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Original research article

Predicting quality, texture and chemical content
of yam (Dioscorea alata L.) tubers using near
infrared spectroscopy

Adou Emmanuel Ehounou1,2, Denis Cornet3,4 , Lucienne Desfontaines5,
Carine Marie-Magdeleine6, Erick Maledon4,7, Elie Nudol4,7,
Gregory Beurier3,4, Lauriane Rouan3,4, Pierre Brat4,8,
Mathieu Lechaudel4,8, Camille Nous9, Assanvo Simon Pierre N’Guetta1,2,
Amani Michel Kouakou2 and Gemma Arnau4,7

Abstract
Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput

screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded

yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out

of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%),

high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness

(>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype

may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance

spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2> 0.85 for dry matter, starch,

protein and sugar content), but not for texture attributes (R2< 0.58). Conversely, convolutional neural network classification

models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%,

respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near

infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results

allow for an efficient screening toolbox for quality traits in yams.
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Introduction

Yams (Dioscorea spp.), which are important crops for

food security, are grown in tropical and sub-tropical

regions.1 They are dioecious herbaceous vines belong-

ing to a C3 monocotyledonous genus cultivated for

their starchy tubers.2 D. rotundata and D. alata are

the most important cultivated species and both

belong to the same botanical section, i.e.

Enantiophyllum. Greater yam (D. alata) ranks

second in production importance, but it is the most

widely cropped species in the world.3 This species

offers unique advantages in terms of potential yield,

especially under low-fertility soil conditions (e.g. ease

of propagation, early vigor for weed suppression and

storability of tubers).4,5 Yams are consumed in sever-

al forms (e.g. boiled, pounded, fried, baked, and

roasted). In West Africa, where over 95% of the
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world’s yams are produced,6 pounded yam is the pre-
ferred consumption form. It is prepared by pounding
the cooked tuber and kneading it into a sticky paste.7

In this respect, D. rotundata is usually preferred to
D. alata owing to its ease of dough formation when
pounded.7 However, several studies have shown that
some genotypes of D. alata have the ability to form
good dough, comparable to that of D. rotundata.8,9

The importance of yams in terms of food security
has led to the establishment of several genetic
improvement programs for D. alata throughout the
tropical regions, in order to develop new varieties
with high yield, good food quality and resistance to
pests and diseases.3,10–13 Sensory quality evaluations
of new genotypes are mostly carried out using sensory
panels. It is a laborious and lengthy process that lacks
a high-throughput phenotyping method. For this
reason, the organoleptic qualities of new varieties
are assessed at the end of the breeding process. By
that time, only a few genotypes remain and the
chance of identifying high quality varieties is low.
As a result, improved varieties are rarely adopted
by end-users.

Organoleptic properties depend on several
physico-chemical and textural characteristics. Dry
matter, starch, proteins and sugar contents are impor-
tant quality traits. Martin (1974) observed in Puerto
Rico (USA) that high dry weights are associated with
fine structure, dense feel and high quality.14 Lebot et
al (2005) observed that varieties with good boiled
quality are characterized by high dry matter, starch
and amylose contents.15 Physico-chemical analysis
studies showed that varieties with good poundability
are also characterized by high dry matter con-
tents.16,17 Lastly, Brunnschweiler (2004) showed that
pounded D. rotundata exhibited greater firmness,
elastic recovery, gumminess and cohesiveness than
D. alata varieties.18 Several sensorial tests using
trained or hedonic testing have been carried out in
different West African countries in order to identify
which texture and taste attributes of pounded yam are
the most important. Five parameters are often men-
tioned in relation to quality, namely firmness, ease of
molding, smooth appearance (absence of lumps),
springiness and sweetness.8,16,19–21

The textural properties of pounded yam can be
measured using a double compression test with a
Textural Profile Analyser.22 This method can be
used to quantify different parameters (e.g. hardness,
cohesiveness and springiness) linked to texture attrib-
utes. It has been successfully used to determine the
textural quality of various food products, such as
soybean-derived gels, banana, cassava roots or yam
tubers.23–27 However, chemical and textural charac-
terization (both sensorial and TPA analysis) are
costly, laborious and time-consuming. A high-
throughput phenotyping method is required to be
able to screen large numbers of breeding lines. In
this regard, near infrared reflectance (NIR)

spectroscopy has become a widely used method of

quality control in the food processing industry.28,29

It is a rapid, cost-effective and non-destructive tech-

nique allowing the simultaneous determination of

major chemical constituents. NIR spectroscopy has

been used to predict the content of major constituents

in sweet potato, cassava, yam and taro crops.12,30

This study investigated the potential of NIR spec-

troscopy as a tool for chemical and textural charac-

terization of D. alata tubers. The objectives of the

present study were to (1) analyze the chemical and

textural characteristics of a panel representative of

the genetic diversity of D. alata, and (2) assess the

potential of NIR spectroscopy as a tool for screening

quality attributes.

