From growth to sustainable bioeconomy: a new cylindrical conceptual framework
Hugo de Vries, Mechthild Donner, Monique Axelos

To cite this version:
Hugo de Vries, Mechthild Donner, Monique Axelos. From growth to sustainable bioeconomy: a new cylindrical conceptual framework. 3rd International Bioeconomy Congress Baden-Württemberg, Sep 2020, online, Germany. 10.1007/s10806-021-09850-7. hal-03210026

HAL Id: hal-03210026
https://hal.inrae.fr/hal-03210026
Submitted on 27 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
6. The transition to a sustainable bioeconomy

6.1 Bioeconomy Systems

From growth to sustainable bioeconomy:
a new cylindrical conceptual framework

Hugo de Vries\(^1,3\), *Mechthild Donner*\(^2\) and *Monique Axelos*\(^1\)

\(^1\) INRAE, DS Food and Bioeconomy
\(^2\) INRAE, UMR MOISA
\(^3\) INRAE, UMR IATE

21 – 22 September 2020, Hohenheim, Germany

This work is published as:
Introduction: key considerations for sustainable bioeconomy systems:

- Sustainability defined by Brundtland in 1987
- Concept of bioeconomy introduced in 2002 with focus on biotechnology, then on resources bioeconomy and now on ecological bioeconomy
- Notion of boundaries by the Stockholm resilience centre: radar with planetary boundaries (Rockstrom et al, 2009)
- Notion of social lower limits: doughnut (Raworth 2017)
- EC sustainable and circular bioeconomy 2018
- In France, INRAE strategy focusing on complex, territorial bioeconomy systems (https://hal.inrae.fr/hal-02866076; https://colloque.inrae.fr/bioeconomy2019/)
- But the question remains ‘when are bioeconomies sustainable or unsustainable?’
Methodology: fundamentals of sustainable bioeconomy systems

- (Sustainable) bioeconomy systems can be integrally represented by the seven building blocks of game theory (I)
- Bioeconomy systems are sustainable if they are continuously evolving between order and chaos (II)
- The evolution is then following sinusoidal like patterns, and not continuous (linear, exponential,…) growth or decline ones;

>> Combined sinusoidal patterns form helices, the most stable but dynamic configurations in nature (III)

- (I) + (II) + (III) result in a conceptual framework, of a multiple cylinder configuration with an inner rigid zone, a sustainable safe operating zone and outer chaos zone.
6.1 Bioeconomy Systems

(I): the 7 ‘building blocks’ of ‘systems’ or ‘game theory’ are integrally describing (sustainable) bioeconomy systems

Playing fields:
- Food environments

Pieces:
- Resources, food and bio-based products

Time (Δt): duration

Rules: regulations and incentives

Moves in a circular economy

Wins/looses: sustainable / unsustainable outcomes
(II): sustainable bioeconomy systems are balancing in the melting zone between order and chaos.

Interactions 'K' between agents / actors / species / products / particles /..

Number of different agents/actors 'N' / species / products / particles /..

- Chaotic network of actors
- Self-organized dynamic network of actors
- Static (linear) network of actors
(III): sustainable bioeconomy systems are revealing sinusoidal patterns which are jointly resulting in helices, very stable but dynamic configurations.

Source: Modified image of https://www.radar.tutorial.eu/06.antenناس/pic/zirkulum.gif is included
(II)+(III) provide the following scheme:

Behavior of players: *sinusoidal in y-z plane* (actors in bio-economy)

Utilization of pieces: *sinusoidal in x-z plane* (biomass & bio-based products)

Source: Modified image of https://www.radartutorial.eu/06.antenras/ pic/zirkulanim.gif is included
(I)+(II)+(III) provide a new conceptual framework

Graphic representation of system building blocks & helical pathways evolving in between boundaries

6.1 Bioeconomy Systems

Verification of the appropriateness of the conceptual framework via case studies

Case study: valorization of agricultural waste and by-products > towards biogas and beyond:

- **Moves:** From farm to modern biogas company and now beyond: Recycling, bioenergy conversion, bio-fertilizer manufacturing
- **Pieces:** Biogas, dried fertilizer, other products in consideration; resources ‘manure’, by-products from vegetables, fruit and energy crops
- **Players:** Network of entrepreneur, local farmers, eco-villagers (heat), Town Hall, logistic suppliers and distributors (for targeted fertilizers), e-car holders (sharing electricity)
- **Playing field:** territorial scale, relatively well defined, since ~2000
- **Rules & constraints:** National legislation & subventions, limitation for feed-in tariffs, odors, local appreciation,
- **Outcomes:** technological, business & social innovations; valorization of organic waste, new products & markets for local producers, jobs created.

https://hal.inrae.fr/hal-02624927/document
Is ‘the case’ sustainably evolving?

Our observations are:

- The case integrally considers all 7 ‘building blocks’ of game theory.
- The business activities are between (order-chaos) limits, impacted by rules (e.g. no landfill, subventions,..); and tend to show helical patterns.
- The outputs seem to be sustainable in all three pillars (PPP), thanks to combined business, social & technological innovations.
- The case (‘a bioeconomy system’) seeks to sustainably evolve by continuously adapting and innovating all building blocks coherently.
Conclusions

✓ The conceptual framework seems to cover all ‘building blocks’ of sustainable bioeconomy (sub-)systems and allows following their evolution pathway.

✓ In particular it dynamically connects system ‘building blocks’, taking into account regulations and geographical dimensions.

✓ An extensive analysis has been possible for 8 cases

✓ It permits to draw policy options for (territorialized) sustainable bioeconomy systems.
6.1 Bioeconomy Systems

Thank you very much for your attention

https://www.inrae.fr/en/bioeconomy
hugo.de-vries@inrae.fr