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Abstract

We study the impact of discrete versus continuous time on the behavior of agents in the

context of a dynamic common pool resource game. To this purpose, we consider a linear

quadratic model in which agents exploit a renewable resource with an in�nite horizon

and conduct a lab experiment. We use a di�erential game for continuous time and derive

its discrete time approximation. When the agent is the sole owner of the resource, we

fail to detect on a battery of indicators any di�erence between discrete and continuous

time. Conversely, in the two-player setting, signi�cantly more agents can be classi�ed

as myopic and end up with a low resource level in discrete time. Continuous time seems

to allow for better cooperation and thus greater sustainability of the resource than does

discrete time. Also, payo�s are more equally distributed in the continuous time setting.

Keywords : Common Pool Resource; Di�erential Games; Experimental Economics; Con-

tinuous Time; Discrete Time

JEL Codes : C01; C73; C91; C92; Q20

∗2 place pierre Viala, 34060 Montpellier, France. Corresponding author: alexandre.sauquet@inrae.fr.
†The authors would like to thank the members of the LEEM working group and Nicolas Querou for com-

ments, the ANR GREEN-Econ [grant number: ANR-16-CE03-0005] for �nancial support, and the Experimental
Economic Laboratory of Montpellier for technical support. Online supplementary materials available here.

1

http://alexandresauquet.weebly.com/uploads/2/8/0/5/28050317/supplementary_materials.pdf


1 Introduction

On many issues, we have the possibility of taking decisions at any moment in time, and

asynchronously with other agents: sending a message, extracting water from a groundwater

table, reducing prices, etc. Many of the interactions we engage in have a real-time aspect.

How does this ability to rapidly and asynchronously adjust actions shape our behavior? This

question has been of deep interest for behavioral and experimental economists over the past

decade. Indeed, many questions that were initially analyzed in discrete time in laboratory

experiments can today be analyzed using continuous time protocols that allow researchers

to compare the behavior of agents in discrete versus continuous time.

Previous articles �nd that continuous time can foster cooperation, but only under cer-

tain conditions. When presenting prisoner’s dilemma games to two-person groups in three

treatments, one in continuous time, one in static time (one-shot) and one in discrete time,

Friedman and Oprea (2012) �nd a higher median cooperation rate in continuous time. Bigoni

et al. (2015) combine elements of the design of Bó (2005) and of Friedman and Oprea (2012) to

study cooperation in repeated prisoner’s dilemma. They �nd that contrary to previous results

in discrete time, cooperation is easier to achieve in continuous time with a deterministic time

horizon than with a stochastic time horizon. Oprea et al. (2014) study subjects’ contributions

in a public good game played in groups of �ve people. They �nd players contribute higher

amounts in continuous time than in discrete time but only when a rich communication proto-

col among participants is included. Introducing new laboratory methods in order to eliminate

inertia in a subject’s decision in continuous time experiments, Calford and Oprea (2017) �nd

strikingly di�erent behaviors in continuous vs. discrete time in a simple timing game where

two participants compete to enter a market. Finally, Leng et al. (2018) study the evolution of

cooperation by crossing time protocols (continuous vs. discrete time) and information feed-

back (group minimum e�ort level vs. e�ort level of each member of the group) in a minimum

e�ort coordination game played in groups of six people. Among the four treatments, the

authors �nd that the average payo� increases only when continuous time is associated with

the provision of information on the e�ort level of each member of the group.

Although studying interactions in the prisoner’s dilemma, public good, timing, or mini-
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mum e�ort coordination games is extremely useful, these games abstract from a feature rele-

vant to many economic applications, the presence of a state variable that makes the impact of

any decision to persist through time, which is the case in common pool resource (CPR) games

(Vespa 2020). The vast majority of the CPR literature that combines theory and experimenta-

tion is in discrete time. A possible explanation is that discrete time is easier to implement in

the lab and can be compared to a static repeated game in which the state variable evolves from

one period to the other (Herr et al. 1997, Gardner et al. 1997, Mason and Phillips 1997, Hey

et al. 2009, Suter et al. 2012, for instance). Nevertheless, Tasneem et al. (2017) recently tested

a CPR di�erential game in the lab using a continuous time protocol. Focusing on Markov’s

perfect equilibrium strategy, they tried to determine the relevance of the nonlinear equilibria

in a two-player common property resource game. Janssen et al. (2010) have also studied the

role of communication and punishment in a CPR game in continuous time. They �nd that

punishment can foster cooperation only when combined with communication. The authors

do not present the formal theoretical model underlying their experiment.1

In this paper we build on the previous literature to study the impact of the nature of time

in a two-person common pool resource (CPR) problem. Several important di�erences with

previously tested games (prisoner’s dilemma, public good, timing, and minimum e�ort coor-

dination games) can lead to a di�erent impact of the nature of time. First, the presence of the

state variable makes the impact of any decision to persist through time (Vespa 2020), which

can, for instance, generate dynamic free riding (Battaglini et al. 2016).2 Moreover, as opposed

to the prisoner’s dilemma, where payo�s can be directly read from a matrix, dynamic games

are more di�cult to handle. These two elements can make the optimal solution harder to

reach in the case of CPR games. Reversely, in�nite horizon can provide strategic opportuni-

ties to endogenously support cooperative outcomes (Battaglini et al. 2016). In addition, using
1Note also that some authors such as Noussair et al. (2015) conduct their experiments in discrete time, while

their theoretical model is in continuous time, which poses the question of to what theoretical predictions should
we compare lab results: those from discrete or those from continuous time models? Moreover, Tasneem et al.
(2019) study the ability of a single economic agent to exploit a renewable resource e�ciently. To do that they
test in the laboratory an optimal control problem with an in�nite horizon in continuous time and show that
extraction behavior results in a steady state of the resource only 56% of the time.

2Battaglini et al. (2016) de�ne dynamic free-riding this way: “an increase in current investment by one agent
[which] typically triggers a reduction in future investment by all agents". In the context of a CPR, a decrease in
extraction level can be seen as an investment to obtain a higher resource level.
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dynamic CPR games allows us to explicitly derive equilibrium paths for three well identi-

�ed types of behavior – myopic, feedback and optimal. How does the nature of time a�ect

strategic interactions in this context? Can continuous time still foster cooperation? Does the

nature of time a�ect the equilibrium path to which participants are the closest?

