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Abstract In this article, we present a novel La-
grangian particle tracking method derived from
the perspective of the tracking-by-detection paradigm
that has been adopted by many vision tracking
tasks. Under this paradigm, the particle track-
ing problem consists of first learning a function
(the tracker) that maps the target particle’s im-
age projection backwardly to its possible position
inferred from its precedent tracking information.
The target particle’s actual position is then de-
tected by simply applying the learned function
to particle images captured by cameras. We also
propose to solve the function learning problem
using kernel methods. The proposed method is
therefore named Kernelized Lagrangian particle
tracking (KLPT). The current state-of-art LPT ap-
proach Shake-The-Box (STB), despite equipping
a highly efficient image matching and shaking-
based optimization procedure, tends to be trapped
by local minimum when dealing with datasets fea-
turing complex flows or larger time separations.
KLPT can overcome these optimization difficul-
ties associated with significant prediction errors
since it features a highly robust function learning
procedure combined with an efficient linear op-
timization technique. We assessed our proposed
KLPT against various STB implementations both
on synthetic and real experimental datasets. For
the synthetic dataset depicting a turbulent cylin-
der wake-flow at Re3900, we focused on study-
ing the effects of particle density, time separation,
and image noises. KLPT outperformed STB in all
cases by tracking more particles and producing
more accurate particle fields. This performance
gain, compared to STB, is more prominent for the
dataset with larger seeding density, time separa-
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tion, and more noise. For real experimental data
on an impinging jet flow in a water tank, KLPT
can capture longer tracks and provides more de-
tailed flow reconstruction at highly turbulent re-
gions than STB. Overall, comparison to STB shows
significant improvements in accuracy (lower re-
construction positional error) and robustness (more
and longer tracks). We finally show the results of
KLPT on the 1st LPT challenge datasets. Our al-
gorithm has achieved state-of-the-art performance
with particle images up to 0.08 ppp (particles per
pixel).

Keywords Lagrangian Particle Tracking ·
Particle Tracking Velocimetry · Kernel methods ·
Data assimilation

1 Introduction

In fluid dynamics research and applications, re-
constructing the 3D flow through imaging parti-
cles driven by the flow, followed by inferring spa-
tiotemporal flow structures from particle images,
is crucial to investigate the small scale flow phe-
nomena related to turbulence.

The algorithms used to infer spatiotemporal
flow fields from particle images can be classified
under two categories. The first approach is the to-
mographic particle image velocity (TomoPIV) that
centers on a tomographic reconstruction of parti-
cles on a 3D voxel basis (Elsinga et al. 2006). The
Eulerian velocity field is then obtained by apply-
ing the classic cross-correlation technique, inher-
ited from the standard 2D PIV technique to 3D
intensity voxels. Thus the central task is to solve
the intensity at (virtual) voxel coordinate from
particle images. We can tackle this problem iter-
atively using algebraic reconstruction technique
(ART), MART and SMART algorithms (Scarano
2013). The TomoPIV technique has gained con-
siderable success since the last decade due to its
robustness and its capability of dealing with par-
ticle images of high seeding density (particle per
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pixel, ppp around 0.05). Nevertheless, the TomoPIV
technique still suffers from several flaws such as
many ghost particles, relatively large particle po-
sitional error, and is computationally demanding.

The second approach is the 3D particle track-
ing velocimetry (3D-PTV). Also referred to as the
Lagrangian particle tracking (LPT), it aims at fol-
lowing particle positions through time. The 3D-
PTV has been proposed since the 1990s (Maas
et al. 1993, Malik et al. 1993). However, this ap-
proach has not reached the same level of popu-
larity and maturity as the PIV technique because
3D-PTV can only tackle images of relatively low
seeding densities.

Inspired by the success of TomoPIV, Wieneke
(2012) proposed an iterative particle reconstruc-
tion (IPR) approach that features an active im-
age matching scheme. This matching procedure
is carried out after the classical 3D-PTV opera-
tions (2D peak detection, stereo matching, and
3D triangularization) to refine further the par-
ticle’s 3D position and facilitate the ghost detec-
tion. After one particle’s rough location is known
through triangulation, the IPR procedure optimizes
the best estimation of particles’ positions by it-
eratively matching their image space projections
through an Optical Transfer Function (OTF) model
with their observational records captured by cam-
eras. IPR shares with TomoPIV the idea of ’match-
ing’ an imaging model with the image target. How-
ever, IPR reconstructs a field in particle repre-
sentation rather than in voxel representation as
for the TomoPIV. IPR can handle densely seeded
flows up to 0.05 ppp while reaching a similar ac-
curacy compared to TomoPIV.

IPR has paved the way for Shake-The-Box (STB)
designed by Schanz et al. (2016), the current state-
of-art method in LPT. This algorithm has shown
its superiority in higher reconstruction accuracy,
lower ghost particle occurence, and more econom-
ical computational resources demandings than To-
moPIV. The problematics of ghost particles, re-
sulting from the increased particle correspondence
ambiguities associated with particle images of high
seeding densities, is mostly resolved by the STB
method. Consequently, STB can handle dense par-
ticle images (ppp reaching and beyond 0.1) and
yield almost ghost-free particle fields. The power
of STB lies in the coupling of IPR with a parti-
cle trajectory predictor. Hence, the starting posi-
tion to perform IPR for further optimization is not
from triangulation but from the predictor. Such
modification leads to two significant implications:
first, for flows where the particle position predic-
tor is reasonably good, the initial error at the be-
ginning of the IPR is considerably lower than that
yielded by the triangularization. Second, for densely
seeded flows (ppp > 0.1), STB tackles the prob-
lem in a progressive way leading to more accurate
particle positions and fewer ghost particles. The

triangulation on the full raw particle image set
is determined to fail due to particle overlapping
and correspondence ambiguities with high densi-
ties. Whereas for STB, as more and more parti-
cles are tracked, fewer and fewer particles need
to be identified on the residual image using 3D-
PTV.

Schanz et al. (2016) has shown that STB is
well suited for time-resolved data depicting medium-
low speed flow configurations. Besides, the image
quality has huge impact on the positional accu-
racy obtained by STB. Recent developments con-
centrated on extending the power of STB to other
types of data. For example, Novara et al. (2016,
2019) proposed the multi-pulse STB to deal with
high-speed flow applications for which time-resolved
data is not available. Tan et al. (2020) introduced
the pruning algorithm to remove ghost particles
and applied the STB method to blurred particle
images. Other studies are more application-specific
concerning a particular sub-module of the whole
LPT workflow, such as the calibration procedure
of Schröder et al. (2020) and Huhn et al. (2018).
However, very few works exist to improve the core
tracking ability of STB.

Still, STB can fail under two circumstances.
First, even STB cannot tackle very high ppp lev-
els. Schanz et al. (2016) has reported that the al-
gorithm fails for image sets of ppp above 0.125.
During our participation in the first LPT and DA
challenge, we have also found STB implemented
in Davis 10, which is the only available commer-
cial STB implementation on the market, can only
track a small portion of particles for data sets of
very high ppp (0.16 and 0.2). The final challenge
results revealed that STB algorithms of LaVision
and DLR have succeeded in tracking dataset of
very high ppp (0.16 and 0.2). However, it is un-
certain whether or not the added components for
STB by LaVision and DLR compared to the com-
mercial version, which helps to handle high ppp
dataset, can be easily generalized to other datasets.
Second, in the cases of sparse temporal data
and/or data extracted from complex flows, the
Wiener filter or the polynomial-based predictor
systematically leads to larger particle positions
prediction errors. Consequently, we have found
that STB is less effective and can fail because any
local minimum can trap the simple "Shaking" op-
timization algorithm. From an optimization point
of view, the STB scheme requires the cost func-
tion to be relatively locally smooth to perform well.
This high level of smoothness can not be guaran-
teed when the predictor failed to provide a good
starting point for data with large-time separa-
tion or local complicated flow structure. The con-
sequences of tracking failure are either one track
is terminated prematurely, or one particle is iden-
tified on the wrong track. Schanz et al. (2016) pro-
posed two ways to alleviate those divergence is-
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sues. One way is by adding an initial shake stage
prior to the fine shake stage, so as to provide a
warm start for the fine shake stage. The other
way is by adding post-processing routines. For ex-
ample, the outlier removal procedure allows the
mistracked particle to be removed if the particle
velocity clearly deviates from its neighboring ve-
locity. Those adhoc techniques are crucial since
they can largely increase the quality of the re-
constructed field. However, since they are adhoc
models, they can be challenging to apply to other
datasets depicting different flow scenarios. For ex-
ample, even the simplest adhoc model requires
some hyper-parameters to be fine-tuned against
data, while the fins-tuning process can be trou-
blesome and expensive in real experiments. Be-
sides, some adhoc models can not be generalized
to other flows as they target a specific type of
dataset. We argue that the extensive use of ad-
hoc models reflects the failures of the core track-
ing ability of the LPT tracker. By employing more
powerful tracking schemes, an LPT tracker should
rely less on the adhoc techniques and handle more
experimental cases without too much interference
from experimental practitioners. To obtain such
a robust LPT scheme, we advocate a thorough
revise of the particle tracking optimization prob-
lem.