Materials and methods

Plant material and sample preparation

Twenty-seven D. alata accessions (Table 1) and

breeding lines from various geographical origins

were analyzed. In order to broaden the genetic diver-

sity studied, the accessions were selected from previ-

ously obtained genotypic and quality data.31 Of the

selected genotypes, Florido and Bete Bete are the two

most cultivated varieties of D. alata in Ivory Coast.

Bete Bete is considered as a good quality genotype for

preparing pounded yam,32 and was considered as a

reference variety throughout this study.
Accessions were planted together in the same plot

at the Roujol experimental station (16�1005600N,

61�3502400W, 10 a.s.l., Petit-Bourg, Guadeloupe,

France) during two cropping seasons (i.e. 2016 and

2017). At harvest, three to five tubers of each variety

were peeled with a knife and washed. The head and

the tail were removed, and then the tuber was cut

longitudinally into two equal parts. The first half

was sliced into chips that were oven-dried at 60�C
for 72 h and milled into flour using a stainless steel

grinder (M-Mandine 150W, Carrefour, Levallois,

France). The granule size was homogenized using a

200 mm sieve. After setting aside 5 g for NIR spectro-

scopic analysis, samples of 50 g were sent for chemical

analysis (i.e. starch, sugar and protein contents at the

Laboratoire d’Analyses Agricoles Teyssier, Bordeaux,

France). In all, 174 yam flour samples (93 flour sam-

ples in 2016 and 81 flour samples in 2017) were pre-

pared for further analysis.
The other half tuber was cut into pieces of about

5mm thick and placed with 1.5 l of water in a pressure

cooker. Three identical pressure cookers were used to

prepare three samples of each variety at a time. After

cooking, the pieces were pounded with a mechanical

pounder (Bluesky model, NIF A-2842270, China).

The mechanical pounder was used in order to

ensure uniform conditions for sample preparation,

which could not have been guaranteed with the
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traditional practice of manual kneading in a mortar

with a pestle.20,33

Texture evaluation

After pounding, each paste obtained was assessed for

its moldability. The moldability of the dough is its

ability to form a ball with the hand. Moldability

was assigned a binary score depending on whether

or not the dough was easily malleable (2: good

dough, 1: bad dough).
The textural properties of pounded samples were

characterized using texture profile analysis (TPA)

with two compression cycles. Samples of yam pastes

were formed using a mold (diameter, 25mm; height,

18mm) and wrapped in plastic immediately after

pounding to prevent surface drying. Nine different

pounded yam samples were analyzed for each variety

(i.e. three replicates per tuber and three tubers per

genotype). TPA was carried out by compressing the

yam samples using a TA.Xt2i texture analyser (Stable

Micro Systems, Godalming, U.K.). Data were

acquired and integrated with Texture Exponent soft-

ware from the same manufacturer. Each sample was

placed horizontally and centered under the probe

before measurement. The two compression cycles

were achieved using a flat ended aluminum cylinder

plunger (i.e. probe P/75; diameter, 50mm) to 50% of

its initial height. The trigger force was 0.049N and

the test speed was set at 1.0mm s�1. All analyses were

carried out at a room temperature of 26�C.
The force deformation curve was evaluated

according to Bourne (2002) and Rosenthal

(1999).34,35 Hardness is defined as the maximum

force on the first compression cycle. Cohesiveness is

defined as a ratio between the positive area under the

force-deformation curve of the second and the first

compression cycles. Springiness is defined as the ratio

between distances from the onset to peak force of the

second to the first compression cycle.

Chemical analysis

Dry matter (DM), starch, sugar and protein contents

were analyzed according to AFNOR and European

Union methods. All measurements were expressed as

a percentage of DM (as per standard NF V18-109).

Starch was quantified using Ewers protocol (ISO

10,520). Sugars were quantified by the colorimetric

method of Luff-Schoorl (CEE 98/54/CE). Total

Table 1. Details of accessions with their accession code, geographical origin, local name, ploidy level and accession type included in the
study.

