
HAL Id: hal-03216838
https://hal.inrae.fr/hal-03216838

Submitted on 4 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Exploring the Glucose Fluxotype of the E. coli y-ome
Using High-Resolution Fluxomics

Cécilia Bergès, Edern Cahoreau, Pierre Millard, Brice Enjalbert, Mickael
Dinclaux, Maud Heuillet, Hanna Kulyk, Lara Gales, Noémie Butin, Maxime

Chazalviel, et al.

To cite this version:
Cécilia Bergès, Edern Cahoreau, Pierre Millard, Brice Enjalbert, Mickael Dinclaux, et al.. Exploring
the Glucose Fluxotype of the E. coli y-ome Using High-Resolution Fluxomics. Metabolites, 2021, 11
(5), pp.271. �10.3390/metabo11050271�. �hal-03216838�

https://hal.inrae.fr/hal-03216838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


metabolites

H

OH

OH

Article

Exploring the Glucose Fluxotype of the E. coli y-ome Using
High-Resolution Fluxomics

Cécilia Bergès 1,2,† , Edern Cahoreau 1,2,† , Pierre Millard 1 , Brice Enjalbert 1 , Mickael Dinclaux 1 ,
Maud Heuillet 1,2, Hanna Kulyk 1,2, Lara Gales 1,2, Noémie Butin 1,2,3, Maxime Chazalviel 4 , Tony Palama 1,2 ,
Matthieu Guionnet 1,2 , Sergueï Sokol 1 , Lindsay Peyriga 1,2 , Floriant Bellvert 1,2, Stéphanie Heux 1

and Jean-Charles Portais 1,2,3,*

����������
�������

Citation: Bergès, C.; Cahoreau, E.;

Millard, P.; Enjalbert, B.; Dinclaux, M.;

Heuillet, M.; Kulyk, H.; Gales, L.;

Butin, N.; Chazalviel, M.; et al.

Exploring the Glucose Fluxotype of

the E. coli y-ome Using

High-Resolution Fluxomics.

Metabolites 2021, 11, 271. https://

doi.org/10.3390/metabo11050271

Academic Editor: Silas G. Villas-Boas

Received: 24 March 2021

Accepted: 23 April 2021

Published: 26 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France;
berges@insa-toulouse.fr (C.B.); cahoreau@insa-toulouse.fr (E.C.); millard@insa-toulouse.fr (P.M.);
brice.enjalbert@insa-toulouse.fr (B.E.); mickael.dinclaux@inrae.fr (M.D.); maud.heuillet@gmail.com (M.H.);
hbarbier@insa-toulouse.fr (H.K.); lara.gales@insa-toulouse.fr (L.G.); butin@insa-toulouse.fr (N.B.);
tony.palama@univ-paris13.fr (T.P.); matthieu.guionnet@univ-tlse2.fr (M.G.); sokol@insa-toulouse.fr (S.S.);
peyriga@insa-toulouse.fr (L.P.); bellvert@insa-toulouse.fr (F.B.); heux@insa-toulouse.fr (S.H.)

2 MetaToul-MetaboHUB, National Infrastructure of Metabolomics & Fluxomics (ANR-11-INBS-0010),
31077 Toulouse, France

3 RESTORE, Université de Toulouse, Inserm U1031, CNRS 5070, UPS, EFS, 31100 Toulouse, France
4 Toxalim (Research Centre in Food Toxicology), UMR1331, Université de Toulouse, INRAE, ENVT,

INP-Purpan, UPS, 31300 Toulouse, France; maxime.chazalviel@gmail.com
* Correspondence: jean-charles.portais@insa-toulouse.fr
† Co-first authors. These two authors contributed equally to this work.

Abstract: We have developed a robust workflow to measure high-resolution fluxotypes (metabolic
flux phenotypes) for large strain libraries under fully controlled growth conditions. This was achieved
by optimizing and automating the whole high-throughput fluxomics process and integrating all
relevant software tools. This workflow allowed us to obtain highly detailed maps of carbon fluxes
in the central carbon metabolism in a fully automated manner. It was applied to investigate the
glucose fluxotypes of 180 Escherichia coli strains deleted for y-genes. Since the products of these
y-genes potentially play a role in a variety of metabolic processes, the experiments were designed
to be agnostic as to their potential metabolic impact. The obtained data highlight the robustness
of E. coli’s central metabolism to y-gene deletion. For two y-genes, deletion resulted in significant
changes in carbon and energy fluxes, demonstrating the involvement of the corresponding y-gene
products in metabolic function or regulation. This work also introduces novel metrics to measure the
actual scope and quality of high-throughput fluxomics investigations.

Keywords: high-resolution fluxotyping; fluxomics; high throughput; y-ome phenotyping; E. coli

1. Introduction

Despite the progress that has been made in sequencing technology and genome
annotation, a non-negligible percentage of genes remains uncharacterized [1]. Even for
very well-known organisms, such as the bacterium E. coli, 35–40% of genes (the ‘y-ome’) are
of unknown function [2,3]. The products of these genes (y-genes) are likely to have highly
diverse functions among the various cellular processes. Metabolism is the basic process
that sustains all the energetic and biosynthetic needs of living organisms to survive and
grow. Not surprisingly, attempts have been made to investigate the potential role of the
y-genes in metabolic processes [4,5]. Accordingly, several high throughput (HT) methods
have recently been developed to explore the potential metabolic function of y-genes. This
includes the incubation of purified proteins with metabolite cocktails, the identification
by mass spectrometry of metabolites with varying abundances [6] and the application of
untargeted metabolomics to map gene-metabolite interactions [5].
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Alongside studies aimed at directly identifying gene product function, an alternative
strategy for studying the role of y-genes consists of detailing the phenotypic consequences
of a loss-of-function mutation or a gene deletion [7,8]. Together with the generation of
mutant libraries, such as the Keio E. coli mutant collection [9], which facilitates genome-
wide investigations, this approach has been used for large-scale investigations of gene
essentiality [9–12] and of molecular [13], morphological [14] and fitness [15] phenotypes in
bacteria. Metabolic phenotyping approaches have also been developed in which compara-
tive metabolomics is applied to reveal gene functions in yeast [4].

