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Abstract 1 

Through the annual cycle of plant growth and dormancy, the winter season leads to profound metabolic 2 

changes allowing plants to undergo cold acclimation. In boreal environments, winter conditions are 3 

changing rapidly and are likely to cause damage to commercial wild lowbush blueberry. In this study, we 4 

addressed the level of frost hardiness and determined the role of environmental factors and non structural 5 

carbohydrates (NSCs) on frost hardiness. From autumn to spring, stem sections of Vaccinium 6 

angustifolium and Vaccinium myrtilloides were harvested each month in a commercial blueberry field to 7 

assess the relative electrolyte leakage and calculate the temperature at which 50% of the cells are lysed 8 

[LT50 (°C)], used as frost hardiness index. Stems were also collected to assess soluble carbohydrates and 9 

starch. Correlations, principal component analysis (PCA) and structural equation modelling (SEM) were 10 

used to determine how environmental factors and NSCs directly or indirectly influence the frost hardiness 11 

index. Frost hardiness reached its lowest level in December and January with LT50 dropping below -60 12 

°C. Seasonality of frost hardening was closely linked to photoperiod and temperature, generating clock-13 

wise hysteretic loops that divide frost hardening into acclimation, from September to January, and 14 

deacclimation, from January to the end of May. Environmental factors such as photoperiod and 15 

temperature were more important in determining the level of frost hardiness during acclimation, with 16 

either direct or indirect effect through an influence on starch degradation, increasing soluble carbohydrate 17 

content. During deacclimation, soluble carbohydrates, especially raffinose, further induced a stronger 18 

direct regulation of frost hardiness. Direct biological regulation through raffinose defined the level of frost 19 

hardiness during deacclimation. However, the negative influence of temperature on raffinose 20 

concentration could increase vulnerability to winter warming events. 21 

Keywords: Vaccinium angustifolium, cold hardiness, temperature, photoperiod, snow depth, raffinose  22 
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1. Introduction 23 

In boreal habitats, daily temperatures exhibit a very wide annual range: from about -40 to +30 °C. 24 

To survive harsh winter conditions, boreal shrubs inhibit their growth potential through the process of 25 

dormancy and acclimation to cold (Arora and Rowland, 2011; Charrier et al., 2011; Strimbeck et al., 26 

2015). This process occurs in response to climate stimuli (Maurya et al., 2018; Strimbeck et al., 2008), 27 

and can thus be affected by global warming. Under climate change, winter conditions are expected to 28 

fluctuate, with higher temperature variability and increasing occurrence of polar vortices (Anderson and 29 

Gough, 2017; Yu and Zhang, 2015). Decreasing snow cover depth through a change in the balance 30 

between solid (snow) and liquid precipitations would induce more frequent freeze-thaw cycles (Williams 31 

et al., 2015). Boreal shrubs overwintering beneath the snow, such as lowbush blueberry (Vaccinium 32 

angustifolium Aiton and Vaccinium myrtilloides Michx), are extremely sensitive to snow cover. Indeed, a 33 

snow depth threshold of 30 cm has been identified in commercial fields in order to protect lowbush 34 

blueberry stems and buds throughout winter (Girona et al., 2019; Wildung and Sargent, 1989). In northern 35 

environments, winter damage is considered a major factor limiting blueberry fruit yields (MAPAQ, 2016; 36 

Moore, 1994). Indeed, winter warming predisposes overwintering boreal and arctic shrubs such as 37 

Vaccinium spp. to spring-like physiological development, possibly reducing subsequent growth, 38 

flowering, berry production or causing plant death (Bokhorst et al., 2010). Under such challenging 39 

conditions, there is a growing need to study the adaptation of plant species throughout the frost-exposed 40 

period, from autumn to spring (Arora and Taulavuori, 2016; Die et al., 2016; Palacio et al., 2015; Rowland 41 

et al., 2008). Better understanding cold acclimation and deacclimation of wild blueberry species would 42 

also help producers to better predict subsequent fruit yields when temperatures are extremely cold during 43 

autumn-spring periods.  44 
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In temperate and boreal environments, aboveground parts exhibit cold acclimation from autumn to winter, 45 

which transiently increases their freezing tolerance, and deacclimation from winter to spring (Charrier et 46 

al., 2013). In woody plants, cold acclimation is first initiated by decreasing photoperiod during late 47 

summer, under non-freezing temperature, and then by cold and freezing temperature in a second stage (Li 48 

et al., 2004). Compared to trees, boreal shrubs overwinter beneath the snow and thus avoid very low 49 

atmospheric temperatures. Indeed, although the environment beneath the snow is more stable, i.e. 50 

attenuation of temperature variations (Saarinen and Lundell, 2010), we have little information on the effect 51 

of temperature and snow cover on the frost hardiness of wild lowbush blueberry. 52 

During cold acclimation, carbohydrates content increases as the starch reserves decrease, with opposite 53 

patterns during the period of deacclimation (Baffoin et al., 2020; Charrier et al., 2018a; Charrier et al., 54 

2013). By increasing carbohydrate content during autumn, starch conversion indirectly contributes to 55 

freezing tolerance, as shown in Trifolium pratense L. (Bertrand et al., 2020). For many plant species, 56 

raffinose is an important carbohydrate for cold resistance during winter (Kasuga et al., 2007; Sauter, 57 

1988). Raffinose acts as cellular cryoprotectant allowing the stabilization of cell membranes through 58 

hydrogen bonds with membrane phospholipids, thus protecting the cell structures from frost-induced 59 

dehydration (Xin and Browse, 2000). In addition, accumulation of soluble carbohydrates in living tissues 60 

of stem and buds leads to a decrease in the freezing point, enhancing the probability of extracellular ice 61 

formation (Lee et al., 2012; Sauter, 1988). In addition to being mobile and translocated in phloem, sucrose 62 

also has a protective effect that is not based solely on osmosis effect, but also has a cryoprotective activity, 63 

stabilizing membranes and proteins (Imanishi et al., 1998), while glucose is important in providing energy 64 

for metabolism during the winter (Beauvieux et al., 2018; Die et al., 2016). The increase in solutes thus 65 

exerts a protective effect through an increase in the solute content, decreasing the freezing temperature 66 

and limiting the dehydration generated by ice formation (Baffoin et al., 2020; Charrier et al., 2013). It is 67 
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therefore important to understand the dynamics of the conversion between soluble carbohydrates and 68 

starch through frost acclimation and deacclimation in order to predict the frost vulnerability of Vaccinium 69 

spp. 70 

Environmental factors such as temperature and photoperiod, can act both directly or indirectly by 71 

activating important metabolic processes (Die and Rowland, 2014; Ibáñez et al., 2010). Other 72 

environmental factors, such as snow cover, act by providing an insulating effect from extremely cold 73 

temperature (Ambroise et al., 2020; Girona et al., 2019; Palacio et al., 2015; Wildung and Sargent, 1989). 74 

In taller plants such as walnut trees, both photothermal and thermal models were able to correctly predict 75 

frost hardiness (Charrier et al., 2018a), indicating the importance of temperature and photoperiod in 76 

controlling the process involved. Even though temperature and photoperiod are correlated at higher 77 

latitudes, no additive effect (i.e. partial composition of frost hardiness under distinct temperature and 78 

photoperiod effects) was found on frost hardiness for Scots pine (Zhang et al., 2003), indicating specific 79 

and distinct roles for each of these two environmental factors.  80 

In commercial wild lowbush blueberries, frost resistance studies have mainly been restricted to hybrids of 81 

Vaccinium corymbosum (Lee et al., 2013; Rowland et al., 2008), and the European species Vaccinium 82 

myrtillus L. (Palacio et al., 2015; Taulavuori et al., 1997). Although endemic blueberry shrubs of North 83 

America, including Vaccinium angustifolium Aiton and Vaccinium myrtilloides Michx, represent an 84 

important export for the Canadian economy [more than 200 million $·year-1 (MAPAQ, 2016)], they have 85 

rarely been investigated with respect to cold acclimation and deacclimatation (Cappiello and Dunham, 86 

1994). The study of non-structural soluble carbohydrates (NSCs), along with the key environmental 87 

parameters (photoperiod, temperature and snow depth), could therefore provide valuable information on 88 

the changes that occur in cold acclimation and deacclimation in wild blueberries. The main objectives of 89 

this study were to (1) assess the level of frost hardiness, measured as LT50 (i.e. the lethal temperature at 90 
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which 50% of cells are lysed), in wild blueberry from autumn to spring and (2) determine the correlation 91 

between environmental factors, NSCs and frost hardiness. We tested the hypothesis that environmental 92 

factors directly influence the building NSCs for cryoprotection in the stem and that both environmental 93 

factors and NSCs are linked with the frost hardiness index (Figure 1). 94 

 

Figure 1. Assumptions behind the conceptualization of the structural equation models (SEM) linking 95 

environmental variables, NSCs and frost hardiness index. In the middle, the structure of raffinose (left) 96 

and glucose (right) represent examples of NSCs. 97 

2. Material and methods 98 

This study was conducted in a commercial wild lowbush blueberry field at the "Les Entreprises 99 

Gérard Doucet Ltée" in Saint-Honoré, Saguenay-Lac-Saint-Jean, Quebec, Canada (48°31ʹ16ʺN; 100 