Code accession Geographical origin Local name

Type of

accessiona Ploidy level Flowering

Genetic diversity

groupb

CT133 Vanuatu Ptris C 2 Male 3

CT177 Vanuatu Peter C 2 Male 6

CT256 Benin Florido C 2 Male 7

Plim-G France (Guadeloupe) Plimbite C 2 Male _

Kin-G France (Guadeloupe) Kinabayo C 2 Female 2

Pac-P France (Guadeloupe) Bete Bete C 2 Female 8

Kab-L France (Guadeloupe) Kabusa C 2 Male 3

PT-IG-00074 Barbados Oriental C 2 Female 2

STVB France (Guadeloupe) St Vincent blanc C 2 Female 4

STVV France (Guadeloupe) St Vincent violet C 2 Female 4

Div-PB France (Guadeloupe) Divin C 2 Female _

PT-IG-00033 USA (Puerto Rico) Pyramide C 2 Male 1

CT143 Vanuatu Malalagi C 2 Male 3

CT202 Vanuatu Nureangdan C 3 Male 14

CT198 Vanuatu Noulelcae C 4 Female 16

CT138 Vanuatu Tagab�e C 4 Female 18

CT148 Vanuatu Toufi Tetea C 4 Male 18

160DD France (Guadeloupe) Sinoua C 4 _ _

74F India Hyb 2x-74F BRL 2 Female _

14M India Hyb 2x-14M BRL 2 Male _

H4X431 France (Guadeloupe) Dou BRL 4 Female _

H4X105 France (Guadeloupe) Tiviolet BRL 4 Female _

H4X172 France (Guadeloupe) Hyb 4x-172 BRL 4 Female _

H4X242 France (Guadeloupe) Roujol BRL 4 Male _

H4X131 France (Guadeloupe) Hyb 4x-131 BRL 4 Male _

H4X200 France (Guadeloupe) Hyb 4x-200 BRL 4 Female _

H4X274 France (Guadeloupe) Hyb 4x-274 BRL 4 Male _

aC, Landraces; BRL, Breeding lines.
bGenetic groups identified in Arnau et al. (2017).
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N content (considered as equivalent total proteins)
was calculated using the Kjeldahl method (standard
NF V18-100). All analyses were carried out in dupli-
cate with accepted mean coefficients of variation (3%
for starch and sugars and 2% for proteins).

Data analysis

The chemical data (starch, proteins and sugars) and
TPA texturometer data (hardness, cohesiveness and
springiness) were analyzed using XLSTAT version
19.03.44616. A one-way ANOVA was used to analyze
the differences in evaluated characteristics between
genotypes. A Pearson correlation coefficient analysis
was used to determine the correlation coefficients
between different chemical and texture
characteristics.

The relationship between chemical and TPA
parameters was illustrated by a multivariate analysis
(principal component analysis, PCA). The results of
the PCA were represented by two plots, one for
attributes and one for the varieties, with clusters
based on hierarchical clustering on principal compo-
nents (HCPC). The HCPC first built a hierarchical
tree. The sums of within-cluster inertia values were
calculated for each partition. The partition kept was
the one with the highest relative loss of inertia.

Spectra collection and sample selection

NIR spectroscopy analyses were carried out in the
food processing laboratory of INRAE’s Tropical
Animal Research Unit, UR143, in Guadeloupe
(France). Two replicates of yam flour samples were
scanned with a FOSS-NIRSystems model 6500 scan-
ning monochromator (FOSS-NIRSystems, Silver
Spring, MD, USA) equipped with an autocup. The
spectroscopic procedures and data recording were
conducted with ISIscan(TM) software (FOSS,
Hillerød, Denmark). Each flour was placed in a
small ring cup 36mm in diameter, and reflectance
spectra from 400 to 2500 nm were recorded at 2 nm
intervals. Each spectrum represented the average of
32 scans.36 Each sample was scanned twice with two
independent cups, in order to minimize the effect of
particle size. The average spectrum of each sample
was used for further chemometric analysis.

Calibration and validation of regression models

For all traits but hardness, modeling was done using
WinISI software v4.10.0 (FOSS, NIR spectroscopy,
Denmark) using a modified partial least squares
regression (M-PLS). First, spectra and data outliers
were eliminated following the Shenk and Westerhaus
(1993) procedure.36 Before developing a calibration
model, two spectral outlier elimination cycles were
set up on the 174 samples using the center algorithm,
which calculated the Global H distance (GH) with a
cutoff of GH¼ 3. In this study, an outlier is defined

as a sample that does not conform to the bulk of the

population in terms of the spectral data. The samples

were then divided into a calibration set (3/4) and a

validation set (1/4). To select appropriate and repre-

sentative samples of the calibration set, the SELECT

algorithm was applied on the spectra. The number of

samples in both calibration and validation set after

outlier removal is given in Table 4. A 15-folds cross-

validation procedure was implemented to reduce

overfitting36 and split the calibration set into actual

calibration and calibration test set allowing identify-

ing the best pretreatments combination and model

calibration equation. The validation set was finally

used to evaluate the calibration equation. In order

to solve problems associated with overlapping peaks

and baseline correction, different mathematical pre-

treatments followed by some pretreatment algorithm

were tested. Mathematical treatment parameters were

the derivative order (D), the dimension of derivatives

(G), the degree of first smooth (S1) and the degree of

second smooth (S2). Pretreatment algorithm then

tested comprised standard normal variate and de-

trending (SNV), multi scatter correction (MSC), win-

dowed multi scatter correction (WMSC) and

Savitzky-Golay algorithm (SG). The choice of the

best pretreatment parameters and combination was

based on the standard error of calibration.