To analyze these questions, we consider a simple linear quadratic model, based on Gisser

and Sanchez (1980), Negri (1989), and Rubio and Casino (2003), in which agents exploit a re-

newable resource with an in�nite horizon. The resource can be assimilated to a groundwater

basin but other interpretations of CPR are possible. We use a di�erential game for continuous

time and propose a discretization of the CPR game so that the equilibrium paths for myopic,

feedback and optimal behaviors are almost identical in the discrete and continuous time mod-

els. For the implementation in the lab we choose to lead a non-contextualized experiment

in a between-subject design with four treatments. We cross the nature of time (discrete ver-

sus continuous) and the number of subjects exploiting the resource (one versus two). In the

continuous time treatments, we follow the literature and mimic continuous time by allowing

the agent to change his extraction level every second. In the discrete time treatments, the

agent can change his extraction level every period. About one hundred subjects participated

in each treatment.

Presenting subjects with the simplest setting, i.e., a single agent exploiting the resource,

allows us to test whether the ability to manage a resource di�ers in continuous and discrete

time. Indeed, the greater number of decisions potentially taken in continuous time could fa-

cilitate a trial and error process to reach optimal management of the resource. It is important

to establish this baseline because, as explained earlier, dynamic situations are complex prob-

lems to handle, and it is important to understand the impact of the nature of time without

interactions. Our estimates indicating that only 37% of the agents play optimally, con�rms

this statement. Our results also show that in all aspects tested, a subject’s ability is not af-

fected by the nature of time in a single agent setting. This allows us to deduce that the

di�erences observed in the multiplayer setting are due to the impact of the nature of time on

the interactions.

When running the experiment in a multiplayer setting, we �nd striking di�erences be-
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tween continuous and discrete time. For example, the average resource level is signi�cantly

lower in discrete time. There is a larger proportion of agents that can be classi�ed as my-

opic and a larger proportion of agents that end up with a low resource level in discrete time,

while the proportion of optimal and feedback agents are not signi�cantly di�erent between

the discrete and continuous time. Continuous time seems to favor a more sustainable ex-

ploitation of the resource. Our underlying intuition for this result is similar to Friedman and

Oprea (2012), Oprea et al. (2014) and Leng et al. (2018). Continuous time allows subjects to

brie�y switch to cooperative behavior, such as a socially optimal extraction level, in order to

incite the other player to do the same, or conversely to quickly increase extraction if the other

player increases their extraction too much. The fact that we observe more stable extraction

levels in continuous time and that extraction levels are more homogeneous within the group

is consistent with this potential explanatory mechanism. It also results in less unequally

distributed payo�s in continuous than in discrete time.

Through this work, we provide several contributions to the literature. We o�er the �rst

in-lab analysis of the impact of discrete versus continuous time in the lab in the case of CPR

games. We contribute to the analysis of common pool resources using di�erential games,

by being the �rst experimental paper to consider socially optimal and myopic strategies in

a continuous time setting. We also make two secondary contributions. We clearly present

the experimental protocol allowing the implementation in the laboratory of a continuous-

time model with an in�nite horizon. Finally, to compare the behavior of subjects in the lab to

theoretical projections, we combine mean-squared deviation statistics and linear regressions.

The next section of this paper presents the theoretical setting. Section 3 describes the

experimental design used to test the theoretical model. Section 4 is devoted to the empirical

strategy, and results are analyzed in Section 5. The �nal section provides a discussion and

conclusion.
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2 The Model

We consider a simple linear quadratic model in which two agents, i, j exploit a renewable

resource over an in�nite horizon. The resource can be assimilated to a groundwater table.

Water pumped provides agents revenue B(w) depending only on the extraction w. Agents

also incur a cost C(H,w), which depends negatively on the level of the groundwater H .

The parameters a, b, c0 and c1 are positive. An agent’s instantaneous payo� is given by the

di�erence between revenue and cost, as shown by equation (1):

B(w)︷ ︸︸ ︷
aw − b

2
w2−

marginal cost (c(H))︷ ︸︸ ︷
max(0, c0 − c1H)w︸ ︷︷ ︸

C(H,w)

(1)

We take into account the positivity of the marginal or unitary cost c(H), so that it is

important to adopt a piecewise marginal cost function (2) to prevent agents from perceiving

the cost as a subsidy.

c(H) =


(c0 − c1H) if 0 ≤ H <

c0
c1

0 if H ≥ c0
c1

(2)

In the model, agents have to choose an extraction level that maximizes their instantaneous

payo�. The problem di�ers between continuous time and discrete time. In continuous time,

decisions are made at each instant t in real time and the resource evolves continuously, while

in discrete time, decisions are made at each period n and the resource evolves from one period

to the next. Whether in continuous or discrete time, the behavior of agents is analyzed in two

settings. First, in an optimal control problem, where a sole agent exploits the groundwater, we

characterize both the myopic and the optimal behaviors. Second, the behavior of agents can

be analyzed in a game, where strategic interaction is introduced by considering two identical

and symmetrical agents in the exploitation of the groundwater. A feedback equilibrium path

can be de�ned, in addition to the myopic and optimal equilibrium paths in the game.

Social optimum can be de�ned as a behavior in which an agent’s extraction decision al-

lows him to maximize his discounted net payo�s in order to maintain the resource at an
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e�cient level. The social optimum is also called the "cooperative solution" in the game. In

that case the resource is maintained at an e�cient level by maximizing the joint discounted

net payo� of all agents. The myopic solution is where the agent is only interested in the max-

imization of his current payo� (equation (1)), regardless of the evolution of the groundwater.

The feedback equilibrium can be seen as a scenario in which agents adopt non-cooperative

behavior, maximizing their own discounted net payo�s while also taking into account the

evolution of the groundwater.

In continuous time, the total discounted payo� (with r the discount rate) for player i is:∫ ∞
0

e−rt
[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H(t))wi(t)

]
dt (3)

and the dynamics is given as:



Ḣ(t) = R− α(wi(t) + wj(t))

H(0) = H0 and H0 ≥ 0, H0 given

H(t) ≥ 0

wi(t) ≥ 0

In discrete time, the total discounted payo� (with 1 − rτ the discount factor) and the

dynamics for player i are given as:
∞∑
n=0

(1− rτ)n
[
awi(n)−

b

2
wi(n)

2 −max (0, c0 − c1H(n))wi(n)

]
τ (4)



H(n+ 1) = H(n) + τ (R− α(wi(n) + wj(n)))

H(0) = H0 and H0 ≥ 0, H0 given

H(n) ≥ 0

wi(n) ≥ 0

The discretization rate τ chosen in discrete time provides a good approximation of the

continuous time problem, and optimal solutions can be found by means of the Hamilto-

nian operator. The Nash feedback equilibrium in continuous time can be found by means

of the Hamilton Jacobi Bellman (HJB) equation, by applying the guessing method to guess

7



a quadratic value function and in discrete time by means of the Bellman equation. Finally,

myopic solutions are obtained by means of a simple �rst-order derivative. They can also pro-

vide a feedback representation of the solutions when considering the constraints.3 When wj

is dropped from the dynamics, one is able to solve the optimal control maximization problem

(the sole-agent setting).