71°00ʹ35ʺW, 160m a.s.l.). More than 80% of the Quebec wild blueberry fields are located in the 101 
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Saguenay˗Lac-Saint-Jean area (MAPAQ, 2016; Vander Kloet, 1988). In this region, the climate is humid 102 

continental with a moderately warm summer (Figure 2). Average daily temperatures range from -17 °C in 103 

winter to 18 °C in summer (Figure 2) and minimum and maximum temperatures from -29 °C to 27 °C 104 

(Figure 2). Because of high snow accumulation during winter [mean maximum snow cover of 77 cm from 105 

1980 to 2019, Environment Canada (2019)], a systematic sampling design along 6 transect lines was 106 

implemented to avoid digging beneath the snow near a previous sampling point. The use of transect lines 107 

allow indeed to perform a systematic sampling, where samples are collected at fixed intervals of 5 meters 108 

along each line, but at different dates (Bonham, 2013). Two transect lines per field were established in 109 

three blueberry fields separated by mature Jack pine trees (Pinus banksiana, Lambs). The lines were on 110 

each side of the field, at 13 meters from the border trees. Every month, stems of blueberry were randomly 111 

collected (see next section) along the transect line at 5 meter intervals. During winter, a space of about 1 112 

× 2 meters was dug in the snow to reach the plants (supplementary material, Figure S1). During sampling, 113 

from September 2018 to June 2019, blueberry plants had both vegetative and floral buds. 114 

 
 

Figure 2. Left part: Maximum (black line) and minimum (gray line) air temperature (°C) and snow 115 

depth (gray background, cm) recorded at the Bagotville station from September 2018 to July 2019. 116 
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Inset: Mean temperature (°C) at the soil-snow interface, at two sampling points from February to May 117 

2020. Right part: Walter & Lieth climatic diagrams representing average climatic conditions [mean 118 

temperature (red line), mean precipitation (in blue)] at the nearest weather station (Bagotville). The blue 119 

rectangles represent months with below zero temperature while the cyan rectangles indicate months 120 

when below zero temperatures are highly probable. 121 

Two species of wild blueberry were sampled, Vaccinium angustifolium Aiton and Vaccinium myrtilloides 122 

Michx, because species distinction was not possible beneath the snow during winter (supplementary 123 

material, Figure S1). These species also form hybrids, even having distinct genetics and phenology 124 

(Fournier et al., 2020). Both are grown together as mixed vegetation in commercial fields in the north of 125 

Quebec (Canada). At each sampling date, 24 stems were cut at the base of the plant to measure the non-126 

structural soluble carbohydrates (NSC) concentration (4 stems × 6 transects) and 96 were cut to measure 127 

frost hardiness (16 stems × 6 transects). During sampling, performed in the morning, the plants were 128 

placed in a test tube, wrapped in wet absorbent paper around the base to prevent dehydration and kept in 129 

a cooler. In the laboratory, the stems used for NSC measurement were stored in a freezer at -17 °C for 1-130 

2 days until liquid nitrogen immersion, while those collected for frost hardiness were treated immediately. 131 

2.1 Frost hardiness 132 

At each sampling date from September 2018 to June 2019, two whole stems from each transect were 133 

wrapped in moist paper and aluminum foil and exposed to controlled temperature treatments. To measure 134 

the temperature during the frost treatment, a thermocouple probe, connected to a data logger (CR100, 135 

Campbell Scientific) was placed in the middle of the blueberry stems. The stems and probes were then 136 

inserted in 7 insulated thermos and placed in a cold room (Envirotronics EH40-2-3). The temperature 137 

inside the room gradually decreased from 5 °C to -50 °C at a rate of about 5K·h-1. Seven target 138 

temperatures were selected: the first was set at 5 °C (control temperature assuming minimum damage to 139 
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the samples) while -1 °C, -10 °C, -20 °C, -30 °C, -40 °C and -50 °C represented progressive frost damage. 140 

Maximum damage was assumed to occur in a seventh thermos exposed to -80 °C in an ultra-low 141 

temperature freezer (Thermo Scientific, Forma 88000 Series). 142 

Once the target temperature had been reached, the thermos were removed from the cold room and placed 143 

at 5 °C overnight to ensure a slow thawing. Subsequently, the buds were all removed and several small 144 

stem sections (of ~ 2-3 mm, excised between the buds) were cut with a surgical scalpel to increase 145 

electrolyte release in the solution and thereby obtain more accurate lysis values. The stem sections were 146 

then placed in a 30 ml vial filled with 10 ml of ultrapure water. A pressure of -50 bar was applied for 3 147 

minutes and then the vials were placed on stirring plates for 20 hours with gentle agitation (Lee et al. 148 

2012). Two conductivity measurements were then performed using a conductimeter (ThermoScientific 149 

Orion Star A112), before (C1) and after (C2) autoclaving the vial for 30 minutes (121 °C, 17 PSI). Relative 150 

electrolyte leakage (REL) was calculated according to the following formula: 151 

REL =
C1

C2
  (1) 152 

where C1 is the conductivity of the electrolyte solution measured after the cold treatment and C2 is the 153 

conductivity of the electrolyte solution measured after autoclaving.  154 

The relationship between REL and temperature was then calculated according to the following four 155 

parameter sigmoidal relationships by using either each of the six transects individually or by pooling the 156 

data of all transects (Charrier et al., 2018a): 157 

𝑅𝐸𝐿 =  
𝑎

1+𝑒𝑏(𝑐−𝜃) + 𝑑  (2) 158 
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where θ is the temperature (°C) of the cold resistance test (including controls at 5 °C and -80 °C), the 159 

parameters a and d define the upper (maximum lysis) and lower (minimum lysis) asymptotes of the 160 

sigmoid function and b is the nonlinear slope at the point of inflection c.  161 

Between the upper and lower asymptotes, the 50% relative electrolyte leakage corresponds to the point of 162 

inflection (c) of the sigmoid curve. This point of inflection, estimated directly by the parameter c, 163 

corresponds to the temperature at which 50% of cells are lysed or to the lethal temperature at 50%, LT50 164 

(°C). This threshold (LT50) was used as a dynamic frost hardiness index over the winter. Parameter 165 

estimation was performed by a non-linear regression procedure (PROC NLIN) using the SAS analysis 166 

software. 167 

2.2 NSC extraction 168 

At each sampling date, the stems sampled in each transect (4 per transect) were pooled to obtain sufficient 169 

material (> 50 mg DM) for NSC extraction (soluble carbohydrates and starch). The stems were immersed 170 

in liquid nitrogen and placed in a freeze-dryer for one week until complete desiccation. Once the samples 171 

were dry, they were ground using a ball mill (vibrating mill MM 200, Retsch). 172 

For carbohydrates solubilisation, 10 mg of dry powder of stems was placed in a 15 ml test tube and mixed 173 

with 5 ml of 20% ethanol (HPLC grade) and 100 μl of 1% sorbitol representing an internal standard. The 174 

samples were centrifuged for 10 minutes, and the supernatants were kept apart. These steps were repeated 175 

three times, but the internal standard was added only during the first extraction. The supernatant mixture 176 

was evaporated to remove the alcohol and resolubilized in 2 ml of water. The samples were then passed 177 

through an ion exchange resin: CH and N + Quaternary amino, to separate the carbohydrates and polyols 178 

from the undesired compounds. The fraction of carbohydrates and polyols was evaporated, resolubilized 179 

in 2 ml of water and then finely filtered using a nylon syringe filter (0.45 μm pore size) and injected with 180 

HPLC-RID (Agilent 1200 series) on a Shodex SC 1011 column sugar series. The carbohydrate 181 
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concentrations were then determined using standard curves made for each of the identified carbohydrates: 182 

sucrose, glucose, fructose, raffinose and stachyose (Deslauriers et al., 2014). 183 

The pellets recovered following carbohydrates analysis were used to measure the starch concentration 184 

(Bellasio et al., 2014). The enzymes α-amylase (Megazyme - 3000 U / L), allowed the starch chains to be 185 

split into oligosaccharides and dextrins. Shorter, unbranched chains were then hydrolyzed by a second 186 

enzyme, amyloglucosidase (Megazyme - 3260 U / L). The α-amylase-buffer solution (composed of 850 187 

ml of distilled water, 5.8 ml of glacial acetic acid, 1M NaOH and 0.74 g of dehydrated CaCl2) was mixed 188 

and incubated for 12 minutes at 90-100 °C. A volume of 0.15 ml of the second enzyme, amyloglucosidase, 189 

was then added and the samples were incubated for 45 minutes at 50 °C. The volume in the tubes was 190 

subsequently adjusted to 10 ml with distilled water and after being centrifuged for 6 minutes, the 191 

supernatant was recovered for subsequent analysis. Then 2 ml of Reagent solution (made from 100 ml of 192 

distilled water, 1 capsule of peroxidase (PGO) and 1.6 ml of ortho-dianisidine) was added to each of the 193 

tubes. Peroxidase (PGO) oxidized glucose to gluconic acid with quantitative production of hydrogen 194 

peroxide which in turn oxidized the dye (ortho-dianisidine). After standing for 45 minutes in the dark, 400 195 