Mathematical pretreatment (MPD, G, S1, S2) and pre-

treatment algorithm selected were MP2,8,8,1 followed

by MSC for dry matter, starch and protein; MP2,8,8,2

followed by WMSC for sugar; and MP2,4,4,1 followed

by SNV for springiness and cohesiveness.
Hardness was calibrated with the ChemFlow

(https://chemproject.org/ChemFlow) open source

software. Data pretreatment used a standard normal

variate followed by the Savitzky-Golay algorithm

with first order derivative, 13 window size and

second degree polynomial. The multivariate distances

were used as criteria for removing outliers (i.e. sam-

ples in the population that were more variable based

on the spectra features). Then, principal component

analysis (PCA) was performed followed by the cali-

bration using nonlinear estimation by iterative partial

least squares regression (NIPALS),37 with 4-fold cross

validation and 20 latent variables.
At each step (i.e. cross-validation, calibration and

validation), the standard error (SECV, SEC, SEP

respectively) and the coefficient of determination

(R2
CV, R2

C and R2
P respectively) were calculated.

The best pretreatment and calibration model was

selected using the highest R2
C, and the lowest

SEC.
38 Moreover, the prediction ability of the differ-

ent regression models was tested based on the ratio

between standard deviation (SD) and the standard

error (SEP for validation step). All regression

models were developed using the 1100-2498 nm inter-

val range.
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Calibration and validation of classification models

In order to evaluate the feasibility of screening geno-
types for quality when regression models were per-
forming poorly, continuous texture attributes were
binarized based on a variable’s average (i.e. values
strictly higher than the average were considered to
have the traits, while others not). Classification
models were then fitted in order to predict belonging
to binary classes of hardness, cohesiveness, springi-
ness and moldability.

The classification modeling strategy was based on
convolutional neural network (CNN). Recently,
machine learning techniques, such as convolutional
neural networks (CNNs), have been suggested as a
replacement for conventional regression techniques,
such as principal component, PLS or support vector
machine, due to their superior performance.39–42 The
first advantage of CNN comes when classes are not
linearly separable. In such cases the linear classifiers
may be outperform by more sophisticated models
able to deal with nonlinearity. Moreover, the innova-
tion of convolutional neural networks rely on their
ability to automatically learn together a large
number of filters specific to a training dataset under
the constraints of a specific predictive modeling prob-
lem, such as spectra classification.39 The result is
highly specific features that can be detected anywhere
on input spectra.

For the calibration of these models, all the spectra
were kept without removing spectral outliers.
Pretreatments, calibration and validation were carried
out using python language (v3.6, https://www.pyth
on.org) with a Keras framework (v2.1.5, https://
keras.io/) and a TensorFlow backend (v1.6.0,
https://www.tensorflow.org). Samples were divided
into a calibration set (60) and a validation set (21)
using constrained random sampling keeping the
same proportion of each class in the two sets.

First, a data (i.e. sample) augmentation was
applied to the calibration set only. For each original
sample, 30 synthetic spectra were generated using a
combination of random translation and rotation of
the original spectra. Then spectra presenting absor-
bance values higher than 1 or lower than 0 were dis-
carded. This allow going from 61 to more than 800
spectra. Noised data augmentation is a common tech-
nique used in deep learning to reduce overfitting of
small dataset.43

Secondly, we made a feature (i.e. spectral) augmen-
tation on calibration and validation sets. We apply an
all possibilities approach combining and keeping the
different pretreated spectra, including the original
one. For each sample, feature augmentation was
applied by generating 12 new spectra using pretreat-
ments based on Haar transform, Gaussian deriva-
tives, SVG, SNV, and different degrees of MSC.

A convolutional neural network composed of three
convolutional layers followed by two dense layers was

fitted to the calibration data. Binary cross entropy
was used as the loss function. In order to avoid over-
fitting, a dropout of 20% of features was applied
between layers. The model was calibrated using five-
fold cross validation.