This paper provides a new interpretation of
the particle tracking problems from the perspec-
tives of both machine learning (ML), and data
assimilation (DA) approaches. LPT is essentially
a Computer Vision (CV) task. Since most of the
best methods for solving CV tasks already benefit
from ML methods, we think that a formalism of
LPT using ML helps to introduce more advanced
ML techniques into our community. The DA tech-
nique infers the best state by combining the ob-
served state with a dynamic model. Compared
to a pure ML approach, DA puts more empha-
sis on controlling the dynamic model. Since parti-
cle image sequences contain real particle motions
whose transport is underlaid by the flow govern-
ing equations, it is essential to consider equally
both information to estimate physically consis-
tent flow fields. This new interpretation proposed
in this paper leads to solving the LPT task based
on the empirical risk minimization paradigm. The
resulting algorithm is named the Kernelized LPT
(KLPT). The word ’kernelized’ stands for the fa-
mous Kernel trick that can be employed to solve
unknown functionals that minimize the empiri-
cal risk. Following the presentation of the frame-
work, we concentrate on improving the accuracy
and the robustness of the particle state estima-
tion procedure, therefore boosting the performance
of the algorithm for sparse temporal data and/or
data extracted from complex flows. We also
establish the link between our framework and an
ensemble DA method (Yang et al. 2015, 2018).

Section 2 recapitulates the STB working prin-
ciples from a statistical point of view. This ‘new’
formulation allows us to understand better why
STB outperforms other 3D-PTV/LPT schemes. More
importantly, we also identify the primary source
of error associated with STB and propose corre-
sponding strategies to overcome this limitation.
In the following section, we show that by employ-
ing the KLPT scheme, the performance is mostly
boosted in accuracy and robustness compared to
STB. Due to the increased robustness of our scheme,
we do not need to consider some ad-hoc tricks
to deal with challenging tracking scenarios. We
show the results of applying KLPT both on a syn-
thetic dataset and a real experimental dataset
against other STB schemes in section 4 and 5,
respectively. We also show in section 6 the re-
sults of applying KLPT on the 1st LPT challenge
datasets.

2 STB’s anatomy

2.1 State space formulation

We start formulating the LPT problem using the
(latent) state-space formulation dealing with the
time-resolved data. First, we recall that the cen-
tral task of LPT boils down to find the same par-
ticle at different acquisition times k over image
frames: 0 → K − 1 where K is the number of to-
tal frames. However, we do not observe the par-
ticle positions directly. Instead, we observe them
through images. Thus we need to model the data
generation process that links the latent variable,
3D particle position X, to the gray-scale values in
images I captured by cameras. We can write the
observation equation at time k as:

Ik,ip = Iip(Xk
p, E

k
p ) + εkp, (1)

where Iip is the observation model for particle p, i
is the camera index, and ε is the uncertainties as-
sociated with this observation model. In analogy
to the active-projection model used in Wieneke
(2012) and Schanz et al. (2016), Ip is a combi-
nation of the camera model M , and the Optical
Transfer Function (OTF), also known as Point Spread
Function (PSF).M links the 3D positionXp in ob-
ject space to 2D position xp in image space. The
OTF takes the particle intensity Ep in addition
to Xp yielding the pixel intensity values in the
vicinity of 2D position xp. Here we denote Iip an
image patch extracted from a small square box
located around the particle’s projection xp on the
recorded image Iirec. If the camera model and the
OTF are well-calibrated, we expect that the im-
age samples create by I resembles the one cap-
tured by the camera. So the objective of LPT is
to find Xk

p that minimized the following loss func-
tion measuring the similarities between the im-
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age records I and the image samples I:

J(Xk
p) =

1

2

∑
i

||Ik,ip − Iip(Xk
p, E

k
p )||2. (2)

A slightly different version is used in Wieneke
(2012) as an iterative reconstruction method fol-
lowing the stereoscopic reconstruction procedure.

J(Xk
p) =

1

2

∑
i

||Ik,ires+p − Iip(Xk
p, E

k
p )||2. (3)

where Ires+p = Ires + Ip and Ires = Irec −
∑
p Ip.

This version is more robust against overlapping
particles. Note that the original notion of image
matching can be traced back to the TomoPIV al-
gorithm, where it solves the 3D voxel intensities.

The particles are subject to the dynamics of
the fluids. More specifically speaking, if we know
the 3D position X of a particle p at time k−1, then
we can model its evolution to time k by a discrete
Markovian nonlinear state mapping operator ϕ:

Xk
p = ϕk(Xk−1

p ) + ξkp, (4)

where ξk ∼ N(0,Qk) denotes the uncertainties
associated with the dynamical model ϕ. This dy-
namic model ϕ is natively recursive, which means
we must know a priori the initial condition X0

p. In
practice, the phase of obtaining the distribution
of the entire particle set X0 is called particle and
track initialization that is generally done before
particle tracking process.

2.2 Why STB works?

Above latent state-space formulation is nothing
but an abstraction of the core algorithm that is
implied in Schanz et al. (2016) in an unseen and
heuristic manner. Indeed, we can express the core
algorithm of STB under the same formulation by
noting that:

– The state predictor operator ϕ in Schanz et al.
(2016) takes the form of the Wiener filter or
the polynomial-based filter. Those filters, in which
the future state depends on more than the closet
history state, can be understood as a higher-
order Markov chain model: Xk

p =
∑n
h=1 λ

hXk−h
p ;

– The optimization approach, used in IPR/STB
for finding Xk

p minimizing the cost function
(2), belongs to a group of model-based derivative-
free trust region optimization methods. To for-
malize STB scheme, we employ a quadratic
form mk(δXp) that locally approximates the
original cost function J(δXp) in terms the par-
ticle’s X coordinate while keeping Y and Z co-
ordinates invariant:

mk(δXp) = c+ gT δXp +
1

2
δXT

pGδXp. (5)

Then with 3 sample points, we can uniquely
determine the coefficients c, g,G, which are all

scalar with respect to a single particle. We need
to compute Iipart 7 times for each particle. Com-
pare to the time dedicated to computing the
image projection, the computing time used to
determine the extreme of the above quadratic
function is trivial;

– The intensity Ep is rescaled in a subsequent
procedure:

Êkp = Ekph[

∑
(Ires+p)∑

(Ip(X̂k
p, E

k
p ))

]. (6)

Before the STB approach, most multi-view 3D-
PTV methods have been built on two pillars: par-
ticle reconstruction (2D peak finding, stereoscopic
reconstruction) and particle tracking. Depending
on the context, the particle tracking procedure
can be done either before or after the stereoscopic
reconstruction procedure. The stereoscopic recon-
struction task is primarily resolved using the epipo-
lar geometry constrain with fully-calibrated cam-
eras. Due to the lack of discriminative intra-particles
features, this reconstruction process can create
many false-positive results, commonly known as
ghost particles, that do not exist in reality. The
tracking procedure, either done in image space or
object space, can be cast as an optimization prob-
lem that searches for the best particle correspon-
dences that minimize some kinematic measure-
ment metrics (Ouellette et al. 2005).

STB uses the state predictor to approxima-
tively reconstruct the particle in 3D object space
for the current frame. Then the reconstructed par-
ticle field is further refined through optimizing
some image-based metrics (e.g. intensity as in Eq.
(2)). Such a scheme has several advantages com-
pared to the classic multi-views-based 3D-PTV ap-
proach. Firstly, the complete stereoscopic recon-
struction for each frame is avoided. In STB, the
whole process is radically accelerated as the Wiener/polynomial-
based filter and the optimization of (2) through
(5) are substantially cheaper. The stereoscopic re-
construction is still needed, but only to reconstruct
the new particles and those untracked ones. Sec-
ondly, the found position is supposed to be more
accurate than those with stereoscopic reconstruc-
tion solely. Each step in the stereoscopic recon-
struction algorithm, e.g., peak finding, stereo-matching,
and triangulation, can introduce errors. In STB,
if the cameras are well-calibrated, the remaining
primary source of error can be attributed to the
OTF calibration. When the cameras and the OTF
are all well calibrated, the effectiveness of the
STB method, therefore, largely hinges on the ac-
curacy of the state predictor. With a good predic-
tor, the STB method starts with an initial particle
field reconstructed using either 3D-PTV or Tomo-
PTV and gradually converges by tracking more
and more particles. The algorithm is considered
converged if all but new particles into the mea-
surement domain are successfully tracked. With-
out an accurate predictor, the mapped particle field
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remains far from the actual particle distribution
such that the simple derivative-free optimization
scheme (5) fails. Even worse, the wrongly pre-
dicted particle may overlap with a nearby particle
resulting in a progressively diverging algorithm.