Metabolic phenotypes are most accurately revealed by fluxomics, which aims to
measure the actual rates of biochemical reactions in metabolic networks [16]. Fluxomics
measures the actual output of the integrated response of the gene-protein-metabolite inter-
action network [17] and provides direct access to the cellular phenotype in a quantitative
manner [18]. It has, thereby, become a major tool in comprehensive investigations of cellu-
lar metabolism in many fields, ranging from biotechnology [19] to the medical sciences [20].
The measurement of metabolic fluxes is based on 13C-labelling experiments coupled with
detailed mathematical models of metabolism (13C-fluxomics). This is a complex and te-
dious process involving many steps [16,21] and requiring significant expertise in data
collection and interpretation. Obtaining the detailed flux information on hundreds of
strains needed to explore the E. coli y-ome is a motivating factor in improving the current
HT fluxomics workflows [22].

In this work, we developed a robust workflow, in order to obtain high-resolution
fluxotypes under fully controlled growth conditions for large strain libraries. A fluxotype
is defined here as the particular distribution of metabolic fluxes measured for a given strain
under given physiological conditions. Resolution refers to the level of flux information that
can be generated and is high when a significant number of fluxes can be measured [21,23,24].
This workflow was applied to investigate the fluxotypes of 180 E. coli strains that are deleted
for y-genes and grown on glucose as sole carbon source. The data show that the central
metabolism of E. coli is highly robust to y-gene deletion. For two y-genes, deletion resulted
in significant alterations of metabolic fluxes, pointing to the role of the corresponding
y-gene products in metabolic function and/or regulation.

2. Results
2.1. Selection of E. coli y-ome Strains

Based on the aim of investigating the metabolic phenotypes of the E. coli y-ome during
growth on glucose as sole carbon source, we first selected y-genes as follows (Figure 1):

(i) We first considered all genes with a single-deletion mutant in the Keio mutant li-
brary [9]. This library contained single-gene deletion mutants able to grow on glucose,
meaning the mutated genes are not essential for growth on glucose as sole carbon
source. The Keio collection contains 3985 mutants.

(ii) We, then, selected the genes in the Keio collection lacking evidence of function. This
represented a total of 1563 y-genes

(iii) We verified that each y-gene was duly expressed and translated during growth on
glucose as the sole carbon source. This selection step was based on the extensive
proteomic investigation performed by Schmidt et al., in 2016 [25]. These authors
measured the functional expression of 55% E. coli genes (>2300 genes) by quantitative
proteomics in 22 experimental conditions, including growth in minimal medium
with glucose as carbon source. Among the y-genes identified in step 2, we further
selected the 218 y-genes that were experimentally shown to be translated under
these conditions.

(iv) The y-gene status-i.e., the lack of annotation or of experimental evidence of function-
was manually verified in two complementary databases, namely Biocyc (https://
biocyc.org (accessed on 12 April 2019)) and Uniprot (https://www.uniprot.org (ac-
cessed on 12 April 2019)).

https://biocyc.org
https://biocyc.org
https://www.uniprot.org
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Figure 1. Strategy for high-resolution fluxotyping of the E. coli y-ome. Selection of E. coli y-genes (1) 180 y-genes were
selected based on their expression on glucose as sole carbon source. High-resolution Fluxotyping (2) of 180 mutants with
single-deletion of a selected y-gene. Cell cultivation, metabolite harvesting and sample preparation are performed by robotic
systems. Quantification of medium compounds and isotopic profiling of metabolites by NMR and MS. Fluxes are calculated
using a model of E. coli central carbon metabolism. Fluxotype evaluation (3) Metabolic fluxes are calculated for all strains
(high-resolution fluxotypes) and compared by statistical analysis to identify altered fluxotypes. Fluxotype outliers are
checked against culture data to ascertain that outlying flux values are not due to a 13C-labelling problem. Metabolites: Gluc.:
Glucose, Glc6P: glucose-6-phopshate, Fru6P: fructose-6-phosphate, FruBP: fructose-bisphophate, DHAP: dihydroxyacetone-
phosphate, GA3P: glyceraldehyde-3-phosphate, PGA: 3-phosphoglyceric acid, PEP: phosphoenolpyruvate, Pyr: pyruvate,
AcCoA: acetylCoa, OAA: oxaloacetic acid, ICit: Isocitrate, AKG: alpha-ketoglutaric acid, Suc: succinate, Mal: malate, GlyOx:
glyoxylate, Gnt6P: gluconate-6-phosphate, Rib5P: ribose-5-phosphate, Ery4P: erythrose-4-phosphate, Sed7P: sedoheptulose-
7-phosphate.

This process yielded a group of 180 y-genes with unknown or unclear function,
dispensable, but duly expressed in a medium with glucose as sole carbon source (Supple-
mentary data 1). The corresponding single deletion mutants were obtained from the Keio
collection and considered for further metabolic investigations, which were designed to
optimize the measurement of growth parameters and fluxotypes across hundreds of E. coli
mutants (Figure 1). Fluxotypes can be visualized using a so-called flux map, a graphical
representation of the metabolic network showing the flux values for the various reactions
or pathways.

2.2. Integrated Workflow for High-Throughput Collection of High-Resolution Fluxotypes

To measure the fluxotypes of the 180 y-gene deletion mutants, we first built an HT
platform enabling fully automated, parallelized measurements of metabolic fluxes under
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fully controlled conditions at a throughput consistent with the investigation of hundreds
of experimental conditions. A typical 13C-fluxomics workflow involves a combination
of several complex experimental and computational steps, which were improved and
optimized here to meet the needs of the y-ome investigation (Figure 1). The final setup
included (i) two automated robotic platforms, one for parallelized growth, 13C-labelling
experiments and sample collection, and the other for sample preparation, (ii) optimized
NMR and MS analytical methods for measuring metabolite concentrations and labeling
patterns, (iii) flux calculation, (iv) statistical analysis, and (v) a series of software programs
to store, manage, and process the data and meta-data generated all through the process.