Model performance was estimated based on a con-
fusion matrix and traditional sensitivity, specificity,
precision, recall, F1 score, Kappa statistic and overall
accuracy. Accuracy is a popular metric that refers to
the ability of the model to correctly predict the class
label of new or unseen data. In addition to this, sen-
sitivity and specificity are also used to assess how well
classifiers can recognize true examples as well as false
examples. The Kappa statistic evaluates the pairwise
agreement between two different observers, corrected
for an expected chance agreement. A Kappa value of
0 indicates chance agreement and 1 shows prefect
agreement between the classifier and the ground
truth (true classes). Precision can be seen as a mea-
surement of exactness or quality, whereas recall is a
measurement of completeness or quantity. The F1
score is the harmonic mean of precision and recall,
where an F1 score reaches its best value at 1 (perfect
precision and recall) and worst at 0.

Results

Chemical evaluation

Significant variation was observed for all the constit-
uents (Table 2). Sugar displayed the largest variation
amongst varieties, with a coefficient of variation (CV)
of 75%, followed by proteins (CV 17.9%), dry matter
(CV 13.7%) and starch (CV 5.5%). The analysis of
variance showed that the differences between geno-
types were highly significant for all parameters.

Dry matter content ranged from 20.24% to
32.54% (Table 2). The value of control variety Bete
Bete (32.54%) was significantly higher than that of
control variety Florido (26.78%). In the studied
panel, 55% of accessions presented dry matter con-
tents similar to Bete Bete, while eight accessions
(30%) presented significantly lower dry matter con-
tents (values between 20 and 24%). Starch content
ranged from 66.86% to 82.80%, with five varieties
presenting a significantly lower content (i.e.
Kinabayo, Oriental, Pyramide, St Vincent violet and
St Vincent blanc).

Sugars ranged from 0.52% to 11.6%. The cultivars
Oriental, Kinabayo, St Vincent blanc, St Vincent
violet and Pyramide had the largest total sugar con-
tents. Proteins ranged from 4.07% to 7.43% with cul-
tivars Pyramide, Kinabayo and Sinoua presenting the
highest content.

Textural evaluation

The hardness of the pounded samples ranged from
1.48N for Sinoua to 11.75N for Bete Bete.
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Amongst the accessions, 44% presented hardness

values similar to Bete Bete (not significantly differ-

ent), while others presented significantly (p< 0.05)

lower values, including the control variety Florido.

Cohesiveness ranged from 0.11 to 0.57. Bete Bete

and Florido presented very similar cohesiveness

values (0.22 and 0.21). Eight accessions presented sig-

nificantly (p< 0.05) higher cohesiveness values than

the control varieties. Springiness ranged from 0.09 to

0.90. Bete Bete and Florido presented identical

springiness values (0.32). Eight accessions presented

significantly higher (p< 0.05) springiness values than

the control varieties.
Moldability ranged from 2 to 1 with seven geno-

types regarded as moldable (i.e. 14M, Toufi Tetea,

Peter, Noulelcae, H4X200, Roujol, Dou and Bete

Bete). One of the two control varieties (i.e. Florido)

was characterized as not moldable.

Relationships between main variables

The correlation analysis (Table 3) revealed very
highly significant linear correlations between the
main chemical parameters analyzed. Dry matter was
positively correlated with starch and negatively
correlated with protein and sugar contents. There
was also a very highly significant linear correlation
between the five texture parameters analyzed.
Springiness was positively correlated with cohesive-
ness (R2¼ 0.97). Hardness was negatively correlated
with springiness and cohesiveness.

The correlation coefficients between chemical and
textural parameters revealed some significant rela-
tionships. Dry matter and starch were both positively
correlated with hardness and negatively correlated
with springiness and cohesiveness. Sugars and pro-
teins were both positively correlated with cohesive-
ness and springiness.

Table 2. Chemical and textural characteristics of 27 D. alata accessions.

Varieties Dry matter (%) Starch Proteins Sugars Hardness Cohesiveness Springiness Moldability

14M 29.18 abc 80.61 abcd 5.66 cde 2.05 efhhi 7.20 bcdef 0.20 def 0.20 fghi 2.00 b
Sinoua 21.07 ef 76.13 f 7.42 a 2.43 efgh 1.48 k 0.50 ab 0.75 ab 1.00 a

74F 30.14 abc 78.82 bcdef 5.47 cdef 1.24 hij 5.10 ck 0.15 f 0.12 hi 1.00 a

Ptris 30.03 abc 79.19 bcdef 4.95 cdefgh 2.38 efgh 3.57 hijk 0.11 f 0.09 i 1.00 a

Tagabe 31.43 a 80.86 abcd 4.36 fgh 2.37 efgh 8.13 bcde 0.20 ef 0.31 defghi 1.33 ab

