits their use in soil transport models under conservation agriculture. 394 

The published PTFs may have had low-quality predictions for several reasons. First, differences 395 

in the sampling or measurement protocol between the databases used to develop the PTFs and the 396 

dataset that we used may be a source of uncertainty (Román Dobarco et al., 2019). For example, Al 397 

Majou et al. (2008b) measured water content using undisturbed aggregates (10-15 cm3), whereas we 398 

used undisturbed soil cylinders (50 cm3). Several studies have also highlighted the influence of 399 

sample size on soil water retention and the quality of PTFs developed (Ghanbarian et al., 2015; 400 

Silva et al., 2018). Furthermore, some of these PTFs were developed from large databases collated 401 

in the USA or Europe and covered a wide range of sand, silt, clay and organic matter contents and 402 

bulk densities (Rawls et al., 1982; Tóth et al., 2015). Like Cornelis et al. (2001), we calculated the 403 

ranges of the soil properties of our samples and found that all lay within those in the databases from 404 

the USA and Europe; nevertheless, the predictions were unsatisfactory according to the criteria. 405 

Nemes et al. (2003) suggested that using a small set of relevant data rather than a larger, more 406 

general dataset can produce more accurate PTFs. Indeed, for predicting Hungarian soils, they found 407 

that PTFs that had been developed by neural networks from data from throughout the USA and 408 

Europe performed worse than PTFs that had been developed from a smaller dataset that considered 409 

the pedoclimatic context (e.g. the subset of Hungarian soils). Testing published PTFs developed 410 

from large and general datasets with our dataset may explain the poor prediction in our study. 411 

However, most of the PTFs tested were developed from French databases (Bruand et al., 2004; Al 412 

Majou et al., 2007, 2008a, 2008b; Román Dobarco et al., 2019) and should have been more 413 

appropriate for predicting water content of the soils in our dataset. These French PTFs, however, 414 

did not necessarily perform better than those developed by Tóth et al. (2015) at the European scale. 415 

They did, however, perform better than those of Rawls et al. (1982), which were developed from 416 

soil samples from the USA, which appeared to be unsuitable (criteria among the worst for each PTF 417 

evaluated), except when using other water contents as predictors. The poor performance of the 418 
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French PTFs was not related to the ranges of soil properties in our dataset, because all of them fell 419 

within the domain of applicability of the PTFs tested. Moreover, a metric distance representing a 420 

PTF’s domain of applicability, developed by Tranter et al. (2009), was calculated for two of the 421 

published PTFs whose training dataset was available (M9_Co and M10_Co). Overall, 97% of the 422 

data in our dataset belonged to the domain of applicability these PTFs, which confirmed that they 423 

could be applied to our dataset. 424 

The poor prediction of water-retention curve parameters by parametric PTFs agrees with results 425 

of Ghorbani Dashtaki et al. (2010), who reported that parametric PTFs generally perform worse 426 

than point PTFs, as relations between water-retention curve parameters and basic soil properties are 427 

complex. The same basic soil properties do not necessarily describe the variability in water content 428 

in the wet range and the dry range of the curve, which makes it difficult to capture the relation with 429 

them (Tomasella et al., 2003; Ghorbani Dashtaki et al., 2010). 430 

To predict water content better, some authors suggested including other water contents at given 431 

matric heads in the PTFs (Al Majou et al., 2008a; Rawls et al., 1982; Vereecken et al., 2010). In our 432 

study, predictions of such PTFs were slightly better than those of PTFs that included only soil 433 

properties, but with differences depending on the specific water content included in the PTF. As 434 

observed by Al Majou et al. (2008a), water content prediction improved when the other water 435 

content included was that at field capacity (in this case, θ330), but not that at the wilting point 436 