3 The Experiment

The computer is naturally unable to implement "pure" continuous time. Thus, we proposed

a discretization of our theoretical model in continuous time, and by varying the discretiza-

tion step, we were able to implement both an experiment which approximates continuous

time and one which approximates discrete time. The discretization procedure is detailed in

Appendix A. In what follows, we present the implementation of the di�erent components of

our experiment: continuous time and discrete time with a sole player, continuous time and

discrete time with multiple players, the in�nite horizon, and the choice of the parameters.

3.1 Experimental Design

The experiment took place at the Experimental Economics Laboratory of Montpellier (LEEM).

From December 2019 to February 2020, a total of 200 students from the University of Mont-

pellier participated in the �rst part of the experiment. This part was devoted to data collection

for the single agent condition. It included a total of 17 sessions, 11 for the continuous-time

treatment and 6 for the discrete-time treatment.4 From November to December 2020, a total

of 190 subjects participated in the second part of the experiment, which was devoted to data

collection for the two-players game. The experiment involved 20 sessions of continuous and

discrete time treatments for groups of two players, so that we had 49 groups in continuous

time and 46 groups in discrete time.5 It was a non-contextualized experiment, using the oTree
3The feedback representation is obtained when the solution is written according to the state variable, instead

of according to time.
4Since the continuous time condition involves higher network tra�c, we limited the number of participants

per session to a maximum of 14, which explains the greater number of sessions for this treatment.
5ORSEE (Greiner 2015) is the platform used by the LEEM to manage the subject pool.
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platform (Chen et al. 2016), in which subjects participated in a ten-minute training phase of

the game, followed by a ten-minute e�ective phase of the game which counted for their re-

muneration. The experimental currencies (ECU) accumulated by subjects in the experiment

were converted into cash payments with the conversion rate of 10 ECUs to 0.5 euro.6 Each

experimental session lasted around an hour.

3.2 Experimental Procedures

3.2.1 Global Description

We used a between-subject design in which participants in the sole-agent treatments were

di�erent from the ones in the multiple-agent treatments. In the sole-agent treatments, in-

structions explained the dynamics of the resource, the decision-making process and its con-

sequences on the available resource, the cost of extraction and the payo�. After an initial

individual reading, an experimenter proceeded to an outloud reading of the instructions.

Next, subjects answered a digital questionnaire to make sure they understood the evolution

of the resource as well as the computation of payo�s. They were also invited to ask questions

by raising their hands.

To familiarize subjects with the graphical interface, they participated in a 10-minute train-

ing phase before a 10-minute paid phase. At the beginning of each phase, subjects had to

choose an initial extraction between 0 and 2.8 by moving their cursor on a graduated slider,

which displayed values up to two decimal points. Due to the quadratic nature of our revenue

function, any extraction level led to a positive revenue. Figure B.1 in the Appendix B shows

a concave revenue curve with a maximum revenue reached for an extraction of 1.4. Figure

B.2 in the Appendix B also shows the unitary cost function, which decreases as the available

resource increases and vanishes when the level of the available resource is above 20.

In the continuous time instructions, the extraction refers to an extraction rate, while in

the discrete time instructions it refers to an extraction level. In addition, a distinction is made

between the di�erential equation representing the dynamics of the resource in continuous

time and the di�erence equation representing the dynamics of the resource in discrete time.
6ECU means Experimental Currency Unit.

9



However, for the sake of simpli�cation, we explain the dynamics in continuous time rather

than writing the di�erential equation. Once the subjects chose an initial extraction level, a

new screen appeared and subjects were able to see the dynamics of the resource along with

their payo�, which included the cumulative and continuation payo�s, updated every second

in the continuous time treatment and every period in the discrete time treatment.

Adapted instructions were provided to subjects in the multiple-agent treatments. Envi-

ronments remained the same as in the sole agent treatments, except that subjects extracted

the resource in groups of two. The layout of the user interface was slightly di�erent from

that of the sole agent treatments, with an additional curve showing the pair’s total extrac-

tion. Complete instructions for the four treatments can be found in the online supplementary

materials.

3.2.2 Parameters

Table 1 reports the parameters used. To get comparable results, parameters were the same in

continuous time and discrete time for both the sole- and multiple-agent treatments.

Table 1 – Parameters for the experiment

Variable Description Value

a Linear parameter in the revenue function 2.5

b Quadratic parameter in the revenue function 1.8

c0 Maximum average cost 2

c1 Variable cost 0.1

c0 − c1H Marginal or unitary cost 2− 0.1H

r Discount rate in continuous time 0.005

β = (1− rτ) Discount factor in discrete time 0.995

R Natural recharge (rain) 0.56

α Return �ow coe�cient 1

H0 Initial resource level 15

τ Discretization step 0.1 & 1
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Figure 1 and 2 below show the theoretical time paths for the extraction and resource levels

in continuous time for 100 seconds. As the theoretical time paths in discrete time are almost

identical to those in continuous time, we do not show them.

Figure 1 – Extraction behaviors and resource levels in sole-agent continuous time

Figure 2 – Extraction behaviors and resource levels in multiple-agent continuous time

The in�nite horizon requires us to set a small discount rate r to capture subjects’ attention

on the sustainability of the resource. The corresponding discount factor in discrete time is β.

We also chose these parameters so that the steady state level of the resource in the socially
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optimal case is strongly separated from other cases. The socially optimal behavior leads to a

high level of the groundwater, while the myopic behavior results in low groundwater levels

(see the right sides of �gures 1 and 2).

Both the natural recharge R and the return �ow coe�cient α were designated at a small

enough size to capture the renewable nature of the resource, simulate real life conditions and

avoid �oods in the model.7

In situations where a subject’s extraction is higher than the available resource, the rule

was to set the extraction to zero until she changed her decision or until the amount of the

resource increased enough to allow for a new extraction. This rule was chosen because it is

easy to implement in the lab and because setting an allocation rule for the extraction in pro-

portion to the available resource would have led to a multiplicity of equilibria, which would

have greatly complicated the empirical strategy needed to compare lab results to equilibrium

paths without revealing any (particularly) interesting information on the behavior of agents.