For sparse temporal data and/or data extracted
from complex flows, the Wiener/Polynomial-based
filter leads to large prediction errors. To resolve
the issue, we can

1. replace the Wiener/Polynomial-based filter with
a physical-based kinematic/dynamic predictor
that reflects well the characteristics of the flow
under investigation:

2. employ a more robust optimization scheme that
is less sensitive to starting values so that we
can still find the global minimum of (2) even
with an erroneous predicted position.

Having reviewed both the advantages and chal-
lenges of STB, we detail and discuss our proposed
method in the next section.

3 Kernelized LPT

In this section, we propose the framework of our
method: the Kernelized LPT. We begin with a suc-
cinct presentation of the kernel methods, and then
we discuss why we choose the kernel methods
over others.

3.1 Tracking-by-Detection with Kernel

Again we recall that the central task of LPT is to
track the same particle over image frames. From
a visual tracking perspective, LPT aims to follow
the small local patch Iip on each camera corre-
sponding to the same particle p. Due to the nature
of the particle image, we can assign the particle’s
3D coordinate Xp to the local patch set Ip denot-
ing the set containing Iip for all cameras:

f : Ip → Xp,

where f is the mapping function from Ip to Xp.
Unlike classic 3D-PTV where f can be explicitly
modeled through 2D peak finding and stereoscopic
reconstruction procedures, we intend to learn f

from data sets composed ofN samples (Ijp,Xj
p)
N

j=1
,

where each sample pair (Ijp,Xj
p) represents a pos-

sible state of particle p. So the problem of track-
ing comes down to match a position with image
patches Irecp∗ on a new record frame. Note that the
subscript p∗ reflects that the image record patch
Irecp∗ is extracted from the neighboring pixels of
a prior position X∗p because the actual position
is unknown. After f is learned, we can compute
the corresponding particle coordinate as: X̂p =

f(Irecp∗ ).
For the current LPT study, we obtain the ran-

dom samples in the following way. First we add

Gaussian noise σ to the position at frame k − 1:
Xj,k−1
p = Xk−1

p + σj,k−1p , then we propagate each
sample from time k − 1 to k using formula (4).
We may need to pertube the position traced back
to k − h where h is the order of the fitted filter
if necessary. Intensity needs to be also perturbed
to obtain distinctive samples. Finally, we rely on
formula (1) to generate image patches Ip.

Interpreting sample for 2D-PTV The notion of sam-
ple is inherited from the machine learning com-
munity, which can be more clearly clarified un-
der 2D-PTV/PIV context. For example, suppose
we know the local patch Ip in the form of a rect-
angle of size m × n at the previous frame, and
we want to track this target at the current frame.
Then we can collect samples in the neighborhood
of Ip. The sampling process can be done either
randomly or densely. The random way is to get a
patch the same size as Ip centered at a different
random position. The dense way is to translate Ip
in x or y direction with a displacement of 1 pixel
at a time. Then we can assign a label y to each
sample. The value of y is arbitrary (e.g. binary or
continuous) and can be tailored to different appli-
cations.

3.1.1 Tracking principle

We propose to learn f using the empirical risk
minimization paradigm. If given a set of particles’
3D positions Xp and their corresponding projec-
tions on several cameras Ip, we can train a tracker
f(Ip) that minimizes the following regularized em-
pirical risk:

R(f) =

N∑
j=1

Q(Xj
p, Ijp, f(Ijp)) + λ||f ||2HK

, (7)

where Q is some measurement function. A pop-
ular choice is the L2 norm Q(Xp, f(Ip)) = ||Xp −
f(Ip)||2.

Generally f is a nonlinear function(al) that links
Ip to Xp. Given the nature of our problem, f ∈ Rd
is necessary a vector-valued function. In the fol-
lowing, we show how to solve for f by minimizing
R using a kernel. The procedure is slightly dif-
ferent from the similar procedure dealing with
a scalar-valued function found on any machine
learning textbook. A more detailed discussion on
kernels for vector-valued function can be found
in Micchelli & Pontil (2005), Álvarez et al. (2012).
The introduction of the regularization term in (7)
reduces possible solution sets and increases the
optimization stabilities. The regularizer is expressed
in terms of the dot product of functions in the Re-
producing Kernel Hilbert Space (RKHS). Inter-
estingly, given this kind of regularizer, according
to the Representer theorem, the solution takes a
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rather special form:

f(I) =

N∑
j

=
κ(Ijp, I)αj , (8)

where =
κ ∈ Rd×d is a matrix-valued kernel func-

tion that compares the similarities between a sam-
ple Ijp and another candidate. αj ∈ Rd is a weight-
ing vector.

Kernel The role of a kernel is to measure the sim-
ilarities between two samples. We list a few forms
of kernel functions in the appendix. For current
study, we define the matrix-valued kernel func-
tion as

=
κ(Ii, Ij) = κ(Ii, Ij)C, (9)

where κ(Ii, Ij) is a scalar-valued kernel function
and C is a d× d matrix encoding the output field
information. The simplest case is to consider κ(Ii, Ij) =

(Ij)T Ii as the dot-product kernel and C as an iden-
tity matrix. In this case, the output field is un-
correlated. The solution form (8) corresponds to
the dual solution of problem (7). Alternatively the
primal solution can be expressed as f(I) = wTφ(I)
where φ maps I to some (nonlinear) feature space.
Such a form of the primal solution changes the
original nonlinear functional minimization to a
linear one in w. The kernel function can be de-
fined as the dot product of two transformed sam-
ples in feature space: κ(Ii, Ij) = 〈φ(Ii),φ(Ij)〉. The
dual solution formulation has the advantage of
avoiding any explicit feature mapping process be-
cause the solution is just a function of the kernel
function.

Learning Inserting the above form about f into
(7) leads to an optimization problem in a large
flat vector α = [(α1)T , · · · , (αN )T ] ∈ RdN . Here
we directly give the solution of α through mini-
mizing R(α):

α = (
=

K + λIdN )−1[(X1
p)

T , . . . , (XN
p )T ]T , (10)

where
=

K is the Gram matrix with the kernel func-
tion =

κij(Ii, Ij) as its block element.

Detection So now, given the camera images Irecp∗ ,
we can directly compute X̂p:

X̂p =f(Irecp∗ )

=
(=
κ(I1p, Irecp∗ ), · · · ,=κ(INp , Irecp∗ )

)
(
=

K + λIdN )−1[(X1
p)

T , . . . , (XN
p )T ]T . (11)

Incremental approach The solution (11) depends
on the inversion of the Gram matrix

=

K. The sta-
bility of the solution can be compromised in cases
where the original gray level I is used as the fea-
ture φ(I), because the elements of

=

K risk of hav-
ing close values, leading to an ill-conditioned ma-
trix. A common and simple technique to improve
the stability of solution (11) is to apply the so-
called data centering to the original feature space
(Shawe-Taylor & Cristianini 2004). In this paper,
we adopt a similar strategy by first centering the
particle’s samples around its mean: X

′j
p = Xj

p −
X̄p, where the mean X̄p = 1/N

∑N
j=1 X

j
p. Then the

corresponding centered image projection is repre-
sented by I′jp = Ijp− Īp where Īp is the projection of
f(X̄p). The tracking solution takes the same form
as (11) while replacing the original data sample
pairs by the centered one (I′jp ,X

′j
p ) and the cam-

era images Irecp∗ by its residual Iresp∗ = Irecp∗ − Īp.
The resulting optimal increment X̂

′

p needs to be
added to the mean X̄p to retrieve finally the par-
ticle’s optimal position finally. Because the cen-
tered feature vector I′p measures the relative in-
tensity variation instead of the absolute intensity
levels, the resulting kernel function values are
therefore more distinct to each other, leading to
a more stable solution.

Our method is thus preceded as kernelized to
pay attribute to the revolutionary work of Ker-
nelized Correlation Filter (KCF) (Henriques et al.
2014) from which our initial idea is inspired. How-
ever, KCF is a 2D general visual tracking scheme,
while our approach is a 3D object-space tracker
that leverages the kernel function execution in
image space and features a matrix-valued kernel
function as well.

3.2 Why kernel method?

We choose the kernel method over other methods
mainly due to its flexibility, as explained in the
following.

3.2.1 Joint intensity optimization

It is possible to estimate the intensity of one par-
ticle Ep in addition to its 3D location. By con-
structing the augmented data sample pairs:

(Ijp, ([(Xp)
T , Ep]

T )j)Nj=1,

we can rely on the same forms of the formula (7),
(8), (10) and (11) by replacing Xp with [(Xp)

T , Ep]
T

and noting that the dimension of unknown vector
is now d = 4.