2.3. Design of Fluxomics Experiments

Very little is known about the phenotypic and metabolic behavior of y-gene–deleted
strains, hence, an important objective of the setup was to avoid presuppositions about
the metabolic pathways potentially impacted by the lack of the y-gene product. This was
achieved by using a generic model of E. coli metabolism for the flux investigations, contain-
ing all central carbon metabolism pathways (Supplementary data 3). The model contained
94 fluxes in total, representing central pathways, biosynthetic processes, and transport re-
actions, and 49 metabolites. The isotopic composition of the label input in the 13C-labelling
experiments was optimized using the software IsoDesign [26]. Based on, (i) the network
topology, (ii) the isotopic data collected in the study (i.e., isotopologue distributions of
proteinogenic amino-acids), and (iii) the objective of resolving the maximum number of
fluxes across the whole metabolic network, the best label composition was determined
to be a mixture of 80% [1-13C]-glucose + 20% [U-13C]-glucose. This result is consistent
with those of previous investigations of the entire central carbon metabolism of E. coli [16].
All labeling experiments, reported in this study, were performed in minimal M9 medium
with the above mixture as sole carbon source. Details of the conditions used to apply
the workflow to all the investigations, reported here, are given in material and methods
section. Briefly, cells were inoculated at 108 cell/mL and their growth was monitored by
optical density under temperature, pH and pO2 control. Medium samples were collected
throughout the growth process and analyzed by 1H-NMR to measure the rates of substrate
uptake and product release. When an Optical Density (OD600nm) of 1.2-corresponding to
mid-exponential growth under these conditions-was reached, the biomass was automati-
cally sampled, hydrolyzed, and the labeling patterns of proteinogenic amino acids were
analyzed by LC-HRMS. After correction for naturally occurring isotopes [27,28], the carbon
isotopologue distributions (CIDs) of 16 amino acids were measured and used for flux
calculations. Biosynthetic fluxes (i.e., precursor requirements for growth) were calculated
based on the molecular composition of E. coli [29]. Intracellular fluxes were calculated by
fitting the metabolic model described above with amino acid CIDs, biosynthetic fluxes, and
extracellular fluxes, using the software influx_si [30]. The confidence intervals on calculated
fluxes were estimated by Monte Carlo sensitivity analysis using the same software. All
investigations were performed on the robotic system, which allowed 48 experiments to be
run in parallel, yielding 48 flux maps per run, each containing 94 fluxes, measured under
fully controlled physiological conditions.

2.4. High-Resolution Fluxotyping Workflow Validation

Prior to starting the investigation of the E. coli y-ome, we evaluated the workflow
by performing several fluxomics experiments with known E. coli strains. Two wild-type
(WT) strains (K-12 MG1655 and BW25113) and one mutant strain (BW25113 ∆zwf ), with
known and significant metabolic flux alterations, were considered to evaluate the biological
relevance of the data collected with the integrated HT workflow. The data collected for the
three strains were highly reproducible between replicates. The median relative standard
deviation (RSD) of the central metabolic fluxes was 11%, 3.7% and 22% between 5 (K-12
MG1655), 4 (BW25113), and 5 (BW25113 ∆zwf ) biological replicates, respectively. The
macro-kinetic parameters (i.e., growth rate, glucose uptake, acetate production) and flux
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values collected for the two WT strains (Figure 2) were closely consistent with previous
measurements on these strains, highlighting the consistency of the data collected with the
integrated HT fluxomics workflow [22,31–33]. The deletion of zwf had little impact on
the growth rate but led to a significant redistribution of metabolic fluxes to compensate
for the impairment of the oxidative branch of the pentose phosphate pathway (PPP). The
observed changes in metabolic fluxes in this strain were qualitatively and quantitatively
consistent with previous reports [22,31,34,35]. The developed workflow’s ability to reliably
measure the growth and fluxotypes of these strains clearly demonstrates the consistency of
the entire process.
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Figure 2. Metabolic fluxes measured for E. coli WT strains and a ∆zwf mutant strain. Top: exper-
imentally measured fluxes (expressed in mmol.gDW−1·h−1) and growth rate (expressed in h−1).
Physiological measurements: µ, growth rate; qGlc, glucose specific consumption rate; qAce, acetate
specific production rate; qLac, lactate specific production rate. Bottom: Intracellular fluxes calculated
from the 13C-labelling data; fluxes are expressed relative to the glucose uptake rate set arbitrarily
to 1 for each strain. Boxplot produced with the software R representing median fluxes (bold line)
in boxes representing the interquartile range (quartile 1–quartile 3). The whiskers extend to the
most extreme data point that is no more than 1.5 times the interquartile range from the box. Net
fluxes: Glucupt_1 and Glucupt_U: [1-13C]-glucose and [1-13C]-glucose importation (PTS system), pgi:
glucose-6-phosphate isomerase, pfk: phosphofructokinase, ald: fructose-bisphosphate aldolase, tpi:
triose-phosphate isomerase, pgk: phosphoglycerate kinase, eno: enolase, pyk: pyruvate kinase, pdh:
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pyruvate dehydrogenase, zwf: glucose 6-phosphate dehydrogenase, gnd: phosphogluconate dehy-
drogenase, tk1: half-reaction transketolase (1), ta1: half-reaction transaldolase (1), ta2: half-reaction
transaldolase (2), tk2: half-reaction transketolase (2), tk3: tk2: half-reaction transketolase (3), edd:
Entner-Doudoroff enzymes: equivalent to 6-phosphogluconate dehydratase and 2-keto-3deoxy-
6phosphogluconate (KDPG) aldolase, citsynth: citrate synthase, idh: isocitrate dehydrogenase,
akgdh: alpha-ketoglutarate dehydrogenase, fum_a and fum_b: fumarase, maldh: malate dehy-
drogenase, gs1: isocitrate lyase, gs2: malate synthase, mae: malic enzyme, ppc: equivalent to
pep carboxylase (forward flux) and to pep carboxykinase (reverse flux), out_Ac: acetate output
(equivalent to acetate kinase).

2.5. High-Resolution Glucose Fluxotyping of 180 Selected Y-Gene Mutant Strains

The 180 strains deleted for the selected y-genes were isolated from the Keio strain
collection, and their growth profiles and fluxotypes were measured in minimal medium
with glucose as sole carbon source. The WT and ∆zwf strains were included in each
robotic run as reference strains to check the inter-batch consistency of growth parameters
and flux data. In total, 198 cultures were performed from which 1074 OD600 points were
measured and used for the calculation of growth rates and biomass yields; 1248 samples
were collected (1050 filtrates and 198 cell pellets), from which 591 physiological data,
i.e., rates of compound consumption or production-were extracted. Further, more than
20,000 isotopic data measured (100 carbon isotopologues from 16 different metabolites
by MS analyses and 6 positional labelling profiles for 2 metabolites by NMR for each
cultivation). Finally, a cumulated total of 18,612 fluxes were calculated (94 fluxes for each
culture). The complete experimental process was completed within 786 h, and required
only 194 h, i.e., about 1 h per measured fluxotype-of human intervention or supervision.
These values emphasize the practical benefit of the established workflow.