µL of 75% H2SO4 was added, as starch is hydrolyzed in acidic condition. The absorbance was then 196 

measured after 20 min at 530 nm using a UV-VIS spectrophotometer. Starch concentrations were then 197 

converted to mg per g dry weight (mg·g-1dw). 198 

2.3 Statistical analysis 199 

In order to test our hypothesis (Figure 1), two types of analysis were conducted, principal component 200 

analysis (PCA) and structural equation modelling (SEM). While PCA aims at representing the variation 201 

between sampling dates by using all measured variables (frost hardiness index, NSCs and environmental 202 

factors), SEM aims at exploring multiple pathways by which environmental factors and NSCs determine, 203 

directly and indirectly the modulation of the frost hardiness index (Grace, 2006). For both analysis, the 204 
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LT50 values used as a frost hardiness index, were linked to the environmental variables. Means were 205 

performed by using different time windows varying from 1 to i days prior to the sampling date with i 206 

ranging between 5 to 20 days. Mean temperature (°C), mean of daily maximum and minimum temperature 207 

(°C), mean photoperiod and mean snow depth (cm) were computed from hourly data from the Bagotville 208 

station (Environment Canada (2019). Linear correlations (Pearson, CORR procedure in SAS) were 209 

performed between LT50 and the computed means to select the time window with the highest correlations. 210 

Further cross-correlations were performed by moving the different time windows from 1 to j time lag with 211 

j ranging between 1 to 55 days. The correlations between LT50 and environmental factors were highest by 212 

using a window of 5 days before the sampling with no time lag (supplementary material, Figure S2). 213 

Principal component analysis (PCA) was performed to study the relationship between all the variables. 214 

Pearson’s correlation coefficients between variables and axes, and contribution percentage (%) of each 215 

variable for the main PCA’s axes were extracted using the R package FactoMineR (Lê et al. 2008; R Core 216 

Team 2019), while PCA was performed by means of R’s package factoextra (Kassambara and Mundt 217 

2020). Direct and indirect effects of the environmental factors and NSCs on LT50 were then tested by 218 

means of multi-group structural equation models (SEM), fitted separating acclimation (September to 219 

January) from deacclimation (January to May), based on the hysteresis pattern of LT50 with environmental 220 

factors (see results for more detail). 221 

Models structures (Figure 1) were based according to the hypothesis that LT50 depends on the interplay 222 

of both endogenous (NSCs) and exogenous factors (environment), whose influence changes according to 223 

the time of the year. Endogenous factors such as soluble carbohydrates and starch are quantitative 224 

variables that can explain frost hardiness (Bertrand et al., 2020), whereas exogenous are rather empirically 225 

correlated. The environmental factors were represented by photoperiod (hours), mean temperature (°C) 226 

and snow depth (cm). Because soluble carbohydrates were highly co-related (see result of PCA), we 227 
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considered that LT50 was related to the amount of raffinose, because this carbohydrate is one of the most 228 

correlated with the frost hardiness index (Lee et al., 2012; Sauter, 1988; Strimbeck et al., 2008). The 229 

amount of raffinose also depends on the environmental factors and amount of starch found in the plant at 230 

the same time (Lee et al., 2012). In raspberry, the increase in soluble carbohydrate was mostly explained 231 

by starch hydrolysis (Palonen et al., 2000) justifying an indirect link, via starch, between environmental 232 

factors and raffinose. In order to study the effect of each environmental factor on raffinose and on LT50, 233 

we performed three different multigroup Structural Equation Models (SEM) using one environmental 234 

variable at a time but leaving the other variables and relationships unchanged. Multicollinearity between 235 

variables was avoided by the assessment of their variance inflation factors (VIFs), retaining only those 236 

having a VIF value <10 (Zuur et al., 2010). Multigroup SEM analysis was performed by means of lavaan 237 

Rs package (Rosseel, 2012), with 10000 bootstrap resamples and Bollen-Stine bootstrapped P value (Pbs) 238 

was used to test model significance as it is more adapted to small samples (Beaujean, 2014; Hooper et al., 239 

2008). Models were accepted when Pbs > 0.05. All SEM analyses were performed by means of lavaan Rs 240 

package (Rosseel, 2012), with 10000 bootstrap resamples (Beaujean, 2014). The effect of environmental 241 

factors on LT50 and on NSCs concentration was assessed by comparison of the R2 and the standardized 242 

coefficients (std) of their relationships in the different models. 243 

3. Results 244 

3.1 Relative electrolytes leakages and LT50 245 

The pattern of Relative Electrolyte Leakage (REL) changed drastically from September to October, 246 

remained similar until mid-May and then changed again (Figure 3, left panel). These fittings were 247 

performed by pooling all transect sampling points for a given date. The relations between REL and 248 

exposed temperature were all highly significant (P<0.001), except in December (P=0.036). Lower 249 

asymptotes were relatively constant (0.21 ± 0.09), except on December 5th and May 14th. In December, 250 



14 
 

higher minimum REL were observed compared to the other dates (0.45± 0.04, Figure 3). The higher 251 

asymptotes remained relatively constant at 0.70 ± 0.08. However, from mid-May to June, the higher 252 

asymptote was much more variable, exhibiting higher (May 29) or lower values (May 14 and June 11) 253 

than 0.70. Important changes in the REL pattern mostly occurred between September and October and 254 

from April to May (Figure 3). 255 

 

 

Figure 3. Left part: Relationships between electrolyte leakage (REL) and temperature (°C) calculated 256 

according to a sigmoidal relationship for the different sampling dates by using all transect sampling 257 

points. Curve fittings were performed by using all transect data points (black dots, illustrated in the 258 

graph on the left). Right part: LT50 (°C) of each transect line (black dots) and mean LT50 (gray square) 259 

for the different sampling dates. 260 

LT50 in the different transects varied between -20 °C and -30 °C in September, gradually decreased in 261 

autumn to reach a minimum in December (Figure 3, right side). During the same period, the average air 262 

temperatures decreased from about 20 °C to -10 °C (Figure 2, left side). The minimum frost hardiness 263 
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individual values for a single plot were observed in December and January: LT50 dropped to -67 °C and -264 

66 °C in December and January, respectively (Figure 3). With only 3 fitted sigmoid regressions out of 6, 265 

the coldest frost resistance temperature was calculated on December 5th, 2018, with LT50 varying between 266 

-58 °C and 67 °C. At that time, snow depth was about 20 cm and the absolute maximum and minimum 267 

air temperature recorded the week before the sampling was 0.8 °C and -14 °C, respectively (Figure 2). In 268 

January, LT50 values varied between -66 °C and -40 °C, while temperatures were still decreasing but snow 269 

depth increasing (Figure 2). From January until the beginning of April 2019, LT50 gradually increased. 270 

Afterwards, high LT50 variability was observed. During the sampling conducted on April 30th, 2019, frost 271 

hardiness dropped back to -35 °C while only traces of snow remained on the ground with air temperatures 272 

oscillating around - 5 °C (Figure 2). In mid-May, LT50 reached -5 °C when minimum air temperatures 273 

approached 10 °C (Figure 2). 274 

3.2 Correlation and hysteresis between LT50, NSC and environmental cues 275 

Correlation between LT50 and environmental factors (mean temperature, photoperiod and snow cover), 276 

performed by using different time windows (from 5 to 20 days) and different time lags (from 0 to 55 days 277 

before the sampling) were higher by using a time window of 5 days and a time lag of 1 day (i.e. from 1 to 278 

6 days prior to the sampling) (Supplementary Figure S2). Similar results were obtained for the correlation 279 

between NSC and environmental variables, except for that between starch and photoperiod which was 280 

slightly higher at a time lag of 15 days prior to sampling. For mean temperature and photoperiod, the 281 

correlation with LT50 or starch decreased with increasing time lag while the correlation increased with 282 

snow cover by increasing the time lag. For raffinose, the negative correlations increased with time lag for 283 

mean temperature and photoperiod while they decreased for snow cover. However, at lag 1, the correlation 284 

between raffinose and snow pack was very weak (Supplementary Figure S2). 285 
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Clockwise annual hysteresis patterns were observed between LT50 and temperatures (Figure 4). For 286 

minimum, maximum and mean temperature, the decrease in LT50 followed the decrease in temperature 287 

from September until December when the hysteresis loop is formed. Thereafter, LT50 values increased 288 

with temperature, but with higher values compared to the previous decrease (Figure 4). The loop between 289 

photoperiod and LT50 was similar to that of the temperatures but with a crossover value between 290 

September and October because of the fast decrease in photoperiod at that time of the year. On the 291 

contrary, a counter-clockwise loop was observed between snow depth and LT50 (Figure 4). However, the 292 

loop with snow depth had a different form, with two direction changes between November and December 293 

(i.e. when snow started to accumulate, Figure 2) and between March and April (i.e. when snow started to 294 

melt, Figure 2). Except for starch, no hysteresis patterns were found between LT50 and sugars 295 

concentrations, which rather presented a correlative pattern. For starch, hysteresis was detected with a 296 

clockwise pattern. 297 
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Figure 4. Higher part: Seasonal hysteresis between LT50 (°C) and meteorological variables [maximum, 298 

mean, and minimum temperature (°C) averaged over 5 days, snow depth (cm), and photoperiod (hour)] 299 

at monthly scale. Lower part:  Relationship between LT50 (°C) and soluble sugars [sucrose, glucose, 300 

fructose, stachyose and raffinose, expressed in mg.g-1dw]. Seasonal hysteresis between LT50 (°C) and 301 

starch concentration (mg.g-1dw). The direction of the hysteresis, if present, is indicated with an arrow. 302 