(θ15 000), as observed by Borgesen and Schaap (2005). The improvement in prediction when using 437 

the field capacity water content was related to the shape of soil water-retention curves, which 438 

inflected strongly near field capacity. However, determining water content at field capacity in order 439 

to include it in PTFs remains unsatisfactory, as doing so, mainly in laboratories, is time-consuming 440 

and costly. Other authors suggest that information on soil structure, which is often considered 441 

through bulk density, should be included to improve PTF performance. In the study of Al Majou et 442 

al. (2008b), including bulk density kept bias low and improved prediction of water content. In our 443 
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study, predictions of θ330 had errors similar to or larger than those of Al Majou et al. (2008b), but 444 

unlike their results, including bulk density did not improve predictions. Soil bulk density in 445 

conservation tillage systems is generally higher than that in conventional systems, which results in 446 

lower total porosity than that in tilled soils but, conversely, generally higher saturated and near-447 

saturated hydraulic conductivity (Green et al., 2003). While, bulk density is a good proxy of 448 

hydraulic dynamics (Blanco-Canqui et al., 2004; Alletto et al., 2010) and AWC in conventionally 449 

tilled soils, it is less effective in conservation agriculture (Alletto et al., 2010; Chen et al., 1998), 450 

probably due to greater pore connectivity and proportion of macro- and mesopores in the latter. This 451 

disconnection between hydraulic properties and bulk density in conservation agriculture can indeed 452 

be attributed to major changes in pore-size distribution and connectivity when tillage intensity is 453 

reduced (Strudley et al., 2008; Alletto et al., 2010), thus leading to changes in AWC. Furthermore, 454 

as mentioned by several authors (e.g., Nakano and Miyazaki, 2005; Lilly and Nemes, 2008), the 455 

cylindrical core method used to measure bulk density does not predict pore connectivity well, so 456 

complementary methods must be used to assess it. 457 

4.2 Development of new pedotransfer functions 458 

Multiple linear regression is commonly used to develop PTFs (Wösten et al., 2001; Al 459 

Majou et al., 2008a; Tóth et al., 2015; Román Dobarco et al., 2019), unlike regression trees or 460 

random forests. Regression trees have been used to predict water content, but without considering 461 

cropping practices: Tóth et al. (2015) predicted θ330 and θ15 000 using textural and taxonomic 462 

information (Table 1), while Rawls and Pachepsky (2002) did the same using textural and structural 463 

classes. To our knowledge, our study is the first to use random forests to predict water content. Vos 464 

et al. (2019) used random forests to highlight the influence of land use or land-use history classes, 465 

clay content and electrical conductivity on predicting topsoil carbon stock. In our study, random 466 

forests highlighted that some predictors not usually used in PTFs, such as CEC and rotation length, 467 

could help predict water content at a given matric head. Some properties have been suggested as 468 
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important for predicting water content due to an indirect influence, such as organic carbon, which 469 

plays both an indirect role, by improving soil structure, and a direct role, through its adsorption 470 

properties (Tóth et al., 2015). Cropping practices influence soil properties greatly, especially soil 471 

structure (Strudley et al., 2008), and can thus influence water content indirectly. Román Dobarco et 472 

al. (2019) suggest that land use should be considered in future PTFs, even though PTFs are 473 

generally suitable for most agricultural soils. 474 

However, given the similar cross-validation performances of PTFs developed from random 475 

forests and multiple linear regression (which were even better than regression trees), our results do 476 

not support the hypothesis that cropping practices are essential for predicting water content in the 477 

topsoil (0-30 cm). We also set new parameters for two multiple linear regressions (M22_Co and 478 

M28_Co), developed by Román Dobarco et al. (2019), that were among the published PTFs that 479 

predicted best; thus, recalibrating existing PTFs rather than developing new ones may be sufficient. 480 

Finally, when we developed PTFs from regression trees and random forests without including 481 

cropping practices, we obtained nearly identical results. 482 

In terms of quality of adjustment, random forests performed the best, with almost perfect 483 

fits. This was likely due to the nature of machine-learning methods, which “learn” from the dataset 484 

provided and thus perform well with it. Consequently, we also expected regression trees to have 485 

high quality of adjustment, but their results were similar to those of multiple linear regressions. This 486 

result was likely related to the pruning, as adjustment to the training data is purposely reduced so 487 

that the model performs better with a test dataset. In our study, however, performance of regression 488 

trees and random forests decreased between adjustment (i.e. the training dataset) and cross-489 

validation (the test dataset) (Fig. 5). While the poor prediction by the regression trees can be 490 

explained easily by their well-known instability (i.e. a small difference in the training dataset can 491 

result in a different tree) (Gey and Poggi, 2006; Yang et al., 2016), the instability of the random 492 

forests was more surprising. Conversely, multiple linear regression was a stable method whose 493 
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quality of prediction was as good or better than that of the machine-learning methods. The 494 

similarity between its adjustment and cross-validation performances demonstrates its robustness. 495 