3.2.2 Flexibility with kernel choice

The famous kernel trick allows us to employ any
proper kernel function to compute X̂p. According
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to our experience, a simple dot product kernel 〈•, •〉
provides satisfactory results for raw image inten-
sity features Ip. Still, it is straightforward to switch
to other relevant kernel functions more adapted
to the dataset. For example, The simple dot prod-
uct kernel between two local raw image patches
can be cast as a cross-correlation operation. In
the same spirit, we can consider using the nor-
malized cross-correlation (NCC), which can po-
tentially perform better if the intensity fluctuates
a lot between two subsequent steps. When consid-
ering different kernel functions, we must make
sure it is a valid kernel. Interested readers can
find in Shawe-Taylor & Cristianini (2004) or Schölkopf
& Smola (2002) a strict mathematic formulation
on how to prove if a function is a valid kernel.
Here we give some guidance on how to justify a
valid kernel through some simple observations.
First, the kernel function has to be symmetric:
κ(x, y) = κ(y, x). Second, since the kernel func-
tion is equivalent to an inner product in some
feature space, it should satisfy κ(x, y) > 0. Fi-
nally, the resulting Gram matrix is positive def-
inite. These kernels are positive definite kernels,
and they measure the similarities between two
input samples. A dissimilarity measure, e.g. the
squared sum-differences (SSD) ||x − y||2, can be
generally transformed to a similarity measure by
g = e−α||x−y||

2

with an arbitrary scalar coefficient
α (Haasdonk & Bahlmann 2004). In this way, distance-
related function can also be employed as valid
kernel function for (10) and (11).

3.2.3 Working with local image features

In multi-view PTV, we deal mostly with raw im-
age intensities. However, it is straightforward to
replace those raw intensity features with more
meaningful local image features. Changing of ker-
nel function as done in section 3.2.2 implies a
feature space transformation without explicitly
transforming. It remains the only way to map the
original feature to an infinite feature space since
only the dot-product is needed. However, some
datasets can be beneficial to use an explicitly de-
signed feature extractor Φ. For example, the cen-
sus transformation (Zabih & Woodfill 1994) can
transform a single-pixel intensity to a vector of
bits encoding the relative intensity variations of
the target pixel w.r.t its neighbors. This process
is widely used to encode the intensity’s local vari-
ations into the feature space. After the feature
transformation, we may also need to adjust the
kernel function. For example, the Hamming dis-
tance can be employed to compute the (di)similarities
of two transformed census samples. Since it is a
distance function, we need to alter the final func-
tion form such that it becomes a valid kernel func-
tion suited for our algorithm. Another interesting
alternative is to use features that are learned by
a deep neural network (DNN). To that end, we

need to train a deep feature descriptor based on
data encapsulating the local image patch with a
positive and a negative pair, respectively similar
to Balntas et al. (2016). Introducing those kinds
of features can also shed light on the new sample
generation process.

3.2.4 Obtain optimized track simultaneously

The link between the kernel and the differential
equations has been established in Steinke & Schölkopf
(2008). In equation (7), the regularizer is expressed
in terms of the dot product in the RKHS. An alter-
native way is to express the regularization term
as the Euclidean dot product ||Rf ||2, where R is
some regularization operators. It has been shown
in Steinke & Schölkopf (2008) that the two reg-
ularization forms are identical under some con-
ditions. We can indeed infer the kernel function
through the regularization operator. In other words,
employing this kind of regularization operator R

pre-selects the feature space to which f belongs.
However, this feature space is also an RKHS equipped
with kernel κ. This relationship has profound im-
plications. For one thing, the fluid dynamic of-
ten takes the form of a differential equation that
regulates both spatially and temporally the evo-
lution of the flow (including the tracers). For in-
dividual particle, considering only the temporal
regularity, the function f now relates Ik,k+l−1p to
Xk,k+l−1
p . The upper script k, k + l − 1 indicates

the variable encapsulates its values at different
time snapshots. We know from equation (4) that
the 3D positions Xp at different times are sub-
ject to the temporal constraint imposed by ϕ. It is
always possible to find the corresponding R that
regulates the output of f : now being one track in-
stead of one position. In appendix A, we provide
detailed mathematical formulations on obtaining
R from dynamical constraints. Then we can com-
pute the equivalent kernel function from R. Fi-
nally, it is possible to obtain simultaneously the
optimal track of particle p ranging from frame k
to k+l−1. This strategy yields the smoothed parti-
cle trajectory directly. We use the term ‘smoothed’
in the strict sense indicating any particle posi-
tions Xp on the obtained trajectory are optimally
conditioned on all observed particle images from
frame k to k + l − 1. A track filtering component
is also discussed in the STB paper (Schanz et al.
2016) that features a third-order smoothing B-
spline. Under this terminology, smoothing, aim-
ing at decreasing the roughness of the temporal
trajectory, is used to de-noise the noisy raw tracks.
Thus our strategy is different from the track fil-
tering component. Our track reconstruction strat-
egy is similar to the time-segment assimilation
technique (González et al. 2019) that tried to re-
cover the temporal evolution of the Eulerian ve-
locity field governed by the vorticity transport equa-
tion and Poisson equation from particle tracking
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data measured at multiple time instants. This added
feature to KLPT would be indeed helpful and de-
serves its own dedicated paper to fully shine. We
limit ourselves to this general discussion to show
that KLPT is extremely powerful and readily ex-
tendible to cover more advanced topics regarding
either the dynamics or the image data.

In this article, we focus on the algorithm based
on the core scheme discussed in section 3.1 en-
hanced by the joint intensity estimation strategy
discussed in section 3.2.1. We do not extend our
algorithm to cover other more advanced features
discussed in section 3.2 as the simple raw fea-
ture plus the dot product (cross correlation) ker-
nel has already yielded excellent results for our
test datasets that can hardly be outperformed by
employing more sophisticate features or kernel
functions. Besides, KLPT with the simple raw fea-
ture and the dot product kernel requires the low-
est computational time, only slightly larger than
STB.

3.3 Improvements compared to Ensemble-based
Data Assimilation approach (EnDA) (Yang et al.
2018)

Our strategy in this paper is different from an
earlier version of KLPT discussed in Yang et al.
(2018). In Yang et al. (2018), the EnDA solution is
formulated by using the ensemble-based method
to solve equation (2) with an additional regular-
ization term ||Xk

p||2. The context of this strategy
is still sample-based so we stick to the same no-
tations defined in section 3.1.

The basic idea of EnDA is first to linearize
the original non-linear cost function around the
mean prior state X̄p, then we search for an in-
crement X′p = Xp − X̄p instead of the original
Xp. Such manipulation leads to a solution simi-
lar to the Kalman filter with the state’s covari-
ance matrix being approximated by its ensem-
ble covariance counterpart defined over the cen-
tered samples [X

′1
p , · · · ,X

′N
p ]. Interested readers

can find additional details of the EnDA approach
in Yang et al. (2015, 2018). Here we directly give
the EnDA solution as:

X̂
′

p = [X
′1
p , · · · ,X

′N
p ][(

→
I′)T

→
I′ + λIN ]−1(

→
I′)T Iresp∗ ,

(12)

where
→
I′ is a vector collecting the centered data

[I′1p , · · · , I
′j
p , · · · , I

′N
p ].

Interestingly, we can show in the appendix that
the solution given in (12) is indeed a particular
case of formula (11). The interrelations between
the kernel solution following the empirical risk
minimization paradigm and the EnDA solution
following the data assimilation/hidden Markov model
is probably more profound and beyond the scope

of this paper. However, in the following, we high-
light a few differences and links between the two
approaches. Firstly, we are free to choose any rel-
evant kernel function in (11) while in (12) only
the simplest dot-product can be considered. Sec-
ondly, the DA approach emphasizes on the per-
spective of controlling the parameters of the dy-
namical model ϕ. In contrast, the kernel approach
interprets the dynamical model as a regulariza-
tion term since it emphasizes more on the data.
Lastly, for the stereoscopic system of 3D flow vi-
sualization, the data sample Ijp, which is used to
either approximate the error covariance for EnDA
approach or formulate the data pairs for kernel
approach, is not readily available in reality but
generated through first the dynamical model (4),
then the observation model (1). These models’ va-
lidities hinge on whether the dynamical model ϕ
explicates well the nature of the flow and whether
the camera model and the OTF model are well-
calibrated. For our applications, many good dy-
namical models do exist that can be tailored for
different flow configurations. The calibration of
the stereoscopic camera system has been studied
extensively over the years and can reach a cali-
bration error lower than 0.1 px. The OTF calibra-
tion is a relatively new topic, and generally, it is
not very difficult to obtain a good accuracy even
for blurred particle images Schanz et al. (2012).
Using synthetic-based models to infer pertinent
knowledge from real data, although seemingly para-
doxical and inconsistent, is adopted by many ML
approaches. Indeed many state-of-art deep learn-
ing methods are trained on synthetic data but can
generalize well to real data.

3.4 Summary of KLPT Algorithm

STB includes several other building blocks to en-
sure that the whole LPT scheme works on stereo-
scopic image sets. We also implemented those build-
ing blocks in addition to the core tracking scheme
of KLPT. Below we list some of those important
modules and briefly mention our implementing
details:

– The calibration of the camera model and the
OTF model is done according to Tsai (1987),
Soloff et al. (1999) and Schanz et al. (2012),
respectively;

– The particle initialization procedure builds the
initial tracks for the first few frames (usually
4). There are various ways to obtain this ini-
tial field. We have implemented two methods.
When the Eulerian velocity field for the first
few frames is roughly known, we use a nearest-
neighboring-based tracklet creation algorithm.
Otherwise, we use a four-frame-based tracker
(Ouellette et al. 2005);

– The procedure for adding particles features an
IPR-like procedure to retrieve the positions of
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new particles entering the domain as well as
the positions of lost particles. Then a nearest-
neighboring-based tracklet creation algorithm
is used to produce tracklet of short length (≤
4); A particle is removed when its position ex-
its the domain or when its rescaled intensity
drops under a certain threshold.