3.3 Carbohydrates concentration in the stem and link with LT50 and environmental factors 303 

In stems, glucose, fructose sucrose and raffinose concentrations showed, more or less, a bell-shaped curve 304 

with an increase during autumn, a maximum in December, then a decrease during winter and spring 305 

(Figure 5). The concentrations of glucose and fructose were thus higher from November to February with 306 

concentrations close to or higher than 40 mg.g- 1dw. Both glucose and fructose had higher concentration 307 
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than sucrose, which reached a peak in December with about 25 mg.g- 1dw. The concentration of raffinose 308 

increased from September to February with slight variations between 10 and 20 mg.g- 1dw then it 309 

decreased from March and became null in May (Figure 5). Raffinose and stachyose concentrations were 310 

low compared to the other non-structural carbohydrates. The concentration of stachyose approached 10 311 

mg.g- 1dw. Then, like raffinose, its concentration became null in mid-May. The starch concentration 312 

rapidly decreased from September to October with concentration almost null from November until 313 

January. The starch concentration then re-started to increase in February exhibiting an exponential 314 

increase during May (Figure 5). 315 

 

Figure 5. Variation in mean non-structural carbohydrates concentration (sucrose, glucose, fructose, 316 

raffinose, stachyose and starch), expressed in mg.g-1dw in blueberry shoots. Note that the scales for 317 
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raffinose and stachyose differ from those for glucose, fructose, sucrose and starch. Vertical bars 318 

represent the standard deviation of the mean. 319 

The PCA analysis described the relationships between variables representing the non-structural 320 

carbohydrates, LT50 and environmental cues (Figure 6). The first axis (PC1), explaining 54.1% of the total 321 

variance, divides samples from low (spring and early-autumn, on the right side) to high frost resistance 322 

(winter, on the left side) according to the variables that contribute the most to PC1 (LT50, maximum 323 

temperature and photoperiod, Table 1). PC1 also defined two distinct groups of NSC: the soluble 324 

carbohydrates, negatively correlated with PC1 from starch, positively correlated with PC1 (Table 1).  325 

Table 1. Correlation coefficients between the principal component axes PC1 and PC2 and the different 326 

variables used in the PCA with their contribution to axis definition (%). 327 

 
 Variable Correlation P value Contribution 

PCA1 

Frost hardiness index LT50 0.86 <0.001 11.47 

Environmental factors 

Photoperiod 0.91 <0.001 12.87 

Tmin 0.73 <0.001 8.28 

Tmax 0.84 <0.001 10.89 

Tmean 0.80 <0.001 9.90 

Snow -0.57 <0.001 5.02 

NSCs 

Starch  0.78 <0.001 9.28 

Sucrose -0.46 <0.001 3.25 

Glucose -0.70 <0.001 7.51 

Fructose -0.66 <0.001 6.77 

Stachyose -0.63 <0.001 6.15 

Raffinose -0.75 <0.001 8.61 

PCA2 

Frost hardiness index LT50 -0.04 0.700 0.05 

Environmental factors 

Photoperiod 0.01 0.800 0.01 

Tmin 0.64 <0.001 13.09 

Tmax 0.49 <0.001 7.74 

Tmean 0.58 <0.001 10.59 

Snow -0.73 <0.001 17.09 

NSCs 

Starch 0.1 0.400 0.30 

Sucrose 0.51 <0.001 8.30 

Glucose 0.59 <0.001 10.86 

Fructose 0.53 <0.001 8.87 

Stachyose 0.62 <0.001 12.27 

Raffinose 0.58 <0.001 10.83 

 328 
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The second axis (PC2) explaining 26% of the total variance, mostly divides the samples belonging to the 329 

acclimation period (first part of the hysteresis loop from September until December, on the top) from the 330 

samples belonging to the deacclimation period (second part of the loop from January until June, on the 331 

bottom) (Figure 6). Snow, mean and minimum temperature, stachyose, raffinose and glucose were the 332 

main variables contributing to PC2 (Table 1). The soluble carbohydrates and temperature positively 333 

correlated with the PC2 and corresponded to the samples belonging to the acclimation period. On the 334 

contrary, snow depth was negatively correlated with PC2 (Table 1) and corresponded to samples 335 

belonging to the winter months (mainly from January until March) when the snow was deeper (Figure 2). 336 

 

Figure 6. Principal component analysis (PCA) projecting different variables related with NSCs, 337 

environmental cues and LT50, according to different sampling times (months, represented by dots in 338 

different colors). Only the first two axes are represented with the relative contribution explained. Suc, 339 

sucrose; Fru, fructose; Glu, glucose; Raff, raffinose; Sta, stachyose. 340 
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3.4 Direct and indirect influence of environmental factors and non-structural carbohydrates on LT50 341 

Based on the hysteresis pattern and PCA analysis, we divided the dataset into two groups to test the 342 

influence of environmental factors and NSCs on LT50 (Figure 1): (1) cold acclimation, considering the 343 

sampling points from September 19th 2018 to January 4th 2019; (2) deacclimation, representing the period 344 

from January 4th to May 29th 2020. Because raffinose had the highest correlation with PC1, this 345 

carbohydrate was considered as representing the soluble carbohydrates dynamics in the SEM. Starch was 346 

also selected as it significantly contributed to PC1. Mean temperature was assumed to better reflect 347 

biological processes compared to minimum and maximum temperatures. 348 

The SEMs suitably fitted our hypothesis (Pbs>0.05, CFI ≥0.95, SRMR<0.8), underlining the change in 349 

direct and indirect relationships between LT50, NSCs and environmental factors between acclimation and 350 

deacclimation periods (Figure 7, Table 2). All SEMs were similar except for the environmental variable, 351 

the relative weight of which led to changes in coefficient values of the unchanged relationships between 352 

one model and the other. Indeed, environmental factors differed in the way they affect starch and raffinose 353 

concentrations, resulting in a different setup in their direct and indirect relationships. Among the 354 

environmental factors, snow cover showed the weakest sets of goodness of fit indexes (p=0.06, CFI=0.95, 355 

SMRS=0.03) (Figure 7).  356 

During acclimation, photoperiod, mean temperature and raffinose were highly related to LT50 with R2 that 357 

varied between 0.433 and 0.868 (Figure 7). During this stage, photoperiod was the most important 358 

explanatory variable, directly and positively related to LT50 (std=0.583), meaning that LT50 decreased at 359 

lower photoperiod. During acclimation, starch concentration depended on photoperiod (std=0.923) but the 360 

variation of photoperiod and variation of starch in relation to photoperiod did not directly influence the 361 

raffinose concentration (Table 2). Mean temperature also positively influenced LT50 (std=0.493), while 362 

snow cover had the lowest effect on cold hardiness, and was negatively related to Lt50 (std=-0.294). In all 363 
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models, LT50 decreased with increasing raffinose concentration. The raffinose concentration also 364 

depended on snow cover (std=-0.36), indicating that the concentration of this carbohydrate increased with 365 

a thinner snow cover. No direct effect of mean temperature was detected on raffinose, whose variability 366 

was explained by the variation in starch (std=-0.991, R2=0.497). Starch was affected by both mean 367 

temperature and snow cover, and negatively influenced the raffinose concentration, i.e. higher 368 

concentration was measured at lower starch level. All environmental variables strongly influenced starch 369 

concentrations during acclimation: a lower starch concentration was related with a lower photoperiod 370 

(std=0.932, R2=0.868) and temperature (std=0.804, R2=0.646), but at deeper snow level (-0.639, 371 

R2=0.408). 372 

During the period of deacclimation (Figure 7, Table 2), the direct effects of photoperiod (std=0.304, 373 

R2=0.857) and temperature (std=0.330, R2=0.859) were lower compared with the period of acclimation 374 

(Figure 7) and no direct effect of snow cover on LT50 was detected at this stage (Table 2). Compared to 375 

environmental factors, raffinose more fully explained LT50 during this period with coefficients ranging 376 

from -0.652 to -0.865. Raffinose was directly and negatively linked to photoperiod and mean temperature 377 

(std=-0.538 and -0.576, respectively), and starch (std=-0.477, R2=0.768). As during acclimation, starch 378 

was positively and directly related to photoperiod (std=0.734, R2=0.538). Starch was also linked to all 379 

environmental variables in a similar way to that of acclimation with R2 varying between 0.5 to 0.9 (Figure 380 