3.2.3 Decision Timing in Continuous and Discrete Time

In the sole agent continuous time treatment, subjects were able to change their extraction

rate at any moment by simply moving the graduated slider displayed on their computer.

Every second, the computer transmitted the slider value to the server, which then performed

the computations (resource and payo�) and updated the values displayed on the computer’s

graph and text interfaces.

In the two-player continuous-time treatment, player 2’s computer sent the cursor value

to the server as soon as it changed, while player 1’s computer transmitted the cursor value to

the server every second, which triggered the server to continuously broadcast the updated

values to both players. Thus, every second, the server took player 1’s current extraction and

player 2’s most recent extraction (i.e. the last one transmitted by his computer). In this way,

the time was synchronized between the two members of the group, since only one player

was triggering the continuous updating of the information.8

7The return �ow coe�cient is the quantity of water returning to the groundwater after each extraction.
8This also reduced network tra�c because as long as the second player did not change his extraction, his

computer did not transmit a new value.
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Since we have tried to provide an experiment that is as close as possible to continuous

time, we have chosen a discretization step that is as small as possible, τ = 0.1, to capture the

speci�c characteristic of continuous time, i.e., its uninterrupted evolution. This means that

in our continuous time treatment, one second of real time corresponds to 0.1 instant in the

model. Thus, 10minutes of experiment are equal to 600 seconds and equivalent to 60 instants.

In the discrete time treatment, we have chosen a larger but reasonable discretization rate,

τ = 1. With this rate, 1 period equals 1 instant in the model. Therefore, subjects participated

in a 60-period dynamic environment. In addition, in order to ensure a similar duration in

both treatments, we gave the subject exactly 10 seconds in each period to take her decision,

which means that the play time was also 10 minutes in discrete time.

The graphical user interface was divided into four areas. On the top left, a graph showed

the evolution of the player’s extraction. At the top right, a graph displayed the evolution of

the resource, and at the bottom left there was a graph showing the evolution of the payo�.

Finally, at the bottom right, a text box presented the same information as the graphs but in

text form. Figure B.3 in Appendix B shows a screenshot of the user interface for the sole

agent treatment in continuous time. In the multiple agent treatments, the user interface was

identical except that an additional curve in the upper left graph showed the evolution of the

group’s total extraction.

3.2.4 In�nite Horizon

In both continuous and discrete time, the in�nite horizon is implemented through the payo�,

as in Tasneem et al. (2017) and Tasneem et al. (2019). The payo� is composed of two elements:

(i) a cumulative payo� from the �rst instant of play (t = 0) to the present instant (t = p),

and (ii) a continuation payo�, which is computed as an integral of payo�s from the present

instant (t = p) to in�nity (t =∞), assuming that the player’s extraction remains unchanged.

In the two-player game, the continuation payo� was calculated assuming that both players’

extraction remained unchanged.

The cumulative payo� in continuous time corresponds to the discounted integral of the

instantaneous payo�s from the beginning of the experiment up to the present instant. Thus,
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the discount rate is r = 0.5% and means that the payo� of instant t is multiplied by e−0.005×t.

The discounting principle allows subjects to understand that the same instantaneous pay-

o� has a di�erent discounted value according to the instant. In other words, as time goes

on, the payo�s of the last instants have a lesser impact on the subject’s total payo� for the

experiment. Similarly, the cumulative payo� in discrete time corresponds to the discounted

sum of each period’s payo� from the beginning of the experiment up to the present period.

Thus, the discount factor is β = 0.995 and means that the payo� of period n is multiplied

by 0.995n. The discounting principle allows subjects to understand that the same payo� has

a di�erent discounted value according to the period. In other words, in the experiment, the

same instantaneous payo� contributes less to the total �nal payo� when it occurs in the later

periods rather than in the earlier periods.

4 Empirical Strategy

Two hundred subjects participated in the sole-agent (optimal control) experiment and 190

in the multiple-player (game) experiments. They took (paid) extraction decisions for 600

seconds during each session. We use these extraction decisions data to understand whether

agents take di�erent decisions in continuous vs. discrete time, and in the control vs. in the

game. Through the empirical analysis, we use standard tests such as the Mann-Whitney and

the Fisher exact proportion tests to compare our indicators among the di�erent treatments.

Furthermore, to determine whether agents demonstrated myopic or optimal behavior (or

feedback behavior in the game), we use the empirical strategy presented in this section. For

ease of understanding, the empirical strategy is �rst explained in detail for the sole-agent

setting.

To identify which theoretical extraction pattern an agent’s extraction comes closest to,

a widely used statistics is the mean squared deviations (MSD, e.g., Herr et al. 1997). The

minimum MSD gives the agent type. The MSDs are calculated for each agent such that:
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MSDth
my =

∑T
t=1

(
w(t)− w(t)thmy

)2
T

MSDth
op =

∑T
t=1

(
w(t)− w(t)thop

)2
T

(5)

where w(t) is the extraction of the agent at time t, w(t)thmy is the constrained myopic

theoretical extraction at time t, and w(t)thop is the optimal theoretical extraction at time t.

Agents can be classi�ed as myopic or optimal, depending on which MSD,MSDth
my orMSDth

op

is the smallest. Comparing extractions of the agent to the theoretical constrained myopic

and optimal extraction in this way is imperfect since an agent can make mistakes and begin

adopting an optimal path after, say, 30 seconds, which will not be captured correctly by the

method.

For instance, if an agent under-extracts for the �rst 30 seconds, the optimal extraction at

time 31, given the observed groundwater levelH (called conditional, w(31)cop) will be greater

than the optimal extraction at time 31 if the agent behaved perfectly optimally from time 0

(w(31)thop). Thus, in order to correctly identify an agent’s behavior type - myopic or optimal -

we compare observed extraction to conditional extractions throughout the remainder of the

paper. Conditional extractions are computed with respect to the t − 1 actual groundwater

level. Thus, we compute the following MSDs :

MSDc
my =

∑T
t=1

(
w(t)− w(t)cmy

)2
T

MSDc
op =

∑T
t=1

(
w(t)− w(t)cop

)2
T

,

(6)

wherew(t)cmy is the conditional constrained myopic extraction of the agent at each second

(every ten seconds for discrete time), and w(t)cop is the conditional optimal extraction of the

agent. Agents are classi�ed as myopic or optimal depending on which MSD, MSDc
my or

MSDc
op is the smallest.