The data collected for the reference strains, i.e., WT and ∆zwf strains-in the various
runs of the robotic platform did not differ significantly from the data collected in the
validation stage. On average, the strains deleted for y-genes grew slower than WT strains
but had similar biomass yields (Figure 3A). The rates of glucose consumption and acetate
production, measured from exometabolome data, were consistent with these observations,
i.e., no significant difference overall. Principal component analysis (PCA) was used to
explore the distribution of intracellular flux data across the y-ome (Figure 3B,C). For a large
majority of mutant strains (in blue), the flux data-expressed relative to the glucose uptake
rate-clustered with those of the WT strains (in green). This result indicates that, for most
of the y-genes, deletion has a limited impact on the distribution of intracellular metabolic
fluxes. The complete dataset is provided in Supplementary data 4.

Three mutant strains did not cluster with the WT strains (Figure 3B). One of these
was the ∆zwf strain, demonstrating the value of PCA to discriminate strains based on
metabolic fluxes. Two other y-gene mutants, namely ∆ybjP and ∆ydcS, also had significantly
different fluxotypes from those of the WT strains and other y-gene mutants. Loading plots
(Figure 3C) indicated that the most discriminating fluxes were related to glycolysis (pgi,
pgk, eno, pdh), the PPP (zwf, gnd, tk1, tk2), and the glyoxylate shunt (gs1, gs2).

2.6. Glucose Fluxotypes of ∆ybjP and ∆ydcS Strains

The glucose fluxotypes of the ∆ybjP and ∆ydcS strains are shown in Figure 4. Consis-
tent with the PCA data, significant differences were observed between the two strains and
the wild type strain, specifically that both strains had higher glycolytic flux than the wild
type. In the ∆ybjP and ∆ydcS strains, 82%, and 76% of glucose was metabolized through
pgi, respectively, against 68% in the wild type strain. (i.e., pgi flux in the ∆ydcS strain). As
a result, the two strains had decreased fluxes through the oxidative branch of the PPP (i.e.,
zwf and gnd), while the flux through the ED pathway (i.e., EDD) was stable. This trend
was even stronger in the ∆ydcS strain, for which the data also showed partial reversal of
the non-oxidative branch of the PPP (tk1 and tk2 reactions), probably to compensate for the
decreased production of pentose-5-P, a key precursor for major biomass components. These
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data suggest that the products of the ybjP and ydcS genes are either directly or indirectly
involved in the control of flux in the PPP pathway.
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Figure 3. Comparison of the growth parameters and fluxotypes of y-ome strains with those of their parental strain. (A)
Comparison of growth parameters between y-ome strains and the BW25113 WT strain (µ: growth rate, qglc: glucose
consumption rate, Biomass yield, qace: acetate production rate). (B) PCA plots showing the strains with the most different
fluxotypes across the y-ome. PC1 and PC2 represent Principal Component 1 and 2, explaining the largest variance between
strains according to their flux values-the percentage of variance explained for each principal component is indicated into
brackets [36], (C) PCA loading plot with the most impacted fluxes indicated.

Significant alterations of fluxes in the Tricarboxylic Acid Cycle (TCA) cycle and related
pathways were observed in the two mutant strains compared to the wild-type strain.
Pyruvate dehydrogenase flux was significantly increased in the ∆ydcS strain, and even
more so in the ∆ybjP strain, reaching 119% against 95% in the wild type. This was not
accompanied by increased flux through the TCA cycle, but by increased acetate excretion,
as well as increased flux through the glyoxylate shunt. Lactate production was observed
furthermore in the ∆ybjP strain, and this strain had no flux through malate dehydrogenase
(i.e., maldh) and increased flux through malic enzyme (i.e., mae). Overall, these data
highlight a rerouting of metabolic fluxes around the acetyl-CoA node mainly resulting in the
diversion of glycolytic flux from oxidative metabolism to acetate excretion in both strains.
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2.7. Cofactor Usage in the ∆ybjP and ∆ydcS Strains

The changes in carbon fluxes were associated with changes in the supply of adenosine-
triphosphate (ATP) and redox cofactors by the central carbon metabolism (Figure 5). The
∆ydcS strain produced ATP at a slightly lower rate than the WT strain did. Its redox status
was significantly impaired. In particular, reduced Nicotinamide Di-Nucleotide Phosphate
(NADPH) production was drastically decreased, due to the much lower flux through the
PPP and the absence of compensation via the TCA cycle or malic enzyme. Because this
strain grows roughly as fast as the WT strain, hence, has similar biosynthetic requirements,
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it is likely that the reduced production of NADPH via carbon metabolism (Figure 5) is
compensated by increased transhydrogenase activity [37]. The ∆ybjP strain had different
ATP and redox profiles. First, this strain produces ATP faster than the WT strain due to the
significantly increased fluxes through glycolysis and acetate metabolism. Interestingly, the
same ATP production profile was observed in the ∆zwf strain (Figure 5), but the latter was
significantly impaired for NADPH production, while the ∆ybjP strain produced NADPH
at only a slightly lower rate than the WT strain. This reflects a smaller reduction in PPP flux
and an increase in malic enzyme flux, which accounted for 16% of CCM-derived NADPH
production in this strain compared to 4% in the WT strain. The latter increase might be
the result of a mechanism used to compensate for the decreased NADPH production via
the oxidative PPP. In addition, NADH production was significantly higher in the ∆ybjP
mutant than in the WT strain, mainly due to a large increase in glycolytic production of
NADH. This resulted in the production of lactate, suggesting a global imbalance in redox
metabolism in this strain.
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2.8. Scope and Quality of High-Throughput Fuxomics Investigations

Given that a specific objective of this work was to deploy high-resolution fluxomics in
a HT manner, we evaluated the quality of the fluxome data, obtained here, in comparison
with existing data in the literature. High-throughput investigations must find the best
compromise between throughput and information level (and quality). Therefore, the
volume and quality of the flux data have to be appreciated in terms of the actual size of the
investigation, i.e., the total number of flux maps generated. To this aim, we used the four
criteria defined below:

(i) fluxome resolution, which corresponds to the total number of fluxes that can be cal-
culated from the experimental dataset, and is a measure of the coverage of the flux
space in the investigated metabolic network. This resolution is generally low (e.g., 23)
in high-throughput studies, and high (71–84) in low-throughput ones (Table 1). In
this work, we were able to measure 94 fluxes per measured fluxotype, which is the
highest fluxome resolution value among all 13C-fluxomics studies reported in Table 1.