7). 381 
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Figure 7. Structural equation model linking environmental [photoperiod, mean temperature (°C) and snow 382 

cover (cm), non-structural soluble carbohydrates (raffinose and starch, in mg. g-1dw) and LT50 (°C). Only 383 

significant standardized coefficients are illustrated. Acclimation includes samples from September 2019 384 

until January 2020 while deacclimation includes samples from January until May 2020. Bollen-Stine P-385 

values (Pbs) and goodness of fit indexes (CFI and RSMR) are provided for each model. 386 
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Table 2. Standardized coefficients (STD coefficient), STD error, z-value and P value for all SEMs 387 

regressions. 388 

 389 

  390 

Combination of variables Regression Variable 
STD 

coefficient 

STD 

error 
z-value P value 

Photoperiod 

Acclimation 

LT50 
Raffinose -0.337 0.512 -2.975  <0.05 

Photoperiod 0.583 0.021 3.941 <0.001 

Raffinose 
Starch -0.564 0.087 -1.701 0.089 

Photoperiod -0.100 0.011 -0.271 0.787 

Starch Photoperiod 0.932 0.09 12.714 <0.001 

Deacclimation 

LT50 
Raffinose -0.652 0.343 -5.039 <0.001 

Photoperiod 0.304 0.011 2.786 <0.05 

Raffinose 
Starch -0.432 0.04 -3.991 <0.001 

Photoperiod -0.538 0.004 -5.335 <0.001 

Starch Photoperiod 0.734 0.011 113.558 <0.001 

Mean 

temperature 

Acclimation 

LT50 
Mean temperature 0.493 0.185 3.432 <0.01 

Raffinose -0.497 0.468 -4.793 <0.001 

Raffinose 
Starch -0.911 0.058 -4.168 <0.001 

Mean temperature 0.317 0.066 1.368 0.171 

Starch Mean temperature 0.804 0.101 8.592 <0.001 

Deacclimation 

LT50 
Mean temperature 0.330 0.176 3.255 <0.001 

Raffinose -0.626 0.35 -4.847 <0.001 

Raffinose 
Starch -0.363 0.044 -3.085 <0.001 

Mean temperature -0.576 0.076 -5.100 <0.001 

Starch Mean temperature 0.804 0.187 7.187 <0.001 

Snow cover 

Acclimation 

LT50 
Raffinose -0.637 0.529 -5.435 <0.001 

Starch -0.294 0.122 -2.132 <0.05 

Raffinose 
Starch -0.871 0.036 -6.306 <0.001 

Snow -0.336 0.029 -2.298 <0.05 

Starch Snow -0.639 0.082 -5.824 <0.001 

Deacclimation 

LT50 
Raffinose -0.865 0.284 -8.594 <0.001 

Snow -0.082 0.036 -1.137 0.255 

Raffinose 
Starch -0.847 0.063 -4.907 <0.001 

Snow -0.028 0.03 -0.158 0.874 

Starch Snow -0.718 0.067 -5.205 <0.001 



25 
 

4. Discussion 391 

In wild blueberry, frost hardiness showed a transient increase and decrease from autumn to spring 392 

in response to both environmental factors and soluble carbohydrates – either directly or indirectly – in 393 

agreement with our hypothetical SEM. Our results highlighted two distinct periods of acclimation and 394 

deacclimation when environmental and biological regulation differed. Environmental factors were more 395 

closely linked to frost hardiness during cold acclimation [corresponding to the period between September 396 

and January (Charrier et al., 2011)] with a direct and indirect effect through starch degradation. This was 397 

also observed in highbush blueberry buds through protein profiling (Die et al., 2016). Autumn was 398 

characterized by the direct effect of environmental factors on starch hydrolysis increasing soluble 399 

carbohydrate contents. Later on, biological regulation, measured through soluble carbohydrates and 400 

especially raffinose, further induced a stronger direct regulation during the period of cold deacclimation, 401 

from January until the end of May at our sampling sites. Among the environmental factors, snow depth 402 

was the weakest correlated to frost hardiness, having no direct effect on raffinose concentrations during 403 

deacclimation. 404 

4.1 Annual pattern of frost hardiness and REL curves 405 

Woody plants from boreal regions are generally highly resistant to freezing temperature and can resist a 406 

wide range of low temperature (Strimbeck et al., 2015). Short days (e.g., photoperiods) alone has been 407 

shown sufficient to induce an initial stage of frost tolerance (Arora and Taulavuori, 2016; Schwarz, 1970). 408 

Accordingly, the frost hardiness (assessed by measuring LT50) of blueberry stems already showed values 409 

<-20 °C in September. In September 2018, however, a single freeze-thaw event (minimum temperature of 410 

-0.5 °C) occurred 9 days before the first sampling date. From September 19th to October 3rd, REL curves 411 

shape changed drastically, indicating a rapid cold acclimation of the plants, early in autumn. Boreal species 412 
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acclimate rapidly, with the LN2-quench tolerance (i.e. surviving liquid nitrogen immersion) already 413 

acquired by late November (Strimbeck et al., 2008). 414 

Maximum frost hardiness was reached between November and January, between -56 °C and -67 °. 415 

Although litterature reported different acclimation timing during autumn, various highbush blueberry 416 

genotypes reach maximum cold tolerance in mid-December (Rowland et al., 2008). In December, our 417 

REL curves differed, exhibiting higher minimum REL, which could be related with native damage at the 418 

moment of sampling, even if the samples from December were treated like those from other months. 419 

Furthermore, 3 non-linear fits out of 6 samples were not significant in December while all other sampling 420 

dates had significant fitting indicating that measurements could be affected by other factors during this 421 

month. From our measurements, boreal blueberries (i.e. V. angustifolium and V. myrtilloides) can thus be 422 

considered as extreme low temperature tolerant plants [ELT, <-60 °C, Strimbeck et al. (2015)]. At our 423 

study site, the average minimum temperature in January is -22 °C with an absolute minimum that can 424 

reach -40 °C (Environment Canada, 2019).Our observations on blueberry shoots combines both bark and 425 

wood tissues, which are the most resistant organs, as observed in walnut trees (Charrier et al., 2013).  426 

From April to end of May, the measured frost hardiness steadily increased from -40 to almost 0 °C. 427 

Vaccinium spp. growing in the Alpine tundra in Switzerland exhibited similar frost hardiness: between -428 

25 °C (Vaccinium vitis-idea L.) and -15 °C (V. myrtillus) at the beginning of May (Palacio et al., 2015). 429 

However, we observed that frost hardiness increased and decreased within the 15-day interval from mid-430 

May to mid-June, with the lowest frost hardiness (LT50 of -3.54 °C) measured at the end of snow melt. 431 

Although only observed once in May, these variations could indicate a reacclimation pattern to cope with 432 

highly variable temperature during springtime (Arora and Rowland, 2011; Arora and Taulavuori, 2016). 433 

Rapid deacclimation in boreal areas can therefore represent an advantage to fully exploit the short 434 

favorable growing season. In our site, during the months of May-June, temperatures above 20 °C are 435 
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frequent, but plants can still be exposed to freezing temperatures (see probability of freezing event in May 436 

and June in the Walter & Lieth climatic diagrams, Figure 2). Sufficient and efficient reacclimation abilities 437 

are thus highly desirable traits during springtime for plant survival in a highly variable environment (Arora 438 

and Rowland, 2011). 439 

4.2 Environmental cues driving the annual pattern of frost hardiness 440 

The process of cold acclimation and deacclimation generated clock-wise hysteretic loops that were closely 441 

linked to environmental cues such as photoperiod and temperature. The influence of photoperiod 442 

represented a consistent and astronomically controlled signal that is important in anticipated response by 443 

regulating, via photoreceptors, the circadian clock (Ibáñez et al., 2010; Schultz and Kay, 2003). Exposure 444 

to short day induces the acclimation of perennial shrubs and trees to cold temperature conditions by 445 

altering the transcription of light signaling- and circadian clock-regulated genes (Maurya et al., 2018). In 446 

Rhododendron plants, light signal (i.e. decreasing photoperiod) before low temperature was important to 447 

further increase freezing tolerance (Liu et al., 2020), in agreement with our SEM results where photoperiod 448 

was the most correlated factor during acclimation, followed by mean temperature. Snow depth was only 449 

indirectly linked to frost hardiness through NSCs. Photoperiod was an important component of PC1 axes 450 

such as frost hardiness (LT50). As freezing is not an absolute requirement to reach low temperature 451 

tolerance in early autumn (Strimbeck et al., 2008), photoperiod is probably a predominant factor in wild 452 

blueberry in this period, followed by temperature (Li et al., 2004).  Moreover, compared to temperature, 453 

the hysteretic loop related to photoperiod was narrower. Such a differential behavior could lie in the 454 

circadian clock regulation mediating the temperature-dependent processes of cold hardiness during 455 

dormancy, as observed in hybrid poplar (Ibáñez et al., 2010). 456 

Both our PCA and SEM results show that air temperature represents an important factor, especially during 457 

acclimation. In trees derived from a high-elevation population of evergreen conifer Abies sachalinensis 458 
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Schmidt,  frost hardiness develops earlier during acclimation compared to the low-elevation derived trees 459 

(Ishizuka et al., 2015), demonstrating stronger temperature regulation when they are colder (Liu et al., 460 

2019). Also in walnut (Junglans regia L.), colder temperature accelerates the rate of frost hardening along 461 

an altitudinal gradient (Charrier et al., 2011). Earlier frost hardiness in colder sites represents an ecological 462 

adaptation by which plants reduce the length of the growing season, hence reducing the risk of frost 463 

damage (Ishizuka et al., 2015), mostly caused by the minimum temperature of freezing events (Charrier 464 

et al., 2018a). As frost events are highly probable in early September in boreal blueberry field, hardening 465 

must be reached very early in fall. Our SEM results show that the decreasing temperature during autumn 466 

also indirectly enables acclimation processes by influencing starch conversion to sugars, promoting the 467 

synthesis of cryoprotectants. At similar daily temperature, frost hardiness was much lower during 468 

acclimation than during deacclimation, generating a large hysteretic loop. In species such as V. myrtillus 469 

growing in northern Finland, deacclimation follows temperature and therefore already exhibits 470 

deacclimation in January (Taulavuori et al., 2002). A small rise in temperature, by 2-3 °C during winter 471 

accelerates dehardening in V. myrtillus, with a reduced frost hardiness in heated plants (Taulavuori et al., 472 