Malalagi 29.37 abc 81.56 abc 4.11 gh 2.75 defg 5.04 ek 0.16 a 0.18 fghi 1.00 a

Toufi-Tetea 30.16 abc 81.29 abc 4.91 cdefgh 1.41 ghij 7.49 bcdef 0.24 def 0.33 defghi 2.00 b
Peter 26.91 cd 79.21 bcdef 4.61 efgh 3.87 cd 7.03 bh 0.21 def 0.26 efghi 2.00 b
Noulelcae 31.55 a 82.80 a 4.23 fgh 1.75 fghij 7.98 bcdef 0.22 def 0.26 defghi 1.67 ab
Nureangdan 27.13 bcd 78.87 bcdef 5.22 cdefgh 2.46 efgh 5.02 ek 0.37 bcd 0.51 cd 2.00 b
Divin 29.29 abc 77.20 ef 5.67 cde 2.18 efgh 6.04 bh 0.15 def 0.15 ghi 1.00 a

Florido 26.78 cd 78.33 cdef 4.40 fgh 3.76 d 5.50 ej 0.21 def 0.32 defghi 1.00 a

Tiviolet 23.10 ef 77.80 def 5.35 cdefg 4.01 cd 4.41 fk 0.43 abc 0.64 bc 1.00 a

H4X 131 22.74 ef 80.50 abcde 5.85 fgh 0.52 j 2.83 ijk 0.33 cde 0.50 cde 1.00 a

H4X 172 29.36 abc 80.38 abcde 4.77 defgh 3.07 def 7.84 bcdef 0.23 def 0.35 defgh 1.33 ab

H4X 200 31.31 a 82.66 a 4.83 defgh 1.20 hij 9.02 abc 0.25 def 0.37 defg 1.67 ab
Roujol 29.80 abc 81.31 abc 4.51 efgh 2.04 efghi 9.77 ab 0.23 def 0.39 defg 2.00 b
H4X 274 31.00 ab 80.76 abcd 5.01 cdefgh 2.49 efgh 8.10 bcde 0.27 def 0.39 defg 1.33 ab

Dou 31.46 a 82.00 ab 4.30 fgh 2.22 abcd 8.68 abcd 0.33 cde 0.39 def 2.00 b
Kabusa 31.29 a 78.61 bcdef 4.95 cdefgh 3.33 de 1.73 k 0.46 abc 0.71 abc 1.00 a

Kinabayo 21.38 ef 66.86 h 7.01 ab 7.36 b 2.20 jk 0.45 abc 0.63 bc 1.00 a

Oriental 23.69 def 70.41 g 4.07 h 11.69 a 2.72 ijk 0.53 a 0.63 bc 1.00 a

Bete Bete 32.54 a 80.54 abcde 5.28 cdefgh 2.17 efgh 11.75 a 0.22 def 0.32 defghi 2.00 b
Plimbite 28.70 abc 78.71 bcdef 6.12 bc 0.81 ij 3.85 ghijk 0.24 def 0.30 defghi 1.00 a

Pyramide 20.24 f 70.06 g 7.43 a 5.01 c 4.41 fk 0.46 abc 0.65 bc 1.00 a

St Vincent blanc 22.80 ef 70.84 g 5.42 cdef 6.87 b 2.75 ijk 0.57 a 0.90 a 1.00 a

St Vincent violet 24.48 de 71.46 g 6.14 bc 6.28 b 3.70 gk 0.46 abc 0.74 ab 1.00 a

Maximum 32.54 82.80 7.43 11.69 11.75 0.57 0.90 2.00

Minimum 20.24 66.86 4.07 0.52 1.48 0.11 0.09 1.00

Mean 27.66 78.07 5.26 3.25 5.68 0.30 0.42 1.35

Standard deviation 3.79 4.32 0.94 2.42 2.70 0.13 0.22 0.44

Coefficient of

variation (%)

13.70 5.53 17.79 74.44 47.60 44.12 51.41 32.59

p-Value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Different letters indicate statistically significant differences between genotypes.

Values in bold represent a binary classification of texture attributes. If a value is strictly higher than the attribute average, the genotype is considered as

having the respective texture attribute (e.g. hard for hardness or cohesive for cohesiveness).
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The principal component analysis conducted on
the data matrix indicated the respective contribution
of the seven variables to the projection, with dimen-
sions 1 and 2 explaining respectively 62.97 and
14.54% of total variance (Figure 1). Dimension 1
was negatively linked with the attributes cohesiveness
(r¼�0.87), springiness (r¼�0.83), sugars
(r¼�0.72) and proteins (r¼�0.62), while it was pos-
itively linked with starch (r¼ 0.91), dry matter
(r¼ 0.90), hardness (r¼ 0.80) and moldability
(r¼ 0.63). The positive side of the second dimension
was primarily linked with moldability (r¼ 0.56). The
protein content was also linked with the negative side
of the third dimension (r¼ 0.56).