Overall, however, the cross-validation quality of prediction remained unsatisfactory in this study, 496 

mainly for EFCV, which never reached satisfactory values for any of the PTFs despite having 497 

satisfactory MECV (close to 0). 498 

In France, few water-retention data are available in conservation agriculture, and the small 499 

size of the dataset may have contributed to unsatisfactory predictions. Indeed, our study was located 500 

in a single French region and contained data for relatively few soils (140 samples from 61 501 

agricultural fields). The dataset thus may not represent the wide range of French soil diversity. 502 

Moreover, the lack of an independent dataset to validate the new PTFs led us to use cross 503 

validation, which estimated only the quality of prediction of the modelling approach. Indeed, as 504 

predicted parameter values of the PTFs changed for each soil, the structure of the model could not 505 

be tested. Cross validation revealed that even the highly performing random forest method was 506 

unstable, which may have resulted from the small sample size. Supplementing the scarce water-507 

retention data would advance development of reliable tools for conservation agriculture. In 508 

particular, more data could have helped us better assess the quality of prediction of the PTFs 509 

developed. The unsuitability of basic soil properties for predicting water retention remains a major 510 

limitation in the development of PTFs (Vereecken et al., 2010). As demonstrated by the study, more 511 

relevant predictors of water retention still need to be identified, as using three methods to select the 512 

best predictors objectively still yielded unsatisfactory results. 513 

Conclusions 514 

We tested the performance of several published PTFs and newly developed PTFs using multiple 515 

linear regressions, regression trees and random forests to predict water content at field capacity (h= 516 

-100 or -300 cm) and wilting point (h= -15 000 cm). Although some PTFs approached satisfactory 517 

performance according to the three criteria, none of them managed to reach it, which limits their use 518 
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in soil transport models for conservation agriculture. Most of our soil samples belonged to the 519 

domain of applicability of the PTFs, so the poor results obtained are likely related to (i) the use of 520 

unsuitable predictors, (ii) the use of PTFs developed at an inappropriate scale or (iii) differences in 521 

soil management between databases. 522 

This study, the first to develop PTFs specifically calibrated for conservation agriculture, 523 

demonstrated that cropping practices were not necessary to predict water contents. The small size of 524 

our dataset was a major obstacle and probably partly explains the unsatisfactory performance of our 525 

PTFs, despite using methods designed to yield high performance. Future studies should use larger 526 

datasets of soils under conservation agriculture, at more locations, to verify the preliminary results 527 

of this study. 528 

The machine-learning methods often selected CEC, which had not been used to develop the 529 

PTFs. However, because of low performance, even by random forests, the results suggest that the 530 

development of PTFs still lacks suitable predictors. Including more relevant soil properties when 531 

developing PTFs thus remains a research path for improving PTFs. 532 
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Fig. 1. Textures of the soil samples collected in 0-10, 10-20 and 20-30 cm deep soil layers (black, red and 

blue dots, respectively) in 61 conservation agriculture fields. The three texture triangles are based on the 

three classifications used to develop the pedotransfer functions found in the literature a) FAO, b) USDA and 

c) AISNE. 
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Fig. 2. Available water capacity (AWC) predicted assuming field capacity at a volumetric water content 

of -100 cm (AWC100) or -330 cm (AWC330) of matric head as a function of soil depth (a, e), soil tillage (b, 

f), cover-crop presence (c, g) and rotation length (d, h). For soil tillage, DT: deep tillage, RT: reduced 

tillage, ST: strip-till and NT: no tillage. For rotation length, variable: not fixed, short: ≤ 2 years, medium: > 2 

years & ≤ 4 years, long: > 4 years.  
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Fig. 3. Correlation circle of the (a) variables and (b) soil layers on the first two dimensions of the principal 

component analysis. (a) The variables that contributed significantly to the first and second axis are green and 