(ii) isotopic resolutive power of the flux map, defined as the ratio between the number
of isotopic data and the number of fluxes calculated in the network. This index is
assumed to reflect data redundancy in the flux estimates, hence, higher precision
in the calculated flux values. Low-throughput investigations of the E. coli fluxome
have isotopic resolutive power in the range of 1 to 8 (Table 1), though very high
isotopic resolutive power (up to 17.6), has been obtained by performing multiple
(e.g., parallel) labelling experiments to calculate a single flux map [38–41]. In the
present work, the isotopic resolutive power of the flux maps was 1.13 (106 isotopic
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data for 94 fluxes), which is comparable to the values obtained in low-throughput
investigations (Table 1).

(iii) total flux dimension, which is equal to the number of fluxotypes multiplied by fluxome
resolution, and is an indication of the scale of the fluxomics investigation. In the
literature, this index ranges between 71 and 4370 (Table 1). In this study, the total
flux dimension index was 18,612 (94 fluxes × 198 fluxotypes), which reflects both
the high-throughput and high-resolution character of the analysis. Interestingly, the
number of fluxotypes, generated in this study, is similar to the number reported by
Haverkorn van Rijsewijk et al. [33] (198 versus 190, respectively) but the total flux
dimension of this work is higher (18612 versus 4370, respectively) because of the
higher number of fluxes per fluxotype (94 veresus 23, respectively).

(iv) overall flux precision index, which is the median RSD of all (free) fluxes across the
entire flux dataset. Only free fluxes are considered because the others, e.g., most
biosynthetic fluxes are determined or given as constraints to the model. The average
value of this index was 32% in the present study, compared with 0.4–23% in low-
throughput studies, and 14–253% in HT studies (Table 1). The value, obtained in
this work, appears to strike a good compromise between throughput and resolution.
Moreover, when measured for specific pathways (overall pathway-specific precision), it
appears that the level of precision achieved for most fluxes is drastically improved,
notably for those in the glycolysis, PPP and ED pathways.

Table 1. Evaluation of data size and quality in HT fluxomics investigations. The overall flux precision is the median
RSD (relative standard deviation) calculated for all fluxes measured in each of the studied conditions, as given in the
supplementary data of the cited studies. The overall pathway precision was calculated similarly by grouping the RSDs
according to the metabolic pathways considered. The flux RSDs considered in these calculations were obtained by sensitivity
analysis (S.A.) or by calculating classical standard deviations on the mean values of fluxes obtained when biological replicates
were produced (as in this work).
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E. coli strains MG1655 MG1655
BW25113

∆tpiA
mutant

MG1655 BW25113 MG1655
BW25113

+ Keio
mutants

MG1655 + BW25113 +
keio mutants

Number of
measured
fluxotypes

1 1 1 1 1 20 190 198

Number of
different label

input(s) by strain or
condition

6 14 2 1 1 2 2 1

Fluxome resolution
= number of (net)

fluxes by fluxotype
71 71 75 84 71 23 23 94

Isotopic resolutive
power = number

of isotopic
data/number of
calculated fluxes

7.52 17.55 5.07 1.4 1.94 2.57 1.61 1.13

Total flux
dimension =

number of fluxes
per fluxotype ×

number of
fluxotypes

71 71 75 84 142 460 4370 18,612
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Global flux
precision = median

RSD over the
global dataset

12% 15% 7.80% 19% 23% 285% 14% 32%

Global pathway
precision = median

RSD within
specific pathways

S.A.
(n = 1)

S.A.
(n = 1)

S.A.
(n = 1)

S.A.
(n = 1)

S.A.
(n = 1)

S.A.
(n = 23)

S.A.
(n = 23)

S.A.
(n = 198)

biological
replicates
(n = 20)

Glycolysis 1% 2% 4.20% 3% 3.50% 553% 7% 3% 1%

ppp + edp 14% 11% 17% 131% 10% 41% 25% 24% 7%

tca + gs 11% 19% 4.90% 20% 31% 795% 19% 40% 21%

anaplerosis 122% 144% 87% 13% 1822% 7% 15% 42% 20%

output fluxes 12% 25% 4.7% 15% 42.4% 426% 0% 10% 14%

3. Discussion

This work introduces significant improvements in the parallelization, automation and
implementation of fluxomics in large-scale investigations. Altogether, these improvements
offer significant gains in throughput, robustness, and data quality, while retaining a high
level of biological information by collecting high resolution fluxomics data. This optimized
complete HT fluxomics workflow allowed 198 isotopically-resolved flux maps to be gener-
ated in a total (effective) experimental time of less than 33 days. This required a total human
time of 194 h, or about 1 h per flux map. In the context of high-resolution fluxomics, the
working volume of the bioreactors, 15 mL, seems an appropriate compromise between the
low volumes required for HT investigations, and culture volumes, which are large enough
for detailed biological or biochemical analysis. Indeed, this working volume allowed us to
systematically collect all relevant physiological and biochemical data in a single bioreactor
under fully controlled growth conditions, thereby decreasing biological variability and
increasing data consistency. Further applications of this workflow to other experimental
designs, e.g., parallel labeling experiments, other questions or other biological models
(bacterial communities, eukaryotic cells, etc.) should be facilitated by the flexibility of the
setup, which is amenable to a variety of sample types (medium, cells, total broth), sampling
methods, metabolite extraction processes (intra- or extra-cellular metabolites, biomass),
and analytical techniques (basically any targeted/untargeted LC/GC-MS method or NMR
sequence). This flexibility allows metabolic networks of various size and complexity, as
well as other biological models, to be investigated. There is still scope for improvement
in almost all stages of the workflow—from sampling to flux calculations and sensitivity
analysis—to increase throughput and reduce experimental times and human involvement.
A major challenge in the application of HT fluxomics is the level of precision on flux data
that can be achieved at high or very high throughput. In this regard, the capability of
the robotic platform to enable a high(er) number of biological replicate experiments to be
carried out certainly contributes to increase the reliability of the data.