1997). At our site, minimum temperatures were reached at the end of January, when LT50 values has 473 

already started to increase. During deacclimation however, SEM showed that temperature has relatively 474 

minor effects, as most of the variability in frost hardiness was explained by soluble carbohydrates such as 475 

raffinose. From January to May, the regulation of frost hardiness could rely more on the internal 476 

concentration of soluble carbohydrates (see next section) or other metabolites such as increased 477 

antioxidants, proteins and amino acids (Bertrand et al., 2020; Die et al., 2016; Guy, 1990; Xin and Browse, 478 

2000), thus exhibiting inertial response (Charrier et al., 2018b). 479 

The snow depth is thinner in November – December compared to the January – March period: snow 480 

started to accumulate only at mid-November and reached its peak level (about 80 cm) at the beginning of 481 
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March. SEM showed that snow depth was the least explanatory among the environmental factors, 482 

especially during the period of deacclimation when no direct effect of snow depth was observed on frost 483 

hardiness. During acclimation however, snow depth slightly affected frost hardiness (through positive 484 

correlation) and this variation was mainly driven by raffinose concentration (see next section). The deeper 485 

snow cover could offer a buffer to the variations in temperature, and especially the very low temperatures 486 

occurring in January – February, when most winter damage occurs (Girona et al., 2019). In our study, the 487 

temperature beneath the snow varied between two sampling points but was above -5 °C in February (see 488 

Figure 2, inset). However, the effect of snow depth on frost hardiness was not significant in eight Ericaceae 489 

species (Palacio et al., 2015), which could explain the absence of direct effect during deacclimation. Snow 490 

removal did not cause significant short-term damage in V. myrtillus (Tahkokorpi et al., 2007) although the 491 

absence of snow cover in the long term caused a significant loss of this understory plants (Kreyling et al., 492 

2012). Underground parts usually remain relatively protected by the insulating effect of snow and the 493 

thermal inertia of the soil, a decrease in snow depth can thus impair not only the aboveground parts but 494 

also roots (Ambroise et al., 2020), leading to decreased plant productivity and survival. Moreover, snow 495 

also offers protection against winter desiccation (Taulavuori et al., 2011).  496 

However, measuring snow depth directly at sampling sites could have led to better correlation coefficients 497 

in SEM, as snow depth may strongly vary locally, within the same field (Girona et al., 2019). Another 498 

way to improve our models would have been to use the monitoring of air temperature underneath the snow 499 

cover, directly at the wild blueberry plant level, but our system failed to work until February. Such 500 

monitoring has the advantage of taking into consideration air temperatures and snow depth at the same 501 

time (at the same measurement), but it also has the disadvantage of reducing the applicability potential of 502 

our models, as temperature sensors are not routinely positioned beneath the snow cover for most publicly-503 

available weather stations. 504 
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4.3 Effect of non-structural carbohydrate on frost hardiness 505 

Cold acclimation is often associated with changes in carbohydrates metabolism including a decrease in 506 

starch and an increase in soluble carbohydrates, such as raffinose (Beauvieux et al., 2018; Charrier et al., 507 

2013; Kasuga et al., 2007). Starch reserves in the blueberry shoot were rapidly degraded, already reaching 508 

zero at the beginning of November. Transcripts of a protein modulating the activity of starch degrading 509 

enzymes (DSP4) in the phloem parenchyma cells remain high from autumn to spring, with highest 510 

expression during October (Berrocal-Lobo et al., 2011). In highbush blueberry (Vaccinium corymbosum 511 

L.), starch content also decreases in the middle of cold acclimation and coincides with β-amylase gene 512 

expression (Lee et al., 2012). The α-amylase, β-amylase and starch phosphorylase activities exhibit a 513 

positive correlation with the decrease in temperature (Kasuga et al., 2007), explaining the positive 514 

influence of temperature on starch content in SEM. Shorter photoperiods during acclimation also influence 515 

starch degradation as shown by the direct effect of photoperiod on starch content in the SEM and the 516 

positive correlation of starch and photoperiod with PC1. 517 

In all models (except for photoperiod during acclimation), a decrease in starch was correlated to an 518 

increase in soluble carbohydrates, such as raffinose. Raffinose was then directly and negatively correlated 519 

to frost hardiness. The hydrolysis of starch stored in amyloplasts helps in producing, from starch-maltose 520 

conversion, oligosaccharides such as sucrose, raffinose and stachyose (Sauter, 1988). These soluble 521 

compounds increased in blueberry stem during autumn as the air temperature gradually dropped. Snow 522 

depth also negatively influenced raffinose content: during acclimation, beneath thinner snow, lower 523 

minimum temperatures would be reached, hence increasing raffinose content. A decoupling effect in the 524 

direct influence of photoperiod and starch raffinose concentration was observed during acclimation: 525 

raffinose was indeed strongly correlated with both photoperiod and starch (RPearson=-0.7, p<0.05, data not 526 
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shown) but the direct link between starch and raffinose in the SEM model was not significant (std=-0.564, 527 

P=0.089). 528 

In V. corymbosum, the soluble carbohydrates that were strongly associated with frost resistance were 529 

raffinose, glucose and fructose (Lee et al., 2012). In our study, stachyose was also detected with a 530 

concentration higher than 10 mg.g-1dw during winter, as also observed in boreal conifers (Strimbeck et 531 

al., 2008). Our PCA analysis revealed that stachyose was highly correlated to raffinose. In contrast, 532 

monosaccharides, especially glucose, still increased during November and December. As proposed by 533 

Beauvieux et al. (2018), the gluconeogenesis pathway can produce glucose from storage lipids and amino 534 

acids. In our study, both glucose and fructose were the most abundant solutes during the maximum of 535 

frost hardiness in December. Energy metabolism is essential to survive during a long winter as shown by 536 

an increased level of proteins involved in glycolysis during cold acclimation (Die et al., 2016). Glucose 537 

has a fundamental role during dormancy being metabolized in at least three pathways for detoxification 538 

(by the pentose phosphate pathway), mitochondrial respiration (by glycolysis) and lactate production (by 539 

fermentation) (Beauvieux et al., 2018). Therefore, glucose and fructose contents are not great predictors 540 

of frost hardiness for our Vaccinium species.  541 

During deacclimation, our results showed that a combination of raffinose and mean temperature or 542 

raffinose and photoperiod explained a large proportion of frost hardiness variability (86 and 88%, 543 

respectively). In all models, raffinose was directly linked to frost hardiness, as observed in several boreal 544 

conifer species (Strimbeck et al., 2008). However, higher temperature directly reduced the raffinose 545 

concentration, such as during a winter warming experiment on V. myrtillus (Bokhorst et al., 2010), 546 

increasing the vulnerability of wild blueberries to winter warming events. Raffinose maintains membrane 547 

integrity under abiotic stress as well as ROS scavenging. Furthermore, Raffinose Family Oligosaccharides 548 

(RFOs) facilitate vitrification and prevent sucrose from crystallizing (dos Santos et al., 2011; Nishizawa-549 
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Yokoi et al., 2008). Preventing sucrose crystallizing during winter desiccation, after extracellular freezing, 550 

preserves its cryoprotective effect, by maintaining the hydroxyl groups of sucrose to replace water in the 551 

phospholipid groups of the membrane (ElSayed et al., 2014; Imanishi et al., 1998). In contrast to red 552 

raspberry (Palonen et al., 2000), the disaccharide sucrose remained relatively low during winter compared 553 

to monosaccharides. However, as raffinose and stachyose are formed by the addition of a galactinol unit 554 

to sucrose (Castillo et al., 1990; Nishizawa-Yokoi et al., 2008), this could prevent sucrose concentration 555 

increasing during winter, as during drought in boreal trees (Deslauriers et al., 2014). 556 

5. Conclusion 557 

Multiple environmental stimuli were either directly or indirectly linked, through NSCs, to the level of 558 

frost hardening in wild blueberry V. angustifolium and V. myrtiloides. However, the importance of 559 

environmental factors differed between cold acclimation and deacclimation, being more important during 560 

acclimation when higher frost hardiness (i.e. lower LT50) is reached. Frost hardiness rapidly decreases as 561 

temperatures rise during spring making wild blueberry stems more vulnerable during deacclimation 562 

compared to the acclimation period. During the period of cold deacclimation, direct biological regulation 563 

through raffinose defined most of the frost hardiness but a negative influence of temperature on this 564 

important carbohydrate could increase vulnerability to winter warming events. In commercial wild 565 

blueberry fields, winter frost damage is a major threat and may reduce fruit yield by more than 50%, as 566 

observed in our study area in 2015 (Girona et al., 2019). As winter frost damage generally occurs during 567 

deacclimation period, our results suggest that raffinose contents could be potentially used as predictor of 568 

winter frost damage (Figure 7). Indeed, combined with air temperature data, plant raffinose content may 569 

represent a relatively easy, rapid, and quantitative way to indirectly estimate the probability of frost 570 

damage during the plant deacclimation period, and hence help producers and agronomists to better plan, 571 

at the field scale, management practices that should be performed in early spring (e.g., prescribing 572 
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pruning), when the buds are not yet open. Because commercial wild blueberry fields are managed over a 573 