blue, respectively. Dashed arrows correspond to variables that did not contribute significantly to the first two 

axes. Black arrows correspond to variables that did not contribute significantly to any of the axes. Red 

arrows correspond to volumetric water contents at -100 cm (θ100), -330 cm (θ330) and -15 000 cm (θ15 000) of 

matric head, which were not used to construct the axes. (b) Soil layers are coloured by depth, circles 

represent 95% confidence interval ellipses and larger symbols are centroids. 
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Fig. 4. Volumetric water content at (a) -100 cm (θ100), (b) -330 cm (θ330) and (c) -15 000 cm (θ15000) of 

matric head as a function of rotation length (a, b, c) and (d) at -15 000 cm (θ15 000) as a function of soil 

tillage. For soil tillage, DT: deep tillage, RT: reduced tillage, ST: strip-till and NT: no tillage. For length of 

rotation, variable: not fixed, short: ≤ 2 years, medium: > 2 years & ≤ 4 years, long: > 4 years.  
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Fig. 5. Observed vs. predicted soil water content at -100 cm (θ100), -330 cm (θ330) and -15 000 cm (θ15000) of 

matric head for (a) multiple linear regression, (b) regression tree and (c) random forest. Predicted adjustment 

values and cross-validation values are black and red, respectively. 
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Fig. 6. Regression trees for the prediction of (a) θ100 and (b) θ15 000. BD is bulk density (g/cm3), CEC is 

cation exchange capacity (cmol/kg) and CaO and K2O are exchangeable calcium and potassium (mg/kg), 

respectively. Values in boxes are mean water contents (cm3/cm3) of the n samples in the partition. The 

values below terminal leaves (blue boxes) are standard deviations. 
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Fig. 7. Relative importance (%) of predictors in random forests of (a) θ100, (b) θ330 and (c) θ15000. Dashed 

lines represent the mean relative importance; only predictors above the mean are labelled. CEC is cation 

exchange capacity; CaO, K2O and MgO are exchangeable calcium, potassium and magnesium, respectively; 

P2O5, OC and N are phosphorus, organic carbon and nitrogen content, respectively. 
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Table 1. Published pedotransfer functions (PTFs) used to predict soil volumetric water content (cm3/cm3) at a given matric head h=-100 cm, θ100, h= -330 cm, θ330, and h=-15 000 
cm, θ15 000. Cl, Si, OC and OM are contents (%) of clay, silt, organic carbon and organic matter, respectively. OC*=OC+1. BD is bulk density (g/cm3). Co: continuous-PTFs, Cl: 
class-PTFs, Tr: tree-PTFs. When two PTFs are indicated in the PTF ID column, the first does not consider topsoil/subsoil separation, and the second considers only the topsoil. 

Reference Sampling location N Predictive variables / Equation  
Variables 
predicted 

PTF ID 

Rawls et al. 
(1982) 
 

USA, 32 states 5350 θh = a + (b × Sa) + (c × Si) + (d × Cl) + (e × OM) + (f × BD) θ40, θ70, θ100, θ200, 
(θ330), θ600, θ4000, 
θ7000, θ10000, 

(θ15 000) 

M1_Co 

θh = a + (b × Sa) + (c × Si) + (d × Cl) + (e × OM) + (f × BD) + (h × θ15 000) M2_Co 

θh = a + (b × Sa) + (c × Si) + (d × Cl) + (e × OM) + (f × BD) + (g × θ330) + (h × θ15 000) M3_Co 

Bruand et 
al. (2004) 

France, Paris basin 340 - texture AISNE (topsoil function) θ10, θ33, θ100, θ330, 
θ1000, θ3300, θ15 000 

M4_Cl 

Al Majou 
et al. 
(2007) 

France, Paris basin 320 - texture FAO (topsoil function) 

θ10, θ33, θ100, θ330, 
θ1000, θ3300, θ15 000 

M5_Cl M6_Cl 

- texture FAO       
- bulk density 

(topsoil function) 
M7_Cl M8_Cl 

- θh = a + (b × Cl) + (c × Si) + (d × OC) + (e × BD) (topsoil function) M9_Co M10_Co 

Al Majou 
et al. 
(2008b) 