The inconvenient of a classi�cation of agents based on the MSD alone is that an agent
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will always be classi�ed, even if he doesn’t follow the theoretical patterns studied at all.9 To

overcome this �aw, we add a second criteria based on a regression analysis. Supposing that

for a given agent, we have:

w(t)cmy < w(t)cop, or

w(t)cmy > w(t)cop,

(7)

then we run the following regression:

w(t) = β0 + β1w(t)
c
my + εt, or

w(t) = β0 + β1w(t)
c
op + εt.

(8)

We consider an agent to be signi�cantly myopic (or optimal) if β1 is positive and signi�-

cantly di�erent from 0. This allows us to categorize the agents as: myopic, optimal, or unde-

termined.10 Regarding the econometric time series treatments, we implement an augmented

Dickey-Fuller test to detect the presence of unit roots in the series. In case of non-stationarity

of the variables, we run our regressions on a di�erentiated series. Serial correlation of the

error terms is dealt with using Newey-West standard errors, and sensitivity tests using 1, 5,

and 10 lags are implemented.11

We follow exactly the same strategy to analyze experimental data for the game, but this

time for three instead of two predicted behaviors, namely: myopic, optimal and feedback.

Note that the continuous time framework provides us with 600 decisions per agent, while
9To take a concrete example, instead of comparing the agent’s extractionw(t) to the conditional constrained

myopic and conditional optimal extraction, w(t)cmy and w(t)cop, we could compare it to the temperature in
Moscow and Istanbul from day 1 to day 600, and we would �nd that our agent’s extraction is closer to the
temperature either in Moscow or in Istanbul, because one MSD will always be smaller than the other, even if
completely irrelevant.

10An alternative is proposed by Suter et al. (2012), who run a similar regression (without the constant term)
and consider that an agent follows a given behavior if the coe�cient is not signi�cantly di�erent from 1. A
natural way to do this is to implement a Wald test with:{

H0 : β1 = 1
HA : β1 6= 1,

and W =
(β̂1 − 1)2

var(β̂1)
→ F(1,300)

In this case, a very imprecisely estimated coe�cient β1 (very large var(β̂1)) will lead us to rejectHA and classify
the agent as myopic or optimal, although he follows neither an optimal or myopic path. This is the reason why
we propose the aforementioned alternative rule for classi�cation.

11We present regression results using 1 lags. Results using 5 and 10 lags are available upon request.
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the discrete time framework provides us with only 60. This greatly impacts our empirical

strategy as β-coe�cients would have more chances to be signi�cant in continuous time - a

greater number of observations leading to a lower minimum e�ect size. To avoid this issue,

we keep only one observation every ten seconds when running the regressions in continuous

time.

5 Results

Figure 3 presents an overview of our results. We plotted the mean resource by treatment

along with the 95% con�dence interval around the estimated mean. It seems we have close

average resource levels in the two time treatments in the control, but di�erent ones in the

game. Also, the average resource level increases in the control and decreases in the game.

Figure 3 – Evolution of mean resource level by treatment

In the rest of the section we take a closer look at what happens within each treatment. We

�rst compare the agents in the control setting. Second, we compare the average behaviors
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in the control and in the game. Third, we thoroughly study behaviors in the game. Finally,

we build speci�c indicators to examine the potential mechanism at play. Note that through

the rest of the paper, the term ‘agents’ is used to refer to subjects in the control, the term

‘players’ to subjects in the game, and the term ‘groups’ to groups of two subjects that were

paired in the game.

5.1 Analysis of the Optimal Control

Table 2 compares continuous and discrete time over various indicators. The average resource

level is not signi�cantly di�erent between the two treatments. About 40% of the players reach

a resource level greater than 20 in each treatment (the optimal steady state resource level) and

at approximately the same time. Only three agents in each treatment end up with a resource

level below ten. Finally, the average extraction level is around 0.50 in both treatments and,

perhaps more surprisingly, the number of times the players change their extraction level is

not signi�cantly di�erent between the continuous and discrete time treatments, while in the-

ory they had the possibility to change it 61 times in discrete time and 601 times in continuous

time.



Table 2 – Continuous versus discrete time in the control

Average agent’s resource level Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 17.572 2.639 98 -0.98 0.328

Continuous time 17.144 3.297 102 - -

Agents reaching R=20 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 39 59 98 0.983 0.535

Continuous time 41 61 102 - -

Time agents reach R=20 Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 23.795 13.546 39 -0.563 0.577

Continuous time 23.115 15.460 41 - -

Agents ending up with R<10 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 3 95 98 1.042 0.640

Continuous time 3 99 102 - -

Average agents extraction Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 0.497 0.064 98 0.992 0.322

Continuous time 0.501 0.075 102 - -

Number of agents extraction change Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 34.122 17.603 98 -0.304 0.762

Continuous time 44.902 47.515 102 - -

Agents with smaller MSDc
my than MSDc

op Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 6 92 98 0.446 0.087

Continuous time 13 89 102 - -

The fact that we observe a substantial share of agents reaching a resource level above 20

and very few ending up with a resource level below ten is consistent with the fact that the
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average resource level in the control observed in Figure 3 is closer to the optimal than to the

myopic path. This is con�rmed by the MSDs map Figure 4, which presents the location of

agents with respect to theMSDc
op on the y axis and theMSDc

my on the x axis. Agents located

above the bisector can be considered as more myopic (MSDc
op > MSDc

my) and vice versa.

Very few agents have a greater MSDc
op than the MSDc

my, i.e., 19 over 200. This proportion

is slightly lower in discrete than in continuous time (see the last test in Table 2).

Figure 4 – Map of conditional MSDs in the control

As we explained in Section 4, using the MSD alone is unsatisfactory, because we want to

know if agents are signi�cantly optimal or myopic. Applying the regression �lter presented

in the previous section leads us to �nd that in discrete time 33 agents can be classi�ed as

signi�cantly optimal and one as myopic, and 41 can be considered optimal and four as myopic

in continuous time. Proportions of optimal and myopic agents are not signi�cantly di�erent

between the two treatments. As expected, average payo�s are not signi�cantly di�erent

either (see Table 3). The proportion of optimal agents seems comparable to the experiment
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of Tasneem et al. (2019) who found that extraction behavior results in a steady state of the

resource 56% of the time, with the mode of the distribution being optimal.12 Also, the average

e�ciency ratio (individual payo� over the optimal payo�, here 220 ECUs) is 83% in Tasneem

et al. (2019)’s study while it is 88% in ours. Suter et al. (2012) found a slightly higher e�ciency

ratio in the optimal control in a discrete time experiment, about 95%.