13C-Fluxomics encompasses different approaches depending on the number of isotopic
data collected and number of fluxes calculated [21,23,24]. These approaches include isotopic
profiling (i.e., the statistical analysis of large isotopic datasets to discriminate variants),
targeted 13C-fluxomics (in which a limited number of isotopic data are collected to measure
fluxes in a few reactions or pathways), and global 13C-fluxomics (the measurement of
fluxes across complete metabolic networks from large isotopic datasets). The former two
approaches are low-resolution methods because they provide no (isotopic profiling), or
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limited (targeted fluxomics), flux information, though they are fully relevant for their
respective purposes. High-resolution fluxomics refer to global 13C-fluxomics, but the
number of measured fluxes can vary significantly between studies (Table 1). HT fluxomics
approaches have been discussed, in terms of methodological challenges and biological
value, but so far, there has been no method proposed to evaluate the actual scale and quality
of HT fluxomics investigations. This work introduces novel metrics for the actual scale and
quality of HT fluxomics investigations. At the level of individual fluxotypes, key features of
these studies, include the total number of calculated fluxes (fluxome resolution), the number
of isotopic data, collected with respect to the number of fluxes to be measured (isotopic
resolutive power), and the resulting precision in the calculated flux values (confidence
intervals on flux values). At the level of the complete HT fluxomics investigation, three
indices are introduced to measure the actual scale (total flux dimension) and quality (overall
flux precision and overall pathway-specific precision) of HT fluxomics investigations. Since
HT studies aim to find the best compromise between throughput and information content
(and quality), the number and quality of the resulting flux data have to be appreciated, in
terms of the actual size of the investigation, i.e., the total number of flux maps generated.
HT fluxomics investigations are characterized by high total flux dimension, low isotopic
resolutive power and low flux precision [22]. On the contrary, high-resolution fluxomics
are characterized by low total flux dimensions, high isotopic resolutive power and high
flux precision [39–41]. Finally, methods developed for the large-scale application of high-
resolution fluxomics, such as the one described here, should aim to achieve good isotopic
resolutive power and flux precision with high total flux dimension [33]. Indeed, we could
apply High-resolution fluxomics (fluxome resolution of 94) at a high-throughput level
(198 fluxotypes collected throughout the study) without loss of quality. It is important to
note that these metrics are objective measures of the size and characteristics of fluxomics
investigations; they do not quantify the biological value of the data.

The main objective of this work was to investigate whether the deletion of y-genes
led to any changes in the distribution of metabolic fluxes in the central metabolism, i.e., in
glucose metabolic fluxotypes. Deletion of the part of the y-ome, considered in this study,
was associated with an overall tendency toward slower growth, but for the vast majority of
the 180 strains investigated, the distribution of metabolic fluxes was remarkably similar
to the one measured for the WT strain. Given that E. coli expressed the products of all the
investigated y-genes during growth on glucose, there are several possible explanations for
these results. (i) The protein is expressed, but is not functional under the considered culture
conditions, hence, its absence has no impact in the deletion mutant. (ii) The protein has a
functional role under these culture conditions, but this function is not related to metabolism,
hence, its absence does not result in a metabolic phenotype. (iii) The protein has a metabolic
function, as an enzyme or as a metabolic regulator in these culture conditions. In this case,
the absence of a particular flux phenotype can be explained by the gene product having
a quantitatively minor role, at least for the part of metabolism that was investigated, or
by the onset of compensatory mechanisms that efficiently counterbalance the effects of
the gene product’s absence. Further investigations, including on fluxotypes under other
experimental conditions are required to answer these questions. However, regardless of
the specific mechanisms involved for each y-gene, the data reported here highlight the
robustness of E. coli’s central metabolism to the absence of all these gene products, whatever
their roles, and to the potential impairments caused by their absence.

In this work, we were able to provide highly detailed functional information on the
metabolic impact of y-gene deletion. Two strains, ∆ybjP and ∆ydcS showed interesting glu-
cose fluxotypes, indicating that the products of the genes are involved in metabolism during
growth on glucose as sole carbon source. Information on these genes is scarce and elusive.
The gene ydcS was annotated as a putative putrescine ATP-binding Cassette transporter in
several databases and has also been proposed to encode poly-3-hydroxybutyrate synthase
activity [42]. The gene ybjP has been predicted to be a lipoprotein [43]. Interestingly, the
metabolic impact of both these genes is global, since most of the pathways of the central car-
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bon metabolism are affected. Indeed, both mutant strains show significant perturbations in
the PPP and in the TCA cycle and related pathways. The deletions are also both associated
with energy and redox status modifications, but with opposite consequences. The ∆ybjP
strain has significantly impaired ATP production and reduced cofactors within the central
carbon metabolism, while the ∆ybjP has higher production levels than observed in the WT
strain. The fact that the metabolic effects are so wide-ranging suggests that the products
of these genes affect central metabolic parameters, such as the redox status or that they
are global regulators of metabolism, either directly or indirectly. The dispensability of the
two y-genes during growth on various carbon sources has recently been documented [12].
The ∆ydcS strain shows reduced growth on certain sugars (mainly mannose, glucosamine,
fructose) and two organic acids (alpha-ketoglutarate and acetate). The ∆ybjP strain shows
reduced growth on a few carbon sources, mainly including pyruvate, ribose, sorbitol and
galacturonate. Deletion of these y-genes has no effect [12] or only a slight effect (this work)
on growth with glucose as sole carbon source, in spite of significant metabolic changes in
the two mutant strains. These observations emphasize that gene dispensability does not
mean the gene lacks a metabolic function, but rather that the metabolism has successfully
adapted to the absence of the gene product [4]. This observation stresses the need to
measure the actual metabolic phenotype of mutants, even if the gene deletion is silent in
terms of growth. In this context, methods like High-resolution fluxotyping are essential in
achieving both the throughput and level of metabolic information required to investigate
the role of y-genes in the metabolism of diverse carbon sources.

To conclude, this work shows that high-resolution fluxomics is amenable to high-
throughput investigations and can provide detailed information on metabolic phenotypes.
Our results also highlight how it can reveal the metabolic impact of gene deletion, even if
the gene has no known function or growth phenotype.