France, Paris basin, 
Brittany, the western 
coastal marshlands and the 
Pyrenean piedmont plain 

456 
 

- texture FAO   (topsoil function) 
θ10, θ33, θ100, θ330, 
θ1000, θ3300, θ15 000 

M11_Cl M12_Cl 

- texture FAO       
- bulk density 

(topsoil function) 
M13_Cl M14_Cl 

Tóth et al. 
(2015) 

18 European countries 18 537 - texture FAO & topsoil/subsoil 

θ330, θ15 000 

M15_Tr 

- texture USDA & topsoil/subsoil M16_Tr 

θ330 = a1  – (b1 × OC*-1) + (c1 × Cl) + (d1 × Si) + (e1 × Si × OC*-1) – (f1 × Si × Cl) + (g1 × Cl × OC*-1) 
θ15 000 =  a2 + (b2 × Cl) – (c2 × Si) – (d2 ×  OC*-1) + (e2 × Si × Cl) + (f2 × Cl ×  OC*-1) + (g2 × Si ×  OC*-

1) 
M17_Co 

Roman 
Dobarco et 
al. (2019) 

France, northern half of the 
country, with little 
representation of more 
mountainous southern and 
eastern regions 

689 
 

- texture FAO (topsoil function) 

θ100, θ330, θ15 000 

M18_Cl M19_Cl 

- texture FAO 
- bulk density 

(topsoil function) 
M20_Cl M21_Cl 

θh = a + (b × Cl) + (c × Sa) (topsoil function) M22_Co M26_Co 

θh = a + (b × Cl) + (c × Sa) + (d × OC) (topsoil function) M23_Co M27_Co 

θh = a + (b × Cl) + (c × Sa) + (e × BD) (topsoil function) M24_Co M28_Co 

θh = a + (b × Cl) + (c × Sa) + (d × OC) + (e × BD) (topsoil function) M25_Co M29_Co 

  



Table 2. Published pedotransfer functions (PTFs) used to evaluate the quality of prediction of the van Genuchten’s water-retention curve parameters 
θs, α and n. Cl, Si, OC and OM are contents (%) of clay, silt, organic carbon and organic matter, respectively. OC*=OC+1. BD is bulk density (g/cm3), 
CEC is cation exchange capacity (cmol/kg), T/S is topsoil/subsoil (T=1, S=0). θs is volumetric water content at saturation, α and n are shape parameters 
of van Genuchten’s water retention curve. 

Reference 
Sampling 
location 

Number 
of 

samples 
Predictive variables / Equation 

Predicted 
variables 

PTF ID 

Wösten et 
al. (1999) 

12 
European 
countries 

4030 - texture FAO 

θs, α, n 

P1_Cl 

θs = a1 + (b1 × Cl) - (c1 × BD) - (d1 × Si2) + (e1 × OM2) + (f1 × Cl-1) + (g1 × Si-1) + (h1 × ln(Si)) - (i1 × OM × Cl) - (j1 × BD × Cl) - (k1 × BD 
× OM) - (l1 × T/S × Si) 
ln(α) = - a2 + (b2 × Cl) + (c2 × Si) + (d2 × OM) + (e2 × BD) - (f2 × T/S) - (g2 × BD2) - (h2 × Cl2) - (i2 × (OM2)) + (j2 × OM-1) + (k2 × ln(Si)) 
+ (l2 × ln(OM)) - (m2 × BD × Si) - (n2 × BD × OM) + (o2 × T/S × Cl) 
ln(n-1) = - a3 - (b3 × Cl) + (c3 × Si) - (d3 × OM) + (e3 × BD) - (f3 × (BD2)) + (g3 × (Cl2)) + (h3 × (OM2)) - (i3 × BD-1) - (j3 × Si-1) - (k3 × OM-

1) - (l3 × ln(Si)) - (m3 × ln(OM)) - (n3 × ln(BD)) - (o3 × BD × Cl) + (p3 × BD × OM) + (q3 × T/S × Cl) 

P2_Co 

Al Majou 
et al.  
(2008a) 