The hierarchical clustering on principal compo-
nents revealed three main groups of varieties at the
extremities of each dimension. The group including
the control genotype Bete Bete was characterized by
high dry matter, starch content and hardness, and
good moldability. The group including the second
control (i.e. Florido) differed from the first by a

higher protein content and lower hardness and mold-

ability. Finally, the last group contained genotypes

with high sugar and protein contents, high cohesive-

ness and springiness, and low moldability.
Figure 2 shows the results of the principal compo-

nent coordinates for moldable and non-moldable

individuals. The upper left window of the plot

groups a mix of non-moldable samples and all the

moldable samples but one. On the other hand, the

other windows were mainly populated with non-

moldable individuals.

Calibration and validation of predictive models

The results in Table 4 show the calibration perfor-

mance for chemical and textural attributes. The

chemical attribute models performed well during the

calibration step (R2
C> 0.84 and R2

CV> 0.79). On

the other hand, all the texture parameters showed

R2
C values below 0.8, except hardness (0.83). The

good performance of the chemical models was

Table 3. Table of correlations (r) for the main continuous variables.

Variables 1 2 3 4 5 6

1. Dry matter –
2. Starch 0.762***a –
3. Proteins �0.592*** �0.559*** –
4. Sugars �0.541*** �0.807*** 0.061 ns –
5. Hardness 0.638*** 0.584*** �0.416** �0.401** –
6. Cohesiveness �0.673*** �0.641*** 0.344** 0.601*** �0.503*** –
7. Springiness �0.656*** �0.598*** 0.354** 0.527*** �0.476*** 0.958***

aLevel of significance: ns (not significant).

*p< 0.05; **p< 0.01; ***p< 0.0001.

Figure 1. Principal component analysis of the main variables (a) and hierarchical clustering on principal components for the 27
individuals (b).
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confirmed when the model was validated against the

validation data set (Figure 3, R2
P> 0.85). The perfor-

mance to deviation ratio (SD/SEP) showed that the

model for dry matter, protein, sugar and starch con-

tent, with values higher than two, could be considered

good for screening purposes.44,45 However, the calibra-

tion performance for hardness (R2
P¼ 0.58, SD/SEP¼

1,68), cohesiveness (R2
P¼ 0.55, SD/SEP¼ 1.35) and

springiness (R2
P¼ 0.52, SD/SEP¼ 1.24) displayed a

poor predictive performance (Figure 3).
Figure 4 presents the confusion matrix and the

model performance metrics for the different classifi-

cation models during the cross-validation (A) and val-

idation (B) steps. The convolutional neural networks

exhibited high accuracy (>0.8), except for hardness

(0.55), where the model lacked specificity (0.25). For

moldability, the model was characterized by very

good sensitivity (1), but rather poor specificity

(0.636). Springiness and cohesiveness where classified

with very good performance metrics.

Discussion

All the chemical and texture attributes studied were

highly variable and their differences between geno-

types were highly significant. Among these traits,

dry matter and starch, two strongly and positively

correlated parameters, are known to affect yam qual-

ity.15,21 This study showed that dry matter and starch

were both negatively correlated with sugar and pro-

tein contents. These results tallied with those obtained

on root and tuber plants: sweet potato, cassava, taro,

potato and yam (i.e. D. alata, D. bulbifera,

D. cayenensis-rotundata, D. esculenta, D. nummularia,

Figure 2. Principal component analysis of the main variables (a) and principal component coordinates for moldable (black) and
nonmoldable (gray) individuals (b).

Table 4. Model performance metrics for the calibration (C), cross-validation (CV), and prediction (P) steps.

Constituent

Procedure

SEL

Calibration Cross-validation Validation

Model

Latent

variables NC SEC R2C SECV R2CV NP SEP R2P SD/SEP

Dry matter (%) MPLS 15 1 141 1.44 0.84 1.64 0.79 37 1.58 0.85 2.13

Protein (%) MPLS 15 2 136 0.18 0.96 0.24 0.92 37 0.29 0.88 2.77

Sugar (%) MPLS 9 3 136 0.32 0.96 0.42 0.93 38 0.56 0.93 3.49

Starch (%) MPLS 15 3 146 0.91 0.91 1.21 0.83 37 1.46 0.89 2.67

Hardness (N) NIPALS 20 1 54 1.66 0.83 2.17 0.73 19 1.68 0.58 1.68

Cohesiveness (dimensionless) MPLS 9 1 52 0.08 0.55 0.10 0.23 21 0.11 0.55 1.35

Springiness (dimensionless) MPLS 9 1 54 0.13 0.57 0.16 0.41 21 0.19 0.52 1.24

SEL: standard error of laboratory reference measurement; N: number of samples; SE: standard error; R2: coefficient of determination; SD: standard

deviation; MPLS: modified partial least square regression model; NIPALS: nonlinear estimation by Iterative partial least squares regression.
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D. pentaphylla and D. transversa).15,46 However, on a

panel of 48 varieties within the species D. alata, Lebot

et al, (2005) showed that dry matter was positively

correlated with sugar.15 This discrepancy may be

due to the longer storage period applied in this

study, leading to the breaking of dormancy and

starch remobilization to produce sugars. In this par-

ticular situation, the sugar content could be negative-

ly correlated to the starch content. Bete Bete, a

control variety known for its gustatory qualities, as

well as 55% of the varieties evaluated, had signifi-

cantly higher dry matter content than the others.