4. Materials and Methods
4.1. Bacteria Strains and Cultivation Conditions

E. coli BW 25,113 and the derived strains used in this study (listed in Supplementary
data 1) were taken from the Keio collection (Baba et al., 2006). One hundred and eighty
y-gene mutants were selected from the original glycerol stock of 3985 single-gene deletion
mutants available in this collection (E. coli BW 25,113 strains mutants; more details directly
in paragraph 2.1 of the paper). The E. coli strain MG1655 was also used. All the selected
strains were first cultivated overnight in Luria-Bertani (LB) medium (10 g/L tryptone,
5 g/L yeast extract and 10 g/L NaCl) with kanamycine (25 ug/mL) at 37 ◦C and then
stored in glycerol stocks.

To perform the experiments, the glycerol stocks of relevant strains were used to inocu-
late liquid LB medium in microplates. The LB cultures were used to inoculate precultures
in minimal synthetic medium containing 17.4 g·L−1 Na2HPO4, 12H2O, 3.03 g·L−1 KH2PO4,
0.51 g·L−1 NaCl, 2.04 g·L−1 NH4Cl, 0.49 g·L−1 MgSO4, 4.38 mg·L−1 CaCl2, 15 mg·L−1

Na2EDTA 2H2O, 4.5 mg/L ZnSO4 7H2O, 0.3 mg·L−1 CoCl2 6H2O, 1 mg·L−1 MnCl2 4H2O,
1 mg·L−1 H3BO3, 0.4 mg·L−1 Na2MoO4 2H2O, 3 mg·L−1 FeSO4 7H2O, 0.3 mg·L−1 CuSO4
5H2O, 0.1 g·L−1 thiamine and 3 g·L−1 glucose. For the 13C-labeling experiments, unla-
beled glucose was replaced by the same concentration of a mixture of 80% [1-13C1]-D-
glucose + 20% [U-13C6]-D-glucose. To minimize sources of unlabeled carbon atoms from
the first cultivation steps in subsequent experiments, the cells were inoculated at a starting
OD between 0.08 and 0.12.

4.2. Robotic Platforms for Culture, Sampling and Sample Preparation

Two robotic platforms were used to parallelize the cell cultures, 13C-labelling experi-
ments, sampling of labeled metabolites, and sample preparation for NMR and MS analyses.
The first system allowed 48 13C-labelling experiments to be performed automatically in
parallel in 15 mL bioreactors under controlled growth conditions, with automated collec-
tion of labelled samples (of biomass or culture medium) at defined culture times or optical
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densities. The robot and its operation are described in detail by Heux et al. [22]. A second
robotic workstation (Freedom EVO 200, Tecan, Männedorf, Switzerland) was designed
and assembled to fully automate and parallelize the final preparation of labeled biological
samples for the analysis of isotopic profiles by NMR or mass spectrometry. This device
was used to handle the different containers used (NMR tubes, vials, multiwell-plates, etc.),
in order to perform dilutions, add standards, take aliquots, and manage the samples.

The 13C-labeling experiments were carried out in batches of 48 parallel cell cultures
using the two robotic platforms described above. The input label was optimized for E. coli’s
metabolic network using IsoDesign (1.2.1) [24], and consisted of a mixture of 80% [1-13C1]-
D-glucose and 20% [U-13C6]-D-glucose. All cultures were performed in 15 mL reaction
vessels, at 37 ◦C, pH = 7, a stirring speed of 2300 rpm and with 5 L.min−1 of compressed
air fed into the culture module. Four to eight supernatant samples were collected in each
reactor throughout the culture to analyze the exometabolome and to calculate the rates
of substrate consumption and end-product production. The biomass was automatically
sampled once the OD600nm had reached 1.2, indicating that the metabolic and isotopic
steady-state had been achieved: 4 mL samples of culture were pelleted by automated
centrifugation (5 min/4410 g), manually hydrolyzed with 250 µL 6 N HCl for 15 h at
110 ◦C and washed twice in 1 mL D2O by rotary evaporation (Büchi Labortechnik AG, CH,
Flawil, Switzerland) between each washing step. Aliquots (10 µL) of biomass hydrolysate
supernatant were then collected and transferred into 96 well plates, diluted with 990 µL
pure H2O and transferred to vials for LC-MS analysis. Samples of biomass hydrolysate
supernatant (150 µL) were also mixed with 50 µL of TSP d4 (4 mM in D2O) and 150 µL of
each mixture was then transferred into 3 mm NMR tubes.

4.3. Isotopic Profiling of Proteinogenic Amino-Acids

The incorporation of 13C-label into proteinogenic amino acids (listed in Supplemen-
tary data 6) was analyzed by liquid chromatography–mass spectrometry, using an Ul-
timate 3000 HPLC system (Dionex, Sunnyvale, CA, USA) coupled to an LTQ Orbitrap
Velos mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a
heated electrospray ionization probe described in detail by Heuillet et al., 2018 [44]. Full
scan HRMS analyses were performed in positive FTMS mode at a resolution of 60,000
(at 400 m/z), using the following source parameters: Capillary temperature, 275 ◦C;
source heater temperature, 250 ◦C; sheath gas flow rate, 45 a.u. (arbitrary unit); auxil-
iary gas flow rate, 20 a.u.; S-Lens RF level, 40%; source voltage, 5 kV. Metabolites were
identified by extracting the exact mass with a tolerance of 5 ppm. The raw MS isotopic
profiles of proteinogenic amino acids were then quantified using Tracefinder (Thermo
Fisher Scientific, Waltham, MA, USA). The isotopic profiles (Carbon Isotopologue Dis-
tributions) were obtained after correcting for natural isotopic abundances using IsoCor
1.2 [27,28] (https://github.com/MetaSys-LISBP/IsoCor (accessed on 20 May 2020)). The
raw MS data are available from Metabolights (accession number MTBLS2188).

4.4. NMR Analysis of Extracellular Medium

Culture supernatants were analyzed by 1D-1H NMR on a Bruker Avance III 800MHz
spectrometer (Bruker BioSpin, Rheinstetten, Germany) page equipped with a 5 mm CQPI
cryoprobe at 280 K. To precisely quantify the extracellular compounds, the 1D-1H NMR data
were recorded after a 30◦ presaturation pulse (zgpr30), with a relaxation delay of 7 s. NMR
spectra were processed using Topspin 3.5pl6 (Bruker BioSpin, Rheinstetten, Germany). The
raw NMR data are available from Metabolights (accession number MTBLS2188).