France, 
Paris 
basin 

320 
 

- texture FAO P3_Cl 

θs= a1 – (b1 × Cl) – (c1 × BD) + (d1 × Si2) – (e1 × OC2) + (f1 × Cl-1) + (g1 × Si-1) – (h1 × ln(Si)) + (i1 × OC × Cl) + (j1 × BD × Cl) – (k1 × BD 
× OC) – (l1 × Si) 
ln(α) = a2 + (b2 × Cl) + (c2 × Si) + (d2 × OC) + (e2 × BD) – (f2 × BD2) – (g2 × Cl2) – (h2 × OC2) – (i2 × OC-1) – (j2 × ln(Si)) – (k2 × ln(OC)) 
– (l2 × BD × Si) – (m2 × BD × OC) 
ln(n-1) = - a3 – (b3 × Cl) + (c3 × Si) – (d3 × OC) + (e3 × BD) – (f3 × BD2) + (g3 × Cl2) + (h3 × OC2) + (i3 × BD-1) + (j3 × Si-1) + (k3 × OC-1) – 
(l3 × ln(Si)) + (m3 × ln(OC)) – (n3 × ln(BD)) + (o3 × BD × Cl) + (p3 × BD × OC) 

P4_Co 

Tóth et al 
(2015) 

18 
European 
countries 

18 537 - texture FAO P5_Cl 

- texture USDA P6_Cl 

θs = 0.5056 – (0.1437 × 1/(OC+1)) + (0.0004152 × Si) 
log10(α) = -1.3050 – (0.0006123 × Si) – (0.009810 × Cl) + (0.07611 × 1/(OC*)) – (0.0004508 × Si × Cl) + (0.03472 × Cl × 1/(OC*)) – 
(0.01226 × Si × 1/(OC+1)) 
log10(n-1) = 0.01516 – (0.005775 × 1/OC*) – (0.24885 × log10(CEC)) – (0.01918 × Cl) – (0.0005052 × Si) – (0.007544 × pH2) – (0.02159 
× Cl × 1/OC*) + (0.01556 × Cl  × log10(CEC)) + (0.01477 × 1/OC* × pH2) +( 0.0001121 × Si × Cl) – (0.33198 × 1/OC* ×  log10(CEC)) 

P7_Co 

θs = 0.83080 – (0.28217 × BD) + (0.0002728 × Cl) + (0.000187 × Si) 
log10(α) = -0.43348 – (0.41729 × BD) – (0.04762 × OC) + (0.21810 × T/S) – (0.01581 × Cl) – (0.01207 × Si) 
log10(n-1) = 0.22236 – (0.30189 × BD) – (0.05558 × T/S) – (0.005306 × Cl) – (0.003084 × Si) – (0.01072 × OC) 

P8_Co 

θs = 0.63052 – (0.10262 × BD2) + (0.0002904 × pH2) + (0.0003335 × Cl) 
log10(α) = -1.16518 + (0.40515 × 1/OC*) – (0.16063 × BD2) – (0.008372 × Cl) – (0.01300 × Si) + (0.002166 × pH2) + (0.08233 × T/S) 
log10(n-1) = -0.25929 + (0.25680 × 1/OC*) – (0.10590 × BD2) – (0.009004 × Cl) – (0.001223 × Si) 

P9_Co 

  



Table 3. Summary statistics of particle size fractions (%), organic carbon (OC; %), nitrogen content (g/kg), bulk density (BD; g/cm3), cation exchange 
capacity (CEC; cmol/kg), exchangeable CaO, MgO, K2O, Na2O (mg/kg), pH, total calcium carbonate CaCO3 (g/kg), phosphorus content P2O5 (mg/kg) 
and volumetric water content at field capacity, θ100 and θ330, and at wilting point, θ15 000 (cm3/cm3) of the dataset used to evaluate published 
pedotransfer functions (PTFs) and develop new PTFs 

N=140 Clay Silt Sand OC N BD CEC CaO MgO K20 Na2O pH CaCO3 P2O5 θ100 θ330 θ15 0000 
Mean 27.8 42.2 30.0 1.0 1.1 1.4 13.2 6700 236.0 189.3 13.4 7.6 41.0 35.2 0.363 0.301 0.179 