Although all but one of the moldable genotypes

belonged to the high dry matter varieties, only half

of these high dry matter varieties were evaluated as

moldable. This result indicated that if dry matter con-

tent impacts sensory quality it may be a necessary,

but not sufficient, attribute interacting with other

traits. Conversely, varieties with the highest sugar

(i.e. Oriental, Kinabayo, St Vincent blanc,

St Vincent violet and Dou) and protein (i.e.

Pyramide, Sinoua, Kinabayo, St Vincent violet and

Plimbite) contents were all evaluated as non-moldable.
The texture parameters also displayed a high

degree of variability. Hardness is one of the most

important texture parameters in product evalua-

tion.34,35 Brunnschweiler et al., (2005) showed that

varieties of high quality D. rotundata were much

firmer than those of D. alata.47 In this study, all the

moldable genotypes belonged to varieties classified as

hard. But this class also contained some non-

moldable genotypes. This suggests that there could

be a hardness threshold below which yam can no

longer be moldable. Conversely, high hardness does

not automatically imply that the product will be of

high quality. Hardness threshold identification could

be an important criterion for selecting D. alata

varieties.
Cohesiveness is the degree of malleability of a

product. It is the way in which a product or paste is

easily molded with the fingers into a ball or spherical

shape.47 In this study, eleven varieties presented high

cohesiveness values. Amongst them, only one (Dou)

was moldable. The varieties with low cohesiveness

values belonged to both the moldable and non-

moldable categories. Again, the result suggested a

cohesiveness threshold above which yams are no

longer moldable. On the other hand, low cohesiveness

does not automatically imply that the product will be

moldable.
Otegbayo et al. (2007) showed that difficult-to-mold

D. alata varieties have high elasticity values.27 This is

in accordance with the high correlation found between

springiness and cohesiveness. All the springy genotypes

where not moldable, while the rigid ones included both

types (i.e. moldable and non-moldable).
The models for the quantitative prediction of

physico-chemical parameters (i.e. dry matter, pro-

teins, starch and sugars) showed a good performance,

unlike the texture parameters (i.e. hardness, cohesive-

ness, springiness). These results are consistent with

previous studies which found a good calibration per-

formance for dry matter, starch, protein and sugars

on different yam, taro and cassava species.12,46,48,49

The relatively small number of samples available for

texture traits calibration may result in reduced

Figure 3. Comparison of observed and predicted values for chemical (n¼ 41) and textural (n¼ 22) attributes during the validation step.
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performance and robustness. Current prediction
models should benefit from supplementary calibra-
tion data and external validation.

However, while regression models failed to predict
texture parameters, classification models provided an
accurate tool for qualitative screening varieties for

their moldability, springiness and cohesiveness. Only
the hardness classification model still exhibit poor
performance and seem to be prone to overfitting.
Indeed, accuracy decrease between calibration and
validation steps (i.e. 0.99 to 0.55) suggest such an
overfitting.

Figure 4. Confusion matrix, sensitivity, specificity, precision, recall, F1-measure, accuracy and Kappa data for yam texture classification
models during cross-validation (left plots) and validation (right plots) steps.
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Conclusion

Despite high variability in the main chemical and tex-

ture variables studied, it was not possible to define a

common profile discriminating between moldable and

non-moldable individuals. However, although the

results failed to identify a precise profile for moldable

genotypes, they enabled us to ascertain what leads to

a lack of moldability: high protein content, low hard-

ness, or high cohesiveness. These minimum require-

ments could be very useful prerequisites for breeders

to screen and discard low quality genotypes.
Moreover, the results confirmed that near infrared

spectrometry could be used for rapid screening of dry

matter, protein, sugar and starch contents in D. alata

yam varieties. Although texture parameters could not

be satisfactorily quantitatively predicted, the classifi-

cation algorithm proved to be accurate for qualitative

prediction. For breeding purposes, using thresholds

or classification algorithms to screen for texture qual-

ity traits seems to be a good compromise between

precision and speed. Using near infrared spectra

with binary classification modeling allows for high-

throughput phenotyping of moldability, cohesiveness

and springiness.
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