Table 3 – Classi�cation and payo�s in the control

Proportion of optimal agents Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 33 65 98 0.755 0.209

Continuous time 41 61 102 - -

Proportion of myopic agents Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 1 97 98 0.253 0.198

Continuous time 4 98 102 - -

Average agents payo�s Mann-Whitney test

Mean S.D. N z-stat Exact prob

Discrete time 191.370 38.497 98 -0.755 0.452

Continuous time 196.605 16.878 102 - -

To summarize, in a control setting, both continuous and discrete times lead to similar

choices by participants. Having made this �rst observation we now study how the nature of

time a�ects strategic interactions between players.

5.2 The Control Versus the Game

The �rst observation that can be made by looking at Figure 3 is that the average level of

the resource is lower in the game than in the control and decreases over time, whereas the

resource level was increasing over time in the control. Mann-Whitney tests reported in Table

4 con�rm that, compared to the control, the average resource level in the game is signi�cantly

lower and the average extraction level signi�cantly higher. This is consistent with what one
12A more precise comparison of the results is not possible since the authors use a di�erent empirical strategy.



would expect if agents had unlimited rationality, since they would play optimal in the control

and feedback in the game. In addition, we observe that agents change their extraction levels

more often in the game than in the control.

Table 4 – Control versus game

Agent and group average resource levels Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 17.354 2.993 200 9.720 0.000

Game 1.653 5.406 95 - -

Agent and group average extraction levels Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 0.499 0.069 200 -10.025 0.000

Game 0.652 0.012 95 - -

Number of agents and groups extraction changes Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 39.62 36.415 200 -5.541 0.000

Game 60.658 56.041 190 - -

Agents and groups with smaller MSDc
my than MSDc

op Fisher exact test

Yes No N Odds ratio Exact prob

Control 19 181 200 0.207 0.000

Game 32 63 95 - -

Finally, the MSDs map reported in Figure 5 shows that, compared to Figure 4, signi�cantly

more agents have a smallerMSDc
my thanMSDc

op in the game than in the control (32 groups

over 95, see Fisher test in Table 4).



Figure 5 – Map of conditional group MSDs in the game

5.3 Analysis of Behaviors in the Game

Table 5 compares the decisions in discrete and continuous time in the game over various

indicators. The average resource level is signi�cantly lower in discrete time and the average

extraction signi�cantly higher. Very few groups reach a resource level greater than 20 –

only �ve in each treatment, and at approximately the same time. The big di�erence with the

control is that now a large number of groups end up with a resource level below ten and in a

signi�cantly larger proportion in discrete time. Introducing strategic interaction thus leads to

an over-exploitation of the resource, as the theory predicted, but to a greater extent in discrete

time, suggesting that continuous time allows for better cooperation between players. Finally,

the number of times the agents change their extraction level is now signi�cantly greater in

continuous time.

Continuous time o�ers more opportunities to change one’s extraction level. This pos-

sibility can be used to test the reaction of the other players and perhaps to try to induce a
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change in their behavior. For example, one player can temporarily lower his extraction level

to see if the other player will do the same. This type of test is less expensive in continuous

time than in discrete time. Indeed, in discrete time, the player can only make one decision

per period and this corresponds to one instant, whereas in continuous time, the player can

make one decision per second and this corresponds to only 0.1 of an instant. In other words,

the opportunity cost of testing a strategy, in terms of payo�, is much lower in continuous

time, because only a fraction of the payo� is given up during the temporary test strategy.

This mechanism through which continuous time can foster cooperation was also advanced

by Friedman and Oprea (2012), Oprea et al. (2014) and Leng et al. (2018). Oprea et al. (2014)

calls this "pulse behavior" and sees it as a non-verbal form of communication. It can be used

as a way to incite the other player to decrease extraction up to the optimal level or to retaliate

if the other players increase their extraction level too much.



Table 5 – Continuous versus discrete time in the game

Average group resource Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 9.06 5.884 46 2.867 0.004

Continuous time 12.149 4.477 49 - -

Groups reaching R=20 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 5 41 46 1.073 0.589

Continuous time 5 44 49 - -

Time required for groups to reach 20 Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 27.8 12.911 5 0.314 0.314

Continuous time 32.46 14.622 5 - -

Groups ending up with R<10 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 31 15 46 3.89 0.001

Continuous time 17 32 49 - -

Average players extraction Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 0.345 0.129 92 -2.352 0.019

Continuous time 0.308 0.114 98 - -

Number of extraction changes by players Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 40.674 16.202 92 4.203 0.000

Continuous time 79.418 71.68 98 - -

Applying the regression �lter presented in Section 4 leads us to �nd that 14 groups (28

players) can be classi�ed as signi�cantly myopic in discrete time versus three groups in con-

tinuous time, making the proportion of myopic behavior signi�cantly larger in discrete time.

Six groups are classi�ed as feedback in the two treatments, and we �nd only two optimal

in discrete time and one in continuous time. Proportion of optimal and feedback agents are
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not signi�cantly di�erent between discrete and continuous time. Note that the presence of

optimal groups is consistent with Battaglini et al. (2016)’s argument that in�nite horizon can

provide strategic opportunities to endogenously support cooperative outcomes.

As a result, we observe signi�cantly higher average individual payo�s in continuous time

than in discrete time. E�ciency ratios in the game are lower than in the control, and lower

in discrete time (48%) than in continuous time (64%).13

Table 6 – Analysis of types in the game

Proportion of optimal groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 2 44 46 2.182 0.476

Continuous time 1 48 49 - -

Proportion of feedback groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 6 40 46 1.075 0.575

Continuous time 6 43 49 - -

Proportion of myopic groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 14 32 46 6.708 0.002

Continuous time 3 46 49 - -

Average individual payo�s Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 57.987 46.233 92 3.184 0.002

Continuous time 76.806 41.897 98 - -

Finally, Figure 6 provides an overview of the results of the classi�cation by type by plot-

ting the cumulative density functions (c.d.f.) of the resource levels. The distribution of the

observed resource levels rank as expected, with the myopic groups experiencing the low-

est resource levels, followed by the feedback and optimal groups. The undetermined group
13The maximum group payo� is 240 ECUs, so we computed the individual e�ciency ratio by halving this

value. Nevertheless, it is possible to get "more than your own share". Obviously, if one of the two members of
the pair extracts a very small amount of groundwater, the other member can obtain more than 50% of the total
maximum payo�.



displays a high level of heterogeneity, which could be of interest in further research.