– The post-processing techniques featuring e.g.
the track filtering algorithm and the outlier
removal procedure (Schanz et al. 2016). We do
not implement any track filtering algorithm.
The outlier removal algorithm is implemented
for real experiments but not used for synthetic
tests.

The whole KLPT algorithm in summarized in the
following Algorithm 1.

Algorithm 1: KLPT
1: Calibrate cameras, record particle image sequences
Irec ranging from 1 to K, calibrate OTF.

2: Choose adequate kernel functions =
κ.

3: Build initial track X1∼4 from frame 1 to 4 using
triangulation or IPR.

4: At frame k − 1, for each particle, generating samples
Xj

k−1,p by adding perturbations to Xk−1.
5: Predict each sample using equation (4), note that the

intensity follows a constant evolution: Ek = Ek−1.
6: Generate sample pairs (Ijp,Xj

p) using (1) and crop
Irecp∗ for camera records.

7: Obtain X̂k,p through equation (11).
8: Proceed IPR on residual image to identify

overlapping/new particles and build tracklet.
9: Check convergence criteria, if met, set k := k + 1 and

go to step 4, otherwise resample dataset (Ijp,Xj
p) and

go to step 7.

4 Synthetic data assessment

4.1 Synthetic particle images creation and
experiment configuration

To assess our proposed method quantitatively against
the STB scheme, we have created synthetic im-
ages based on datasets of the Eulerian velocity
of a Large Eddy Simulation (LES) (Parnaudeau
et al. 2008). The data depicts a turbulent wake-
flow past a circular cylinder at Reynolds number
equal to 3900. We chose one snapshot of the veloc-
ity field in a subdomain of size 6D× 1.9D× 1D of
the full simulation domain. The subdomain cen-
ter is located 6D downstream from the cylinder
axis in the wake flow (cf. Figure 1).

The initial distribution of locations and inten-
sities of the virtual particles are randomly gener-
ated within the subdomain. Each particle is then
transported according to its velocity calculated from
trilinear interpolation of the velocity vectors on
the nearest neighboring LES grids. We use the
first-order Euler method to solve for the predicted

6D

Fig. 1: Instantaneous vorticity isosurface colored
by stream velocity in a subdomain of the LES of
Parnaudeau et al. (2008).

particle position. Although this case is stationary,
the flow field is characterized by fast spatial fluc-
tuations induced by turbulence, which is drasti-
cally different from the smoothly and slowly vary-
ing velocity field used in other studies. When the
time separation between two consecutive snap-
shots ∆Tobs is relatively short compared to the
LES simulating time step δt, the polynomial-based
predictor remains effective. However, the predic-
tion errors become higher with larger ∆Tobs since
the temporal distribution of observations cannot
capture the fast spatially changing velocity. Un-
der such circumstances, we are inclined to have
larger positional errors and lose track of more
particles. To evaluate our method performance and
STB for different temporal resolutions, we em-
ployed two different time separation levels for∆Tobs
(3δt and 15δt respectively). The mean particle dis-
placement was around 2 pixel in the case of∆Tobs =

3δt while the case ∆Tobs = 15δt led to a larger dis-
placement of nearly 10 pixels.

The virtual particles transported by the flow
are projected onto four virtual cameras (1280 ×
800 pixels each) under a cross-like pose config-
uration with a rotation of ±30◦ around x and y

axis, respectively. All cameras are pre-calibrated
using both the polynomial mapping model and
pinhole model. In terms of the OTF parameter
(Schanz et al. 2012), we employed a uniform two-
dimensional Gaussian form resulting in a con-
stant particle diameter around 2 px. The tested
seeding density varied from 0.05 to 0.1 ppp.

4.2 Evaluation strategy

In section 3.4, we have discussed some critical,
non-tracking modules that play vital roles in de-
termining the flow reconstruction quality. Natu-
rally, we need to separate their impacts on the re-
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construction results if we want to emphasize the
impact of the core tracking scheme. Thus in this
work, we propose to compare our KLPT scheme
to both an academic version of STB code imple-
mented in our group (denoted by STB-in-house)
and a commercial version of STB implemented in
the software Davis 10 (STB Davis).

For Davis 10, the camera model and the OTF
model are re-calibrated from synthetic data sets.
The camera model obtained in Davis resulted in
a calibration error of 0.01 px, which was at the
same level as our calibrated camera model for
KLPT/STB-in-house. Unlike the camera model,
the errors associated with the calibrated OTF pa-
rameters of Davis are not directly available. We
also noticed that the OTF calibration module in
KLPT/STB-in-house is highly accurate because the
structure of the module is implemented the same
as the form of the proper OTF function. On the
one hand, we slightly modified the calibrated OTF
parameters for KLPT/STB-in-house to provide a
fair comparison. On the other hand, we adopted a
trial-and-error strategy such that the modulated
OTF parameters (intensity and radius) for Davis
yielded the lowest possible reconstruction errors.

To eliminate the impact of different particle
initialization realizations on the results, we pro-
ceed as follows: first, we run the STB program
in Davis after importing our synthetic image and
the camera mapping function. After the STB run
in Davis, we extract the particle field of frames
1 to 4 from Davis’s output field. Then we use this
four-frame particle field to initialize STB-in-house
and KLPT.

Still, some differences remain between every
two algorithms:

– Between the KLPT method and the STB-in-
house: only the tracking scheme is different.
The rest of the LPT approach, including the
particle initialization and the particle adding/deletion,
is common to both STB and KLPT. We do not
employ any track filtering as well as outlier
removal procedure for the synthetic data.

– Between the KLPT method and the STB-Davis:
each method is entirely different such that the
differences must be interpreted as the conse-
quence of the whole algorithm, not just related
to the tracking scheme.

– Between the STB-in-house and the STB-Davis:
only the tracking scheme is the same (the STB-
Davis is also based on Schanz et al. (2016) but
is not open source).

Similar to Schanz et al. (2016), we compare
the reconstructed particle fields from different meth-
ods against three metrics: the mean error of de-
tected particles, the fraction of undetected parti-
cles, and the fraction of tracked ghost particles.
Unlike Schanz et al. (2016), both our implemen-
tation and Davis do not keep track of the number
of ghost particle unless it is on a track (length

≥ 4). Also, we observed that the levels of ghost
particles for all three schemes were equally low
for most of our tests. We considered that a recon-
structed particle was detected if the reconstructed
particle was found by searching the surroundings
of every true particle within a certain radius (1
px) from the reference volume. Then we can com-
pute the mean error of detected particles. Once
an true particle was paired, it was removed from
the reference pool. Then we count the size of the
left reference pool as the number of undetected
particles. We also considered that a tracked par-
ticle was a ghost if no true particle can be found
by searching the surroundings of the tracked par-
ticle within a certain radius (1 px). We used 50
snapshots in total, and we checked the time evo-
lution of the above quantities starting from the
5th snapshot.

4.3 Results on perfect image

We conducted the first experiment on noise-free
images. We plotted the temporal evolution of mean
positional error of detected particles, the fraction
of undetected particles and the fraction of tracked
ghost particles obtained by the three schemes at
different ppp level for two time separation,∆Tobs =

3δt (fig. 2) and ∆Tobs = 15δt (fig. 3) respectively.
We also summarized in table 1 the values of the
three metrics averaged over frame 40-44 for dif-
ferent approaches. The period ranging from 40-
44 frames corresponds to the converged phase for
most of our tests. We observe immediately that
KLPT systematically outperforms the other two
STB realizations for all tests.