Standard deviation 10.1 9.1 9.0 0.3 0.3 0.1 5.6 3274 135.6 103.3 6.1 0.9 54.1 29.1 0.035 0.037 0.042 
Min 10.3 29.4 8.0 0.5 0.6 1.2 3.5 540 47.2 27.8 4.3 5.1 0.0 3.0 0.266 0.190 0.083 

Median 28.0 39.1 31.9 1.0 1.0 1.4 13.4 6966 211.4 171.2 12.2 8.1 19.0 27.0 0.364 0.298 0.182 

Max 52.6 68.7 49.0 2.2 2.2 1.7 24.6 13057 595.4 522.8 35.7 8.7 220.0 147.0 0.439 0.392 0.300 

 



Table 4. Statistical criteria for the prediction of θ100, θ330 and θ15 000. RMSEP: root mean squared error of 
prediction, MEP: mean error of prediction, EFP: Nash-Sutcliffe Efficiency of prediction. Co: continuous-
PTFs, Cl: class-PTFs, Tr: tree-PTFs. 0.000 means < 1.10-3 

 θ100 (cm3/cm3) θ330 (cm3/cm3) θ15 000 (cm3/cm3) 

PTF RMSEP MEP EFP RMSEP MEP EFP 
RMS

EP 
MEP EFP 

M1_Co 0.089 0.078 -5.68 0.073 0.049 -2.84 0.047 0.017 -0.29 
M2_Co 0.262 0.259 -56.75 0.059 0.047 -1.53 - - - 
M3_Co 0.034 -0.007 0.03 - - - - - - 
M4_Cl 0.065 -0.056 -2.24 0.037 -0.014 -0.11 0.040 -0.027 0.17 

M5_Cl 0.056 -0.042 -1.60 0.042 -0.007 -0.28 0.044 0.003 -0.14 
M6_Cl 0.052 -0.039 -1.26 0.038 0.002 -0.02 0.046 -0.013 -0.24 
M7_Cl 0.049 -0.028 -1.01 0.045 0.001 -0.47 0.051 -0.004 -0.50 

M8_Cl 0.042 -0.029 -0.48 0.038 0.009 -0.02 0.044 -0.01 -0.13 
M9_Co 0.053 -0.044 -1.36 0.047 -0.025 -0.59 0.043 -0.023 -0.08 

M10_Co 0.116 -0.112 -10.40 0.080 -0.069 -3.59 0.057 -0.045 -0.87 

M11_Cl 0.057 -0.043 -1.73 0.042 -0.007 -0.28 0.045 0.011 -0.20 
M12_Cl 0.049 -0.030 -1.04 0.043 0.009 -0.31 0.049 0.011 -0.38 

M13_Cl 0.046 -0.028 -0.78 0.043 0.003 -0.31 0.050 0.008 -0.45 
M14_Cl 0.039 -0.019 -0.30 0.044 0.017 -0.35 0.052 0.017 -0.56 
M15_Tr - - - 0.043 0.022 -0.33 0.045 -0.015 -0.20 

M16_Tr - - - 0.054 0.036 -1.07 0.042 0.001 -0.03 
M17_Co - - - 0.045 0.025 -0.45 0.036 0.000 0.23 
M18_Cl 0.059 -0.045 -1.88 0.047 0.001 -0.57 0.050 0.018 -0.48 

M19_Cl 0.051 -0.033 -1.20 0.041 0.014 -0.24 0.047 0.010 -0.29 
M20_Cl 0.048 -0.031 -0.95 0.052 0.018 -0.91 0.056 0.020 -0.80 

M21_Cl 0.042 -0.025 -0.50 0.041 0.016 -0.23 0.049 0.013 -0.37 
M22_Co 0.066 -0.057 -2.63 0.04 0.005 -0.16 0.034 0.003 0.31 
M23_Co 0.061 -0.051 -2.08 0.046 -0.011 -0.51 0.035 0.003 0.29 

M24_Co 0.055 -0.046 -1.54 0.041 -0.001 -0.22 0.035 0.001 0.30 
M25_Co 0.055 -0.045 -1.51 0.042 -0.002 -0.28 0.036 0.001 0.25 
M26_Co 0.059 -0.048 -1.89 0.043 -0.007 -0.33 0.036 0.002 0.23 