Figure 6 – Cumulative density functions of the resource levels by type

5.4 Potential Mechanism at Play

Our results show that continuous time fosters cooperation and allows for more sustainable

management of the resource than does discrete time. Our intuition is that continuous time

o�ers the possibility to induce cooperation at a lower opportunity cost, by lessening one’s

own extraction to incite the other player to do the same or to retaliate against them for

over-extracting. If this mechanism actually applies, the threat of immediate sanction should

make extraction patterns more stable and extraction levels should be more homogeneous,

resulting in a more even distribution of payo�s within groups. To test this reasoning, we

compute several statistics.

First, for each player we compute the absolute value of the di�erence of extraction be-

tween two consecutive instants (|Et − Et−1|) and calculate the average value over time by
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treatment, as did Oprea et al. (2014).14 As shown by Figures 7.a and 7.b, continuous time

leads to greater stability than does discrete time, and, not surprisingly, playing alone leads to

greater stability than playing with someone else.15

(a) Evolution through time in the game (b) Cumulative density functions

Figure 7 – Variations in players’ extraction levels (w)

Second, we compute the absolute value of the di�erence in extraction levels between two

players (A and B) of the same group at each point in time (|EtA − EtB|). We then take the

average value over each period of time, by treatment.16

Figure 8.a shows that the average di�erence in extraction inside groups is almost always

greater in discrete time, which is con�rmed by the c.d.f. displayed in Figure 8.b.17 Also,

although extraction level di�erences decrease over the course of the game, it remains an

issue until the end. Indeed, at the last instant the average di�erence in extraction levels still

represents two-thirds of the average player’s extraction.18

14To make continuous and discrete time comparable, we take the di�erence between two decisions separated
by ten seconds in continuous time.

15In Figure 7.a we also see an increase in stability over time for both treatments. Note, however, that the
greater instability in the beginning of the play time can be explained by the game setting. Indeed, players need
�rst to either let the resource grow or deplete it before reaching a steady state, depending on their preferred
equilibrium.

16To make continuous and discrete time comparable, we use only one decision every ten seconds in contin-
uous time.

17The c.d.f. are statistically di�erent according to the Kolmogorov–Smirnov test (p-value < 0.05).
18The average di�erence in extraction between players of the same group at the end of the game equals 0.18,

while the average player’s extraction level equals 0.27.
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(a) Evolution through time (b) Cumulative density functions

Figure 8 – Di�erence of extraction levels (w) within groups

To see whether or not within-group di�erences in extraction levels results in more un-

equal distribution of payo�s, we compute the Lorenz curves of individual �nal payo�s in the

game. We can see in Figure 9.a that �nal payo�s are more unequally distributed in discrete

time. More precisely, 50% of the poorest players share 28% of the payo�s in continuous time

while they share 17% in discrete time. The Lorenz curves in Figure 9.a are easily readable

but here unequal distribution can come from between-group inequalities and within-group

inequalities. To take a closer look at within-group inequalities we compute the di�erence

between individual �nal payo�s within a group and plot the corresponding Lorenz curves

(Figure 9.b). Payo� distribution is more unequal in the discrete time setting. If within-group

payo� di�erences were the same for all groups, the Lorenz curves would be confounded with

the diagonal. Here we see that large payo�-di�erences represent a greater proportion of total

payo� di�erences in discrete time than in continuous time, as the Lorenz curve for discrete

time is further from the diagonal than the Lorenz curve for continuous time.19

19Concentration (Gini) indexes are signi�cantly di�erent whether we use the standard, Erreygers or Wagsta�
indexes (O’Donnell et al. 2016).
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(a) Individual �nal payo�s (b) Within-group di�erence in �nal payo�s

Figure 9 – Lorenz curves

To summarize, even if we cannot prove the mechanism at play, the fact that extractions are

more stable and that within-group di�erences in �nal payo�s are lower in continuous time is

consistent with the fact that continuous time o�ers a less costly opportunity to in�uence the

other player’s decisions. As a result, continuous time seems to reduce inequality in payo�

distribution, in addition to favoring more sustainable resource exploitation.

6 Discussion and conclusion

In this paper, we intended to determine the impact of the nature of time, discrete or con-

tinuous, on the behavior of agents in the context of a dynamic CPR game. To this end, we

considered a simple linear quadratic model in which agents exploit a renewable resource

over an in�nite time horizon. Starting from a di�erential game, we proposed a discretization

such that the equilibrium paths for the myopic, feedback and optimal behaviors are almost

identical in discrete and continuous time. We then took on the challenge of implementing

continuous time and in�nite horizon in the lab, allowing participants to make extraction de-

cisions every second, and adding continuation payo�s to cumulative payo�s to simulate an

in�nite horizon.

To determine whether the nature of time has an impact on the ability of agents to manage

a resource, we �rst looked at the situation where the resource is owned by a single agent.

Observations showed no di�erence between discrete and continuous time, based on a battery
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of indicators, including the average level of the resource, the average level of extraction, the

proportion of myopic agents, and the proportion of optimal agents. Furthermore, about 35%

of the subjects could be classi�ed as signi�cantly optimal and the average resource level

increased over time, as is the case with the optimal solution.

In the context of a two-player game, the results were dramatically di�erent. First, unlike

what we observed with a single agent, the average resource level decreased over time, as is the

case with the myopic and feedback equilibrium paths. Furthermore, only 2% of the groups

behaved according to the optimal (cooperative) path. The competitive nature of the game

when multiple players simultaneously extract on the same resource explains the di�culty

in adopting a sustainable path. Second, we observed signi�cant di�erences between discrete

and continuous time settings. In particular, the discrete time setting led to the observation

of a larger number of agents exhibiting myopic behavior, thus leading to a much lower av-

erage resource level than that observed in the continuous time setting. The continuous time

environment seems to allow for better cooperation within groups and thus greater resource

sustainability. Although our experimental design does not allow us to prove the exact mech-

anism at play, our intuition is consistent with Friedman and Oprea (2012), Oprea et al. (2014)

or Leng et al. (2018): compared to discrete time, continuous time allows for rapid and adap-

tive strategic choices that promote the emergence of cooperation, either by attempting to

in�uence the other or by retaliating against their tendency to over-exploit the resource. The

observed greater stability of continuous-time extraction, as well as the greater homogeneity

within groups in this environment, is consistent with this explanatory mechanism.

We voluntarily used a very simple design, as to our knowledge we are the �rst paper to

test the impact of the nature of time in dynamic CPR games. Consequently, many extensions

are possible. We hope our work can o�er a basis for future works examining, for instance,

whether continuous time can still foster cooperation when increasing the group size, as the

continuous time frame by itself was able to induce cooperation compared to the discrete

time frame in a two-person prisoner’s dilemma in Friedman and Oprea (2012), but not in a

�ve-person public good game as in Oprea et al. (2014) or a six-person minimum e�ort game

as in Leng et al. (2018). Also, many re�nements of the underlying theoretical model and of
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the game setting are possible. In particular, the role of major mechanisms such as rewards,

punishments and communication settings in the continuous versus the discrete time frame

remain to be examined.