The data sets generated with a small-time sep-
aration (3δt) is considered a more straightforward
case for all algorithms since the predictor per-
forms reasonably well. Under small time separa-
tion, the convergence processes of all three schemes
are successful and take a similar amount of time-
steps (immediately for 0.05 ppp and 5 time-steps
0.075 ppp). At 0.1 ppp, KLPT requires fewer time-
steps to reach the convergence than STB-Davis
(12 time-steps versus 17 time-steps). The conver-
gence of STB-in-house at this high-density image
is not evident as the mean error, the levels of un-
detected particles, and tracked ghosts still reduce
even after the 45th frame. When time separation
becomes larger (15δt), we observed different con-
vergence behaviors starting at 0.075 ppp. At this
particle density level, STB-Davis converge almost
instantly after the initialization. KLPT and STB-
in-house converge at the 10th time-steps, despite
that STB-in-house is inclined to diverge after sev-
eral snapshots being processed. The final values
of fraction of undetected particles reached up to
17% which are one time larger than the one ob-
tained by KLPT and STB-Davis. For higher parti-
cle image density (0.1 ppp), STB-Davis converges
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Time separation 3δt 15δt
Mean drift (px) 2 10

PPP 0.05 0.075 0.1 0.05 0.075 0.1
Mean error of STB Davis 0.02992 0.05185 0.06890 0.03689 0.08791 0.1207

detected particles [px] STB-in-house 0.01862 0.02206 0.02915 0.02773 0.03819 0.2769
KLPT 0.01729 0.01983 0.02181 0.02517 0.03841 0.0500

Fraction of STB Davis 0.349% 0.382% 0.481% 7.083% 9.117% 16.36%
undetected particles [%] STB-in-house 0.437% 0.881% 1.759% 4.275% 17.17% 81.75%

KLPT 0.273% 0.331% 0.516% 1.931% 8.585% 16.98%
Fraction of tracked STB Davis 0.01% 0.18% 0.163% 0.117% 0.423% 1.39%
ghost particles [%] STB-in-house 0.01% 0.0533% 0.1805% 1.058% 3.119% 34.55%

KLPT 0.01% 0.0147% 0.0245% 0.333% 1.011% 2.891%

Table 1: Comparison of KLPT and STB for perfect image sets averaged over snapshot 40-44

faster than KLPT (10 time-steps versus 15 time-
steps). STB-in-house diverges entirely and can not
yield anything useful.

The complicated behaviors of the three sys-
tems in terms of convergence have to be attributed
to the particle adding procedure. Indeed, STB-
Davis employs effective triangulation and track-
let creation procedures to introduce more parti-
cles into the system early after the initialization.
The nature of triangulation and tracklet creation
procedures do not depend on the central prediction-
correction scheme, therefore, exempted from the
effects introduced by large time separation. The
failure of STB-in-house at high ppp shows that
the same triangulation and tracklet creation func-
tions used by both KLPT and STB-in-house are
relatively inefficient. Still, KLPT can overcome
this weakness and achieve the same level of con-
vergence as STB-Davis.

We also observe, that regardless of the time
separation and the particle image densities, the
levels of undetected particles and tracked ghosts,
obtained from STB-Davis, are almost always sim-
ilar to those obtained from KLPT (except for a
fraction of undetected particles at 0.05 ppp). Nev-
ertheless, the mean positional errors obtained from
STB-Davis are substantially larger than KLPT,
which leads to concrete and significant improve-
ments of KLPT over STB-Davis. Unlike STB-Davis,
STB-in-house showed some difficulties in conver-
gence at medium-high ppp where STB-in-house
yields an error level similar to KLPT but with the
levels of undetected particles and tracked ghost
much higher than KLPT and STB-Davis.

The distinct performance of STB-Davis and STB-
in-house is more deeply connected to the trade-off
between robustness and accuracy. Here we rely
on more intuitive interpretations of the two con-
cepts without defining them rigorously. The ac-
curacy of the algorithm can be directly linked to
the mean error of detected particles. A more ro-
bust algorithm tends to track more true particles
and less false (ghost) particles as for robustness.
Thus, the fractions of undetected particles and
the tracked ghost are a good indicator of the al-
gorithm’s robustness. We give examples of how
the natural trade-off between robustness and ac-

curacy manifests itself during the particle track-
ing process. Particle overlapping is one of the rea-
sons why a tracked particle becomes lost. Sup-
pose one particle located on the overlapped re-
gion should belong to our target track, but the
current algorithm failed to identify the particle
for the target track. Then we modify the algo-
rithm allowing the target track to continue on the
overlapped particle. Inevitably this more robust
version tends to track the wrong particle in the
same overlapping region that in reality belongs
to another track. Although the error of the mis-
tracked particle stays the same as if its original
track tracked it, the original track can terminate
prematurely. Besides, the target track is likely to
end at the next frame as the mistracked particle
may lead to an unrealistic prediction. In all, this
misinformation results in a degeneration of aver-
age errors.

Since both STB implementations feature the
same core tracking scheme, we find that the added
robustness of STB-Davis comes from its other non-
tracking modules (e.g. particle adding as mentioned
above, outlier removal... see section 3.4). However,
the added robustness is at the cost of sacrificing
its accuracy compared to STB-in-house featuring
a naive implementation of those non-tracking mod-
ules. Interestingly, KLPT, with the same naive
strategy on non-tracking modules, yields the best
results both in terms of accuracy and robustness.
More precisely, the result obtained by KLPT is si-
multaneously on a par with or better than the
best possible result obtained by each STB real-
ization that maximizes either accuracy or robust-
ness, respectively. Hence we can draw the follow-
ing conclusions. Even though the non-tracking mod-
ules significantly influence reconstruction qual-
ities, it is the core tracking scheme that deter-
mines the upper limit of the reconstruction qual-
ity. Bounded by this limit, one has the trade-off
between robustness and accuracy. Besides, com-
pared to STB, KLPT can increase this upper limit
and yields virtually better particle fields. Finally,
we did not need to introduce a very elaborate non-
tracking scheme into KLPT to achieve the similar
robustness as a commercial version of STB.
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Fig. 2: Comparison of results produced by KLPT,
STB-in-house and STB-Davis at time separation
3δt for different ppp levels: (a) mean positional er-
ror of detected particles; (b) fraction of undetected
particles; (c) fraction of tracked ghost particles.
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Fig. 3: Comparison of results produced by KLPT,
STB-in-house and STB-Davis at time separation
15δt for different ppp levels: (a) mean positional
error of detected particles; (b) fraction of unde-
tected particles; (c) fraction of tracked ghost par-
ticles.
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4.4 Effects of image noise

STB is sensitive to image noises because the opti-
mization scheme evaluating the summed-square-
differences (3) cannot distinguish between the im-
age residual and the image noise. KLPT can be
potentially more robust against image noises if a
proper kernel function that uncorrelates the noises
in (11) is employed. However, since we only test
LPT with a simple dot product kernel function in
this article, it is unclear whether KLPT can per-
form better than STB with noisy images. To as-
sess the performance of two approaches, we con-
ducted different series of tests by adding noises
to synthetic image sequences at two particle den-
sities (ppp = 0.05 and ppp = 0.075) with time sep-
aration ∆Tobs = 7.5δt.

Besides a negative effect on the tracking scheme,
image noises also affect the triangulation process
for adding particles. For STB-Davis, it is impos-
sible to separate the two effects.Thus, it is more
consistent to compare the performance of KLPT
and STB-in-house since the two algorithms fea-
ture the same triangulation implementations. We
chose a medium time separation 7.5δt because test-
ing on smaller time separation is relatively too
simple for both approaches. In comparison, larger
time separation leads to an early divergence for
STB even without noise.

We generated three extra data sets by adding
levels of noise to the original noise-free image data.
The noise follows Gaussian distribution with zero
mean and different variance. We characterized
the noises using the peak signal-to-noise ratio (PSNR),
which is defined as

PSNR = 10log10(
d2

MSE
),

where d is the dynamics of the gray level of the
signal, and MSE is the mean square error com-
puted from the noisy image and the original noise-
free image. The three noise levels correspond to
20 dB, 30 dB, and 40dB in PSNR. Note that the
quality of the image is poorer with low PSNR val-
ues. Usually, we consider the images with PSNR
of 30 to 40 dB are of good quality. Preprocessing is
required for images with a PSNR of 20 dB to re-
move the noises. Nevertheless, similar to Schanz
et al. (2016), we do not apply any image prepro-
cessing techniques in advance to check the ro-
bustness of the tracking schemes against noises.
We show in figure 4 the patches extracted from
the same locations of the full image at four differ-
ent noise levels.

We still evaluated the three metrics (mean po-
sitional error, levels of undetected particles and
tracked ghost) to assess the performance of KLPT
and STB. Figures 5 and 6 show the temporal evo-
lution of the three metrics for ppp=0.05 and ppp=0.075,
respectively. We also highlight in table 2 the val-

ues of three metrics averaged over frames 40-44
for different approaches.

We observe that KLPT (red curves) yields sys-
tematically better results than STB (blue curves).
The two methods provide the most comparable
results at ppp=0.05 and lower noise levels (noise-
free and 40 dB). With a medium noise level at 30
dB, mean errors obtained by KLPT are 30% lower
than those obtained by STB. The level of unde-
tected particles of KLPT is 0.7%, which is 80%

lower than STB and the level of tracked ghost
of KLPT is 0.07%, which is 90% lower than STB.
At the high noise level (20 dB), STB fails to con-
verge with 83% of the true particles becoming un-
detected. It also produces 39% tracked ghost level,
which suggests that nearly 1 out of 3 particles
found by STB were ghosts. On the contrary, KLPT
still produces acceptable results characterized by
only 14% for undetected particles and 5% for tracked
ghost particles. At higher particle image densi-
ties (ppp=0.075), figure 6 and table 2 exhibit a
more prominent differences between KLPT and
STB. KLPT can produce consistently good results
with only a few particles undetected or tracked as
ghosts. STB only provides acceptable results for
medium noise level with 13% of true particles un-
detected and a mean positional error 70% higher
than KLPT for low and medium noise levels. A
high noise level (20 dB) marks the divergence of
KLPT that captured only 50% of true particles.
The tracked ghosts of KLPT (12%) are slightly
larger than STB (9%). However, STB is only able
to track 10% true particles. Such a low level in-
dicates that most tracklets (length ≤ 3) recon-
structed by STB tend to terminate prematurely
as STB’s optimization is corrupted by noises. Al-
though the same procedure for adding tracklets
was also implemented in KLPT, KLPT success-
fully developed a large portion of tracklets into
valid tracks owning to the robustness of its opti-
mization strategy.