M27_Co 0.065 -0.056 -2.52 0.044 -0.016 -0.37 0.036 -0.002 0.25 
M28_Co 0.060 -0.049 -2.02 0.042 -0.005 -0.25 0.036 0.002 0.24 
M29_Co 0.074 -0.064 -3.55 0.048 -0.022 -0.65 0.038 -0.007 0.16 



Table 5. Statistical criteria for the prediction of θs, α and n parameters. RMSEP: root mean squared error 
of prediction, MEP: mean error of prediction, EFP: Nash-Sutcliffe efficiency of prediction. Co: 
continuous-PTFs, Cl: class-PTFs 

 θs (cm3/cm-3) α (cm-1) n (-) 

PTF RMSEP MEP EFP RMSEP MEP EFP RMSEP MEP EFP 

P1_Cl 0.054 0.029 -2.05 0.232 -0.018 -0.01 0.331 -0.132 -0.23 

P2_Co 0.439 -0.438 -198.53 0.232 -0.019 0.00 0.333 -0.110 -0.25 

P3_Cl 0.038 0.010 -0.49 0.506 0.441 -3.78 0.361 -0.201 -0.47 

P4_Co 0.376 -0.373 -144.92 - - - 0.366 -0.197 -0.51 

P5_Cl 0.046 0.033 -1.14 0.232 -0.017 -0.01 0.326 -0.119 -0.19 

P6_Cl 0.05 0.036 -1.59 0.232 0.012 0.00 0.339 -0.125 -0.29 

P7_Co 0.037 0.019 -0.41 0.234 -0.036 -0.02 0.325 -0.068 -0.19 

P8_Co 0.035 0.029 -0.27 0.233 -0.033 -0.02 0.305 0.003 -0.04 

P9_Co 0.038 0.033 -0.56 0.234 -0.035 -0.02 0.316 -0.051 -0.12 

  



Table 6. Multiple linear regression coefficients for estimating θ100, θ330 and θ15 000 from the non-stratified 
dataset and the dataset for the top and bottom soil layers. θ is the soil volumetric water content 
(cm3/cm3) at a given matric head. Clay: clay content (%), Silt: silt content (%), Sand: sand content (%), 
BD: bulk density (g/cm3), N: nitrogen content (g/kg), CEC: cation exchange capacity (cmol/kg) and 
P2O5: phosphorus content (mg/kg) 
θ100 = a + b × Clay + c × BD + d × Silt + e × N + f × Sand 

 Intercept Clay BD Silt N Sand 
Coefficients -9.809 1.04 x10-1 -1.24 x10-1 1.03 x10-1 2.37 x10-2 1.02 x10-1 
θ330 = a + b × Clay + c × BD + d × CEC + e × P2O5 

 Intercept Clay BD CEC P2O5  
Coefficients 0.386 2.54 x10-3 -9.27 x10-2 -2.71 x10-3 1.72 x10-4  
θ15 000 = a + b × Clay + c × BD + d × pH + e × Silt 

 Intercept Clay BD pH Silt  
Coefficients 0.145 2.56 x10-3 -8.56 x10-2 7.00 x10-3 6.24 x10-4  

  



Table 7. Statistical criteria (root mean squared error (RMSE, cm3/cm3), mean error (ME, cm3/cm3) and 
Nash-Sutcliffe efficiency (EF)) of the quality of adjustment (subscript A) or cross validation (subscript 

CV) for the prediction of θ100, θ330 and θ15 000 by new pedotransfer functions developed from the non-
stratified dataset and datasets of the top and bottom soil layers. Values less than 0.001 are expressed as 
0. 

Criterion 
Multiple linear 

regression 
Regression tree Random forest 

θ100 θ330 θ15 000 θ100 θ330 θ15 000 θ100 θ330 θ15 000 
RMSEA 0.026 0.033 0.029 0.024 0.037 0.028 0.012 0.016 0.013 

MEA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
EFA 0.44 0.21 0.49 0.52 0.00 0.55 0.88 0.83 0.90 

RMSECV 0.028 0.035 0.032 0.034 0.038 0.037 0.027 0.036 0.031 
MECV 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 
EFCV 0.34 0.14 0.41 0.01 -0.03 0.21 0.36 0.05 0.45 

 