2-year crop cycle (i.e., pruning year followed by a fruit harvesting year), not mowing damaged fields in 574 

early spring increases winter frost consequences over a longer period of time (>2 years).  575 

Acknowledgments 576 

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant 577 

RDCPJ-503182-16), and the Fonds de recherche axé sur l’agriculture nordique for their financial support. 578 

The authors also thank Les Entreprises Gérard Doucet Ltée, who provided access to their sites and 579 

infrastructure. 580 

  581 



34 
 

References 582 

Ambroise, V. et al., 2020. The roots of plant frost hardiness and tolerance. Plant Cell Physiol., 61(1): 3-20. 583 
Anderson, C.I. and Gough, W.A., 2017. Evolution of winter temperature in Toronto, Ontario, Canada: A case 584 

study of winters 2013/14 and 2014/15. Journal of Climate, 30(14): 5361-5376. 585 
Arora, R. and Rowland, L.J., 2011. Physiological research on winter-hardiness: Deacclimation resistance, 586 

reacclimation ability, photoprotection strategies, and a cold acclimation protocol design. Hortscience, 587 
46(8): 1070-1078. 588 

Arora, R. and Taulavuori, K., 2016. Increased risk of freeze damage in woody perennials VIS-À-VIS climate 589 
change: Importance of deacclimation and dormancy response. Frontiers in Environmental Science, 4: 44. 590 

Baffoin, R., Charrier, G., Bouchardon, A.E., Bonhomme, M. and Lacointe, A., 2020. Differential effect of 591 
carbohydrates on osmotic control of tree frost tolerance in various temperate tree species. Tree Physiol., 592 
Submitted. 593 

Beaujean, A.A., 2014. Latent variable modeling using R: A step-by-step guide. Routledge. 594 
Beauvieux, R., Wenden, B. and Dirlewanger, E., 2018. Bud dormancy in perennial fruit tree species: A pivotal 595 

role for oxidative cues. Front. Plant Sci., 9: 657. 596 
Bellasio, C., Fini, A. and Ferrini, F., 2014. Evaluation of a high throughput starch analysis optimised for wood. 597 

PLoS One, 9(2): e86645. 598 
Berrocal-Lobo, M. et al., 2011. Identification of a homolog of Arabidopsis DSP4 (SEX4) in chestnut: Its 599 

induction and accumulation in stem amyloplasts during winter or in response to the cold. Plant, Cell and 600 
Environment, 34(10): 1693-1704. 601 

Bertrand, A. et al., 2020. Biochemical and molecular responses during overwintering of red clover populations 602 
recurrently selected for improved freezing tolerance. Plant Sci., 292: 15. 603 

Bokhorst, S. et al., 2010. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath 604 
community. Physiol. Plant., 140(2): 128-140. 605 

Bonham, C.D., 2013. Measurements for Terrestrial Vegetation, Second Edition. John Wiley & Sons. 606 
Cappiello, P.E. and Dunham, S.W., 1994. Seasonal variation in low-temperature tolerance of Vaccinium 607 

angustifolium Ait. Hortscience, 29(4): 302-304. 608 
Castillo, E.M., De Lumen, B.O., Reyes, P.S. and De Lumen, H.Z., 1990. Raffinose synthase and galactinol 609 

synthase in developing seeds and leaves of legumes. J. Agric. Food Chem., 38(2): 351-355. 610 
Charrier, G., Bonhomme, M., Lacointe, A. and Améglio, T., 2011. Are budburst dates, dormancy and cold 611 

acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? 612 
International journal of biometeorology, 55(6): 763-774. 613 

Charrier, G., Chuine, I., Bonhomme, M. and Améglio, T., 2018a. Assessing frost damages using dynamic models 614 
in walnut trees: exposure rather than vulnerability controls frost risks. Plant, Cell & Environment, 41(5): 615 
1008-1021. 616 

Charrier, G., Lacointe, A. and Améglio, T., 2018b. Dynamic modeling of carbon metabolism during the dormant 617 
period accurately predicts the changes in frost hardiness in walnut trees Juglans regia L. Front. Plant Sci., 618 
9: 1746. 619 

Charrier, G., Poirier, M., Bonhomme, M., Lacointe, A. and Ameglio, T., 2013. Frost hardiness in walnut trees 620 
(Juglans regia L.): How to link physiology and modelling? Tree Physiol., 33(11): 1229-1241. 621 

Deslauriers, A. et al., 2014. Impact of warming and drought on carbon balance related to wood formation in black 622 
spruce. Ann. Bot., 114(2): 335-345. 623 

Die, J.V., Arora, R. and Rowland, L.J., 2016. Global patterns of protein abundance during the development of 624 
cold hardiness in blueberry. Environ. Exp. Bot., 124: 11-21. 625 

Die, J.V. and Rowland, L.J., 2014. Elucidating cold acclimation pathway in blueberry by transcriptome profiling. 626 
Environ. Exp. Bot., 106: 87-98. 627 

dos Santos, T.B. et al., 2011. Expression of three galactinol synthase isoforms in Coffea arabica L. and 628 
accumulation of raffinose and stachyose in response to abiotic stresses. Plant Physiol. Biochem., 49(4): 629 
441-448. 630 



35 
 

ElSayed, A., Rafudeen, M. and Golldack, D., 2014. Physiological aspects of raffinose family oligosaccharides in 631 
plants: protection against abiotic stress. Plant Biol., 16(1): 1-8. 632 

Environment Canada, 2019. Historical climate data. 633 
Fournier, M.-P. et al., 2020. How plant allometry influences bud phenology and fruit yield in two Vaccinium 634 

species. Ann. Bot., In press: mcaa083. 635 
Girona, J., Bradley, R., Lévesque, J.-A., Paré, M. and Bellemare, M., 2019. A call For improving winter 636 

windbreak design for lowbush blueberry production in the Saguenay–Lac-Saint-Jean region of Québec, 637 
Canada. International Journal of Fruit Science, 19(2): 165-178. 638 

Grace, J.B., 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge 639 
UK. 640 

Guy, C.L., 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of 641 
Plant Biology, 41(1): 187-223. 642 

Hooper, D., Coughlan, J. and Mullen, M., 2008. Structural equation modelling: guidelines for determining model 643 
fit. Electron J Bus Res Methods 6: 53-60. 644 

Ibáñez, C. et al., 2010. Circadian clock components regulate entry and affect exit of seasonal dormancy as well as 645 
winter hardiness in Populus trees. Plant Physiol., 153(4): 1823-1833. 646 

Imanishi, H.T., Suzuki, T., Masuda, K. and Harada, T., 1998. Accumulation of raffinose and stachyose in shoot 647 
apices of Lonicera caerulea L. during cold acclimation. Sci. Hortic., 72(3-4): 255-263. 648 

Ishizuka, W., Ono, K., Hara, T. and Goto, S., 2015. Use of intraspecific variation in thermal responses for 649 
estimating an elevational cline in the timing of cold hardening in a sub-boreal conifer. Plant Biol., 17(1): 650 
177-185. 651 

Kasuga, J., Arakawa, K. and Fujikawa, S., 2007. High accumulation of soluble sugars in deep supercooling 652 
Japanese white birch xylem parenchyma cells. New Phytol., 174(3): 569-579. 653 

Kreyling, J., Haei, M. and Laudon, H., 2012. Absence of snow cover reduces understory plant cover and alters 654 
plant community composition in boreal forests. Oecologia, 168(2): 577-587. 655 

Lee, J.H., Yu, D.J., Kim, S.J., Choi, D. and Lee, H.J., 2012. Intraspecies differences in cold hardiness, 656 
carbohydrate content and β-amylase gene expression of Vaccinium corymbosum during cold acclimation 657 
and deacclimation. Tree Physiol., 32(12): 1533-1540. 658 

Lee, J.I., Yu, D.J., Lee, J.H., Kim, S.J. and Lee, H.J., 2013. Comparison of mid-winter cold-hardiness and soluble 659 
sugars contents in the shoots of 21 highbush blueberry (Vaccinium corymbosum) cultivars. J. Horticult. 660 
Sci. Biotechnol., 88(6): 727-734. 661 

Li, C., Junttila, O. and Palva, E.T., 2004. Environmental regulation and physiological basis of freezing tolerance 662 
in woody plants. Acta Physiol. Plant., 26(2): 213-222. 663 

Liu, B. et al., 2020. Factors affecting freezing tolerance: a comparative transcriptomics study between field and 664 
artificial cold acclimations in overwintering evergreens. The Plant Journal, 103(6): 2279-2300. 665 

Liu, B., Xia, Y.-p., Krebs, S.L., Medeiros, J. and Arora, R., 2019. Seasonal responses to cold and light stresses by 666 
two elevational ecotypes of Rhododendron catawbiense: A comparative study of overwintering strategies. 667 
Environ. Exp. Bot., 163: 86-96. 668 

MAPAQ, Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec., 2016. Monographie de 669 
l'industrie du bleuet sauvage au Québec. Gouvernement du Québec, pp. 32. 670 

Maurya, J.P., Triozzi, P.M., Bhalerao, R.P. and Perales, M., 2018. Environmentally sensitive molecular switches 671 
drive Poplar phenology. Front. Plant Sci., 9: 1873. 672 