32



References
Battaglini, M., Nunnari, S., Palfrey, T.R., 2016. The dynamic free rider problem: A laboratory

study. American Economic Journal: Microeconomics 8, 268–308.

Bigoni, M., Casari, M., Skrzypacz, A., Spagnolo, G., 2015. Time horizon and cooperation in
continuous time. Econometrica 83, 587–616.

Bó, P.D., 2005. Cooperation under the shadow of the future: experimental evidence from
in�nitely repeated games. American economic review 95, 1591–1604.

Calford, E., Oprea, R., 2017. Continuity, inertia, and strategic uncertainty: A test of the theory
of continuous time games. Econometrica 85, 915–935.

Chen, D.L., Schonger, M., Wickens, C., 2016. oTree—an open-source platform for laboratory,
online, and �eld experiments. Journal of Behavioral and Experimental Finance 9, 88–97.

Friedman, D., Oprea, R., 2012. A continuous dilemma. American Economic Review 102,
337–63.

Gardner, R., Moore, M.R., Walker, J.M., 1997. Governing a groundwater commons: a strategic
and laboratory analysis of western water law. Economic Inquiry 35, 218–234.

Gisser, M., Sanchez, D.A., 1980. Competition versus optimal control in groundwater pumping.
Water resources research 16, 638–642.

Greiner, B., 2015. Subject pool recruitment procedures: Organizing experiments with orsee.
Journal of the Economic Science Association 1, 114–125.

Herr, A., Gardner, R., Walker, J.M., 1997. An experimental study of time-independent and
time-dependent externalities in the commons. Games and Economic Behavior 19, 77–96.

Hey, J.D., Neugebauer, T., Sadrieh, A., 2009. An experimental analysis of optimal renewable
resource management: the �shery. Environmental and Resource Economics 44, 263.

Janssen, M.A., Holahan, R., Lee, A., Ostrom, E., 2010. Lab experiments for the study of social-
ecological systems. Science 328, 613–617.

Leng, A., Friesen, L., Kalayci, K., Man, P., 2018. A minimum e�ort coordination game exper-
iment in continuous time. Experimental Economics 21, 549–572.

Mason, C.F., Phillips, O.R., 1997. Mitigating the tragedy of the commons through cooperation:
an experimental evaluation. Journal of Environmental Economics and Management 34,
148–172.

Negri, D.H., 1989. The common property aquifer as a di�erential game. Water Resources
Research 25, 9–15.

Noussair, C.N., van Soest, D., Stoop, J., 2015. Cooperation in a dynamic �shing game: A
framed �eld experiment. American Economic Review 105, 408–13.

O’Donnell, O., O’Neill, S., Van Ourti, T., Walsh, B., 2016. Conindex: estimation of concentra-
tion indices. The Stata Journal 16, 112–138.

33



Oprea, R., Charness, G., Friedman, D., 2014. Continuous time and communication in a public-
goods experiment. Journal of Economic Behavior & Organization 108, 212–223.

Rubio, S.J., Casino, B., 2003. Strategic behavior and e�ciency in the common property ex-
traction of groundwater. Environmental and Resource Economics 26, 73–87.

Suter, J.F., Duke, J.M., Messer, K.D., Michael, H.A., 2012. Behavior in a spatially explicit
groundwater resource: Evidence from the lab. American Journal of Agricultural Economics
94, 1094–1112.

Tasneem, D., Engle-Warnick, J., Benchekroun, H., 2017. An experimental study of a common
property renewable resource game in continuous time. Journal of Economic Behavior &
Organization 140, 91–119.

Tasneem, D., Engle-Warnick, J., Benchekroun, H., 2019. Sustainable management of renew-
able resources: an experimental investigation in continuous time. Applied Economics 51,
3804–3833.

Vespa, E., 2020. An experimental investigation of cooperation in the dynamic common pool
game. International Economic Review 61, 417–440.

34



Appendices
A The Discretization of the Continuous Time Model
This section presents the procedure adopted to discretize the continuous time model. Let’s
consider the following continuous time model:

max
w(t)

∫ ∞
0

e−rtf(w(t), H(t))dt (9)

s.t


Ḣ(t) = R− αw(t)
H(0) = H0 ≥ 0, H0 given
H(t) ≥ 0
w(t) ≥ 0

For the discretization of the model above, let’s consider τ as the discretization step and n
as a period. Time is discretized into intervals of length τ , such that the di�erential equation
and the payo� are approximated in each interval nτ , (n+1)τ . Thus, the discretization of the
objective function gives:∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt =

[
−e
−rt

r
f(w(n), H(n))

](n+1)τ

nτ

= −e
−r(n+1)τ

r
f(w(n), H(n))−

(
−e
−rnτ

r

)
f(w(n), H(n))

=
e−rnτ

r

(
−e−rτf(w(n), H(n))

)
+
e−rnτ

r
f(w(n), H(n))

= f(w(n), H(n))
e−rnτ

r

(
−e−rτ + 1

)
∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt = f(w(n), H(n))e−rnτ
(
1− e−rτ

r

)
Using Taylor’s �rst order limited development of e−rτ gives :

e−rτ ' 1− rτ

Thus, the objective function becomes:∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt ' f(w(n), H(n))(1− rτ)n
(
1− (1− rτ)

r

)
= f(w(n), H(n))(1− rτ)n

(
1− 1 + rτ

r

)
∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt = f(w(n), H(n))(1− rτ)nτ
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The discretization of the dynamics gives:

H(n+ 1) = H(n) + (R− αw(n)) τ

The discrete time problem can be de�ned as:

max
w(n)

∞∑
n=0

(1− rτ)n
[
aw(n)− b

2
w(n)2 −max (0, c0 − c1H(n))w(n)

]
τ (10)

s.t


H(n+ 1) = H(n) + τ (R− αw(n))
H(0) = H0 ≥ 0, H0 given
H(n) ≥ 0
w(n) ≥ 0

The discrete time model therefore converges towards the continuous time model when
the discretization step τ tends toward zero.
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B Figures from Experimental Instructions

Figure B.1 – Total revenue from extraction

Figure B.2 – Unitary cost of extraction
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Figure B.3 – Decision-making screen shot. We follow a hypothetical subject who chooses his
extraction rate at random
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