4.5 Computational resource

In both STB and KLPT approaches, the computa-
tional time is dominated by the repeated execu-
tion of OTF. As a result, the CPU time per snap-
shot of KLPT with eight runs of OTF is about 15%
more than that of STB, requiring seven runs of
OTF. However, the scalability of KLPT is higher
since an ensemble can be parallelized efficiently.
On the memory side, KLPT is memory demand-
ing, and the memory required by KLPT is a factor
of sample members higher than STB under the
same ppp level. Nevertheless, such memory us-
age is still affordable considering that any mod-
ern computer is equipped with several tens of GBs.
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PPP 0.05 0.075
PSNR noise free 40 dB 30 dB 20 dB noise free 40 dB 30 dB 20 dB

Mean error of STB 0.00685 0.02071 0.05582 0.3029 0.01872 0.03157 0.07549 0.373
detected particles (px) KLPT 0.00505 0.01589 0.03822 0.1413 0.01199 0.02245 0.04469 0.2051

Fraction of STB 1.018% 1.259% 3.443% 83.726% 6.269% 6.897% 13.969% 90.168%
undetected particles (%) KLPT 0.521% 0.52% 0.774% 14.767% 1.406% 1.455% 2.265% 50.634%

Fraction of tracked STB 0.09% 0.197% 0.734% 39.083% 1.184% 1.416% 2.327% 9.477%
ghost particles (%) KLPT 0.026% 0.054% 0.072% 5.304% 0.193% 0.194% 0.426% 12.41%

Table 2: Comparison of KLPT and STB for noisy image sets averaged over snapshot 40-44.

(a) (b)

(c) (d)

Fig. 4: Local patches of image samples of four
noise levels (PSNR values): (a) noise-free; (b) 40
dB; (c) 30 dB; (d) 20 dB.

5 Experimental results

5.1 Experimental setup

The experiments were carried out at the OPAALE
research unit’s fluid mechanics facilities, of the
french national institut for agriculture, food and
environment (INRAE) located at Rennes in France.
The water tank and apparatus to generate the
impinging jet flow was provided by the LaSIE from
the University of La Rochelle in France. The de-
tails of the different jet flow configurations avail-
able with this facility can be found in Sodjavi et al.
(2016). Originally, the measurements were designed
and carried out to provide TomoPIV results for
different type of nozzles, synchronized with wall
electrodiffusion measurements. In the present study
we use the particle image database to perform
LPT for the jet flow with an axisymmetric con-
vergent nozzle with an exit diameter D = 7.8 mm.
The nozzle exit flow velocity was adjusted so that
the Reynolds number based on D was equal to
1250. The distance between the nozzle exit and
the ground was set to 24 mm (' 3D).

Four cameras, Phantom Miro M310 (1, 280 ×
800 pixels at max 3260 Hz) CMOS arrays (12-bit
depth, 20 µm pixel size), were equipped with Nikon
105 mm Macro F2.8 focal length lenses set to F22,
and arranged in the same plane at angles as shown

in Fig. 7, in order to measure the wall impinged
region of the flow. Prisms were used at the front
glass window of the water tank to reduce the dis-
tortion created by the air-glass-water interfaces
for each camera. The Scheimpflug condition was
set with a double-angle system designed by Dan-
tec to optimize the focus throughout the measure-
ment volume.

The flow was seeded, with hollow glass spheres
of 9− 13 µm in diameter and 1.1 g/cm3 in density,
to a particle image density of approximately 0.03
ppp. Illumination was provided by a Litron LDY
300 laser with pulsed energy of 15mJ at 1kHz
and 19mJ at 0.2kHz. The laser beam diameter
of 4 mm was shaped into a sharply defined illu-
minated volume of section 35 mm× 24 mm, intro-
duced from the top of the tank, thanks to a LaV-
ision system composed of spherical and cylindri-
cal lenses, followed by a knife-edge slit. Further-
more, the laser beam was back-reflected through
the measurement volume by a mirror placed at
the bottom of the tank.

The images used in the present study were ac-
quired at a frequency of 500 kHz. The time de-
lay between two laser pulses was set at 1000 µs.
Two thousand image pairs were recorded with
the LaVision Davis system. Calibration was per-
formed with a two-depth level calibration target
(Type 7 from LaVision), using the front and back-
side of the plate, translated through the illumi-
nated volume. The volume self-calibration approach
of Wieneke (2008) was performed to reduce the
calibration error to less than 0.2 pixels after some
iterations. The effective measurement volume was
equal to 24 mm×51 mm×35 mm corresponding ap-
proximately to 3D×6.5D×4.5D. Figure 8 shows a
TomoPIV reconstruction of an instantaneous ve-
locity field, using Davis 8 with the SMART algo-
rithm followed by cross-correlation analysis with
a final interrogation volume size of 32 × 32 × 32

voxels at 50% overlap. In the following to assess
our proposed KLPT approach, we cropped the im-
ages such that the resulting domain of interest
was reduced to a volume of 16× 41× 20 mm3 cor-
responding approximately to 2.1×5.3×2.6D3, into
the complex flow region near the wall.

Similar to synthetic tests, we initialize KLPT
run with the first four-frame tracks obtain by STB-
Davis to provide a fair comparison. The camera
model as well as the OTF are re-calibrated in KLPT
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Fig. 5: Comparison of results produced by KLPT
and STB at ppp=0.05 for different image noise
levels: (a) mean positional error of detected parti-
cles; (b) fraction of undetected particles; (c) frac-
tion of tracked ghost particles.
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Fig. 6: Comparison of results produced by KLPT
and STB at ppp=0.075 for different image noise
levels: (a) mean positional error of detected parti-
cles; (b) fraction of undetected particles; (c) frac-
tion of tracked ghost particles.
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(a)

(b)

Fig. 7: Experimental arrangement of the volu-
metric PIV system: (a), Schematic of the volumet-
ric PIV camera configuration; (b), Photograph of
the experimental setup.

Fig. 8: TomoPIV reconstruction with SMART
of the instantaneous wall-normal velocity com-
ponent superimposed on an isosurface of the
Lambda2 vortex criteria, in an impinging jet flow
at Re = 1250.

code using real data. Real experimental data are
characterized by a higher level noises that give
rise to large amount of outliers if not properly
handled. We implemented an outlier removal pro-
cedure that checks both the spatial and temporal
coherences.

5.2 Tracking evaluation compared to STB

5.2.1 Particle trajectory analysis

We plot in figure 9 the tracked particle trajectory
colored by their ID and observed at frame number
40. Note that only tracks passing through frame
40 are shown. Those tracked particles either ter-
minated before or started after the 40th frame
are not displayed. Figure 9a shows all valid tracks.
KLPT (9800 tracks) and STB-Davis (11000 tracks)
perform equally well at the free jet zone, where
the velocity is high, but acceleration is low. They
also captured most of the tracks at the ambient
region where the particle moves slowly. However,
we also observe that KLPT reconstructs more and
longer tracks at the impinging region where the
acceleration is high. More specifically, at the end
of the free jet and at the beginning of the wall jet,
the tracks gained by KLPT are dominated by blue
color that is reconstructed at an earlier stage. For
a clearer view of those tracks, we also plot in fig-
ure 9b the trajectories of the first 3000 tracks re-
constructed right after the common initialization
stage to fully demonstrate the power of KLPT.

We can observe from both figures that for STB,
there are practically no blue tracks (reconstructed
at an earlier stage) but more red tracks (recon-
structed at a later stage) near the impinging re-
gion. It indicate that STB Davis is likely to lost
track when the particle arrives near the imping-
ing region, although STB can effectively restart
the track later. KLPT can build longer tracks and
follow them across this highly accelerated imping-
ing region. The same observation is made at the
wall jet development region where the turbulence
is high. KLPT also outperforms STB significantly
both at the impinging region and the wall jet de-
velopment region. These regions feature complex
dynamics that can not be well emulated by sta-
tistical filters commonly used in signal process-
ing. Naturally, for STB Davis, the predictor does
not work very well, resulting in lost particles fol-
lowed by diverged optimizations with an inaccu-
rate starting position. Although KLPT employs
a simple polynomial-based filter, it can overcome
the burdens introduced by an inaccurate starting
position as the kernel-based optimization scheme
is much more robust.