Moore, J.N., 1994. The blueberry industry of North America. Hort Technology 3(4): 96-102. 673 
Nishizawa-Yokoi, A., Yabuta, Y. and Shigeoka, S., 2008. The contribution of carbohydrates including raffinose 674 

family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant 675 
Signaling & Behavior, 3(11): 1016-1018. 676 

Palacio, S., Lenz, A., Wipf, S., Hoch, G. and Rixen, C., 2015. Bud freezing resistance in alpine shrubs across 677 
snow depth gradients. Environmental and Experimental Botany, 118: 95-101. 678 

Palonen, P., Buszard, D. and Donnelly, D., 2000. Changes in carbohydrates and freezing tolerance during cold 679 
acclimation of red raspberry cultivars grown in vitro and in vivo. Physiol. Plant., 110(3): 393-401. 680 



36 
 

Rosseel, Y., 2012. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). 681 
Journal of Statistical Software, 48(2): 1-36. 682 

Rowland, L.J., Ogden, E.L., Ehlenfeldt, M.K. and Arora, R., 2008. Cold tolerance of blueberry genotypes 683 
throughout the dormant period from acclimation to deacclimation. Hortscience, 43(7): 1970-1974. 684 

Saarinen, T. and Lundell, R., 2010. Overwintering of Vaccinium vitis-idaea in two sub-Arctic microhabitats: a 685 
reciprocal transplantation experiment. Polar Res., 29(1): 38-45. 686 

Sauter, J.J., 1988. Temperature-induced changes in starch and sugars in the stem of Populus × canadensis 687 
«robusta». J. Plant Physiol., 132(5): 608-612. 688 

Schultz, T.F. and Kay, S.A., 2003. Circadian clocks in daily and seasonal control of development. Science, 689 
301(5631): 326-328. 690 

Schwarz, W., 1970. Der einfluß der photoperiode auf das austreiben, die frosthärte und die hitzeresistenz von 691 
zirben und alpenrosen. Flora, 159(3): 258-285. 692 

Strimbeck, G.R., Kjellsen, T.D., Schaberg, P.G. and Murakami, P.F., 2008. Dynamics of low-temperature 693 
acclimation in temperate and boreal conifer foliage in a mild winter climate. Tree Physiol., 28(9): 1365-694 
1374. 695 

Strimbeck, G.R., Schaberg, P.G., Fossdal, C.G., Schröder, W.P. and Kjellsen, T.D., 2015. Extreme low 696 
temperature tolerance in woody plants. Front. Plant Sci., 6: 884. 697 

Tahkokorpi, M., Taulavuori, K., Laine, K. and Taulavuori, E., 2007. After-effects of drought-related winter stress 698 
in previous and current year stems of Vaccinium myrtillus L. Environ. Exp. Bot., 61(1): 85-93. 699 

Taulavuori, K., Bauer, E. and Taulavuori, E., 2011. Overwintering stress of Vaccinium vitis-idaea in the absence 700 
of snow cover. Environ. Exp. Bot., 72(3): 397-403. 701 

Taulavuori, K., Laine, K. and Taulavuori, E., 2002. Artificial deacclimation response of Vaccinium myrtillus in 702 
mid-winter, Annales Botanici Fennici. JSTOR, pp. 143-147. 703 

Taulavuori, K., Laine, K., Taulavuori, E., Pakonen, T. and Saari, E., 1997. Accelerated dehardening in bilberry 704 
(Vaccinium myrtillus L.) induced by a small elevation in air temperature. Environ. Pollut., 98(1): 91-95. 705 

Vander Kloet, S.P., 1988. The genus Vaccinium in North America. Agriculture Canada, Gouvernement du 706 
Canada, 218 pp. 707 

Wildung, D.K. and Sargent, K., 1989. The effect of snow depth on winter survival and productivity of Minnesota 708 
blueberries. Acta Horticulturae(241): 232-237. 709 

Williams, C.M., Henry, H.A. and Sinclair, B.J., 2015. Cold truths: how winter drives responses of terrestrial 710 
organisms to climate change. Biological Reviews, 90(1): 214-235. 711 

Xin, Z. and Browse, J., 2000. Cold comfort farm: the acclimation of plants to freezing temperatures. Plant, Cell & 712 
Environment, 23(9): 893-902. 713 

Yu, B. and Zhang, X., 2015. A physical analysis of the severe 2013/2014 cold winter in North America. Journal 714 
of Geophysical Research: Atmospheres, 120(19): 10,149-10,165. 715 

Zhang, G., Ryyppo, A., Vapaavuori, E. and Repo, T., 2003. Quantification of additive response and stationarity of 716 
frost hardiness by photoperiod and temperature in Scots pine. Can. J. For. Res.-Rev. Can. Rech. For., 717 
33(9): 1772-1784. 718 

Zuur, A.F., Ieno, E.N. and Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical 719 
problems. Methods in Ecology and Evolution, 1: 3-14. 720 

  721 



37 
 

Captions ‘list 722 

Figure 1. Assumptions behind the conceptualization of the structural equation models (SEM) linking 723 

environmental variables, NSCs and frost hardiness index. In the middle, the structure of raffinose (left) 724 

and glucose (right) represent examples of NSCs. 725 

Figure 2. Left part: Maximum (black line) and minimum (gray line) air temperature (°C) and snow 726 

depth (gray background, cm) recorded at the Bagotville station from September 2018 to July 2019. 727 

Inset: Mean temperature (°C) at the soil-snow interface, at two sampling points from February to May 728 

2020. Right part: Walter & Lieth climatic diagrams representing average climatic conditions [mean 729 

temperature (red line), mean precipitation (in blue)] at the nearest weather station (Bagotville). The blue 730 

rectangles represent months with below zero temperature while the cyan rectangles indicate months 731 

when below zero temperatures are highly probable. 732 

Figure 3. Left part: Relationships between electrolyte leakage (REL) and temperature (°C) calculated 733 

according to a sigmoidal relationship for the different sampling dates by using all transect sampling 734 

points. Curve fittings were performed by using all transect data points (black dots, illustrated in the 735 

graph on the left). Right part: LT50 (°C) of each transect line (black dots) and mean LT50 (gray square) 736 

for the different sampling dates. 737 

Figure 4. Higher part: Seasonal hysteresis between LT50 (°C) and meteorological variables [maximum, 738 

mean, and minimum temperature (°C) averaged over 5 days, snow depth (cm), and photoperiod (hour)] 739 

at monthly scale. Lower part:  Relationship between LT50 (°C) and soluble sugars [sucrose, glucose, 740 

fructose, stachyose and raffinose, expressed in mg.g-1dw]. Seasonal hysteresis between LT50 (°C) and 741 

starch concentration (mg.g-1dw). The direction of the hysteresis, if present, is indicated with an arrow. 742 

Figure 5. Variation in mean non-structural carbohydrates concentration (sucrose, glucose, fructose, 743 

raffinose, stachyose and starch), expressed in mg.g-1dw in blueberry shoots. Note that the scales for 744 
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raffinose and stachyose differ from those for glucose, fructose, sucrose and starch. Vertical bars 745 

represent the standard deviation of the mean. 746 

Figure 6. Principal component analysis (PCA) projecting different variables related with NSCs, 747 

environmental cues and LT50, according to different sampling times (months, represented by dots in 748 

different colors). Only the first two axes are represented with the relative contribution explained. Suc, 749 

sucrose; Fru, fructose; Glu, glucose; Raff, raffinose; Sta, stachyose. 750 

Figure 7. Structural equation model linking environmental [photoperiod, mean temperature (°C) and 751 

snow cover (cm), non-structural soluble carbohydrates (raffinose and starch, in mg. g-1dw) and LT50 752 

(°C). Only significant standardized coefficients are illustrated. Acclimation includes samples from 753 

September 2019 until January 2020 while deacclimation includes samples from January until May 2020. 754 

Bollen-Stine P-values (Pbs) and goodness of fit indexes (CFI and RSMR) are provided for each model. 755 

Table 1. Correlation coefficients between the principal component axes PC1 and PC2 and the different 756 

variables used in the PCA with their contribution to axis definition (%). 757 

Table 2. Standardized coefficients (STD coefficient), STD error, z-value and P value for all SEMs 758 

regressions. 759 
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Supplementary Figures 761 

 762 

  
Figure S1. Sampling at one transect point in February. The blueberry stems were dig up by removing 763 

the snow in a surface of about 2 meters long × 1 meter large. The higher portion of one stem was cut due 764 

to ice formation at the soil surface. It was not possible to distinguish the stems belonging to the species 765 

Vaccinium angustifolium or Vaccinium myrtilloides under the snow during winter. Therefore, both 766 

species were simultaneously sampled.  767 

 768 
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 770 

Figure S2. Variation of the correlation coefficient (r, Pearson) between LT50, raffinose and starch and 771 

environmental variables (mean temperature, photoperiod and snow level). We use different time 772 

windows (between 5 and 20 days) to calculate means environmental parameters and different time lag 773 

(from 1 to 55 days) before the sampling. For example, for a window of 5 day, we calculate mean 774 

environmental parameter by including the 1rst to the 6th day prior to the sampling at lag 1, then the 775 

second to the 7 at lag 2. Then, the different combination of time window and lag were correlated either 776 

with LT50 or NSC values.    777 
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