Now we take a closer look at the impinging
and the wall jet development regions. Figure 10
visualizes the first 3000 tracked particles’ trajec-
tories at 40th frame, with a similar viewpoint as
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(a)

(b)

Fig. 9: Tracked particles at the 40th frame with a
tail showing their full trajectories colored by their
ID: (a) all tracked particles; (b) a portion of the
first 3000 tracked particles found after the initial-
ization stage that still continue at the 40th frame.
The left column of each figure is generated from
STB Davis, while the right column is generated
from KLPT.

in figure 9b, but in a subdomain approximately
centered around point (x = 25mm, y = 5mm).
We can directly observe that KLPT reconstructs
more and longer tracks near the wall. Those tracks
belonged to the wall jet. STB Davis has difficul-
ties in following these tracks due to the collision.
KLPT also captures the complete structure of a
vortex ring across the impinging region and the
recirculation region. At the same time, STB Davis
can at best reconstruct only segments of the vor-
tex rings.

Fig. 10: The detailed view of the first 3000
tracked particles found after the initialization
stage still being tracked at the 40th frame with
a tail showing their full trajectories colored by
their ID: The left figure is generated from STB
Davis while the right is generated from KLPT.

5.2.2 Track statistics

We also calculate the track statistics. Figure 11a
shows the total number of tracks in terms of the
snapshots. Figure 11b shows the distribution of
track length for total tracks. The solid curves rep-
resent all valid tracks obtained by STB (red) and
KLPT (black). In figure 11a we observe that KLPT
continuously gained slightly more tracks than STB
despite STB yields more tracks in total (11000
versus 9800), which suggests that STB yield more
short track segments. This finding is verified in
figure 11b where STB has a much higher peak of
length distribution at very short tracks (4 to 10).
The length distribution of KLPT is flatter and has
a higher peak at the end (1417 tracks of length 50
against 1185 for STB).

We notice that many reconstructed tracks are
located at the ambient region where the tracking
is relatively easy and both methods yield similar
results. We want to focus on more interesting flow
regions, such as the free jet, the impinging area,
and the wall jet. Hence we removed the tracks
at the ambient region by considering only those
tracks traveling a relative long distance (larger
than 3 px). Then we recompute the track statis-
tics in terms of the remaining reconstructed tracks.
The results are shown by dotted lines in figure 11.
The difference between KLPT and STB, in terms
of the number of tracks with larger displacement
at each frame, is more considerable than the dif-
ference between KLPT and STB in terms of the
number of all tracks. It suggests that STB actu-
ally yields more segments of tracks. Those short
segments potentially belong to a single long track
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that KLPT can more effectively reconstruct. The
track length statistics for both methods become
flatter. The first peak length for STB is at 8 time-
steps compared 11 time-steps for KLPT. The num-
ber of tracks of length 50 of KLPT (381) is also
much higher than STB (184).
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Fig. 11: (a): total number of tracks at each frame.
(b): Number of tracks as a function of track
length. Solid lines denote the all valid tracks
while dotted lines disregard those tracks with
small displacement (less than 3 px). STB Davis
results are denoted by red lines and KLPT by
black lines.

6 1st LPT challenge results

Finally, we demonstrated the results of KLPT w.r.t.
the 1st LPT challenge dataset (link). Various seed-
ing density is provided in the challenge data. Fig-
ure 12 shows two views of the reconstructed par-
ticle tracks for the time-resolved dataset of ppp
0.08, color coded by the stream-wise velocity. Hav-
ing been verified by the organizers during the 3rd
CFD for PIV workshop, our KLPT can yield com-

petitive results state-of-the-art with its state-of-
the-art counterparts (prominently STB by LaVi-
sion and DLR) until seeding density reaching 0.08
ppp. Beyond that level, our naively implemented
IPR fails to provide a reasonably good initial par-
ticle field.

7 Conclusions

In this article, we have first introduced a novel
particle tracking principle, tracking-by-detection.
Based on this new principle, we have proposed a
new tracking scheme based on function learning,
emphasizing kernel function. This new approach
is named Kernelized LPT. An important impli-
cation of our approach is that it generalizes the
comparison operation of two local particle image
patches, commonly used in other LPT approaches,
to a more powerful kernel function, a higher level
more powerful tool measuring the similarities of
two input features. The resulting algorithm is both
mathematically sound and easy to manipulate.

The proposed method is validated against both
synthetic and real datasets. We have achieved sig-
nificant improvements on both robustness and ac-
curacy compared to STB-in-house and STB in Davis
10. The differences are even more pronounced for
high particle density and large time separation.
This finding corresponds quite well to our intu-
ition on the weakness of STB: STB only works
well when the predictor gives sufficient good re-
sults. KLPT is also applied to a real experimen-
tal dataset depicting an impinging jet. Compared
to the tracks reconstructed by STB in Davis 10,
KLPT can yield more tracks and reveal more lo-
cal flow structure that is likely to be smoothed
out by other schemes. We have also tested KLPT
on the 1st LPT challenge datasets. Our KLPT has
achieved state-of-the-art performance with images
of particle density until ppp = 0.08. We also pro-
vide an open source library (Particle Tracking Li-
brary(PTL)) that features our KLPT algorithm as
well as our STB implementations used in this ar-
ticle. We hope that this library serves as a bench-
mark for our community accelerating the devel-
opment process for multi-view particle images-
related tracking problem, particularly in academic
environments.

For future work, we can investigate the use
of a more comprehend kernel function and more
powerful feature extractor into the KLPT frame-
work in future work. Such investigations can be
carried out in two distinct but equally important
directions. Firstly, more flow-dependent features
based on fluid dynamics can be adopted. For ex-
ample, Khojasteh et al. (2020) proposed using La-
grangian Coherent Structure (LCS) as an objec-
tive criterion to discern whether one particle’s mo-
tion is coherent or not with its neighborhood. Such
classification can lead to a better prediction of the

https://w3.onera.fr/first_lpt_and_da_challenge/
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(a)

(b)

Fig. 12: Two views of the reconstructed particle tracks for images dataset of ppp 0.08, color coded by
the stream-wise velocity, containing approximately 100,000 number of tracks.

particle’s position. LCS can be viewed as a fea-
ture extractor that encodes the interrelations be-
tween one particle and its neighboring particles.
Based on this notion, more accurate tracking per-
formance can be achieved by considering a new
kernel function based on LCS in addition to the
dot-product kernel based on local patch’s gray in-
tensity. Secondly, as mentioned in section 3.2.2
of this paper, a deep feature extractor based on
DNN can be smoothly integrated into the KLPT
framework thanks to the kernel trick. Compared
to the above more physical feature approach, the
deep feature extractor is likely to be more robust,
as shown by many studies. However, it remains
not easy to interpret the physical meaning of the
obtained feature vector. The DNN-related tech-
niques will be discussed in a subsequent paper.
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A Dynamics as regularizer to smooth
trajectory

Following the discussion in section 3.2.4, here we show
how to obtain an explicit form of regularizer R from dy-

namical constraints. Given l frames from k to k+ l− 1, we
can formulate the propagation of particle p as: Xk+1

p =

MXk
p + ξk+1

p where we use instead an linear operator M

for sake of clarity. Then the term ||Rf ||2 can be expressed
in terms of the trajectory of particle p over the frames:
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The increments are defined in following:

δX0 = X0 −Xb (14)
δX1 = X1 −M0,1Xb (15)

...
δXl = Xl −M0,lXb (16)

Note that σ0 ∼ N(0,B) denotes the uncertainties associ-
ated with the prior state Xb. We can identify

R =
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. . .
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Given R, we can recover the Gram matrix as well as the
kernel function. Eventually, we can have a similar solu-

tion form as (11) that resolves the particle trajectory si-
multaneously by leveraging its temporal coherence and
the sequential image data. This kind of solution provides
a smoothing effect because the state Xk at frame k is op-
timally conditioned on the following data I available after
frame k.

B Equivalence between EnDA solution (12)
and KLPT solution (11)

First we consider in definition (9), κ(Ii, Ij) = (Ij)T Ii is
the scalar dot-product kernel and C is an identity matrix
Idd ∈ Rd×d indicating uncorrelated spatial field. Then the
ith component of X

′

p can be derived from (11) with cen-
tered data pairs:

(X
′

p)i = [κ(I
′1
p , Iresp∗ )Idd, . . . , κ(I

′1
p , Iresp∗ )Idd]i

(κ11 + λ)Idd κ1NIdd
. . .

κN1Idd (κNN + λ)Idd


−1


X
′1
p

...
X
′N
p

 (18)

It can be easily proven that the inverse of the matrix
=

K + λIdN maintains the same structure. The coefficient
of each block equals to the corresponding scalar version of
Gram matrix (N ×N ) as following derived from formula-
tion (12)

(X
′

p)i = [X
′1
p , · · · ,X

′N
p ]i

κ11 + λ κ1N

. . .
κN1 κNN + λ


−1


κ(I′1p , Iresp∗ )

...
κ(I′Np , Iresp∗ )

 (19)

Then with some basic matrix multiplication, it can be
shown that those two formulations indeed yield the same
result.
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