The rate of glucose consumption and the rates of acetate and lactate production were
quantified by analyzing the four-to-eight samples collected during the cell culture period.
The 13C labeling profiles of acetate and lactate, including positional information on label
incorporation, were also measured for the flux calculations.

https://github.com/MetaSys-LISBP/IsoCor
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4.5. Growth Parameters

The growth parameters calculated from the experimental datasets for each culture
were the growth rate, glucose uptake rate, acetate and lactate production rates and biomass
yield. The growth rate was calculated from OD values measured during the culture period.
The rates of glucose consumption and of acetate and lactate production were calculated
from the exometabolome data. All calculations were performed using Physiofit (v0.9) [45],
a software designed to determine growth parameters by fitting time-course data. The
software includes a batch calculation mode, which allows calculations on large series
of datasets, and which was used to calculate the growth parameters for all considered
experimental conditions. The biomass yields were calculated using the conversion factor
0.378 gDW/OD600nm unit.

Extracellular fluxes were determined from the rates of disappearance (or appearance)
of substrates and products, in the culture supernatants, as measured by NMR.

4.6. Flux Calculation and Visualization

Fluxes were calculated using the software influx_si 4.1 [30] (https://metasys.insa-
toulouse.fr/software/influx/ (accessed on 20 May 2020)), including the mass balances
and carbon atom transitions of the biochemical reaction network. The metabolic network
contained the main pathways of E. coli’s central metabolism: glycolysis (EMP), the pentose
phosphate pathway (PPP), the Entner-Doudoroff (ED) pathway, the tricarboxylic acid cycle
(TCA), and anaplerotic reactions, the glyoxylate shunt, and the reactions for amino acid
biosynthesis [32]. Intracellular fluxes were estimated from measurements of extracellular
fluxes and from the 13C-labelling patterns of metabolites using appropriate mathematical
models of glucose metabolism in E. coli [32]. Labeling data were collected from intracellular
metabolites by IC-MS/MS and from metabolic end-products by 1D 1H NMR, as detailed
above. The fluxes were normalized to the rate of substrate uptake, which was arbitrarily
set at 100.

Metabolic fluxes were calculated for each of the 198 experimental conditions con-
sidered in the study. For each culture condition, the information required for the flux
calculation (i.e., metabolic network, isotopic data, etc.) was written in a specific FTBL
file [16], which was then submitted to influx_si.

The FTBL model was converted by an influx_si module (ftbl2metxml.py) into Systems
Biology Markup Language (SBML, in xml format), readable by the online application
Metexplore (http://metexplore.toulouse.inra.fr (accessed on 20 May 2020). Metexplore
was used to visualize flux maps for strains of interest [46].

4.7. Sensitivity Analysis

Confidence intervals for the calculated fluxes were determined using a Monte-Carlo
approach in which 100 independent optimization runs were performed on datasets with
noise added in proportion to standard measurement errors. The isotopic data and metabolic
fluxes for each independent biological replicate are provided in the Supplemental data
(dataset S1).

4.8. Statistical Analysis of Flux Datasets

Flux maps were compared by PCA using the collaborative portal Workflow for
Metabolomics (W4M) [36]. The results were visualized as boxplots and figures were
generated using the software R.

4.9. Meta-Data Management

The data and meta-data, generated throughout the workflow, were stored, managed,
and processed as described below.

Culture and sampling data are related to the parallel cultures of E. coli strains with
13C-labelled compounds and to the collection of samples: Settings and data from the robotic
culture platform (Tecan Evo 200) were automatically and separately recorded for each

https://metasys.insa-toulouse.fr/software/influx/
https://metasys.insa-toulouse.fr/software/influx/
http://metexplore.toulouse.inra.fr
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of the 48 bioreactors: pH values, O2 values, OD600nm values, volumes, sampling times,
and tube locations and associated barcodes. The data were linked and stored in an SQL
database, making them traceable to each robotic run. The most important elements of this
database are listed in Supplementary data 3 (mu, batch number, batch position, biomass
(mg/L) at sampling time). A log file was also automatically generated for each robotic run,
detailing errors and software information.

Sample preparation data: All the steps performed on the sample preparation platform
(Tecan Evo 200) were automatically recorded in an SQL database: Volumes, tube locations
on the worktable, associated barcodes and sampling times. The data were visualized
and previous runs re-examined using the robot’s traceability software, and a log file was
automatically generated for each run with errors and software information.

Analytical data: All mass spectrometry and NMR data were saved on a server to
guarantee sample traceability. This included the raw MS data, the MS data processed
with Tracefinder, the MS data processed with Isocor, the raw NMR data, the NMR data
processed with TopSpin, and the NMR data processed with Physiofit. Corrected CID
values, extracellular fluxes and the positional enrichment of extracellular metabolites are
listed in Supplementary data 3.

Flux calculations: All flux calculation files were stored on a server. This included the
input (FTBL) files for influx_si, and the output (KVH) files. The most important elements
are included in Supplementary data 3 (chi-square tests of the fits, fit cost functions and
net fluxes).

Statistical analysis and flux mapping: All the data used and generated for statistical
analysis and flux mapping were stored on a server.

4.10. Calculation of Cofactor Production and Consumption Rates

The production rates (mmol.gDW−1·h−1) of NADPH, NADH/FADH2, and ATP in
the central carbon metabolism were calculated as the sum of the estimated fluxes of the
reactions that are expected to produce (positive value) or consume (negative value) the co-
factors. Values were averaged over the biological replicates. NADPH production: Pentose-
Phosphate Pathway (PPP) = glucose 6-phosphate dehydrogenase (zwf) + phosphogluconate
dehydrogenase (gnd); TCA cycle = isocitrate dehydrogenase (idh); malic enzyme (mae).
NADH production: glycolysis = glyceraldehyde-3-phosphate dehydrogenase (flux equal
to pgk); Oxidative metabolism = pyruvate dehydrogenase (pdh) + TCA cycle enzymes,
including alpha-ketoglutarate dehydrogenase (akgdh) + malate dehydrogenase (maldh);
malic enzyme (mae) and biomass formation. NADH consumption: lactate dehydrogenase
(out_Lac). FADH2 production: TCA cycle = succinate dehydrogenase (flux equal to fum).
ATP production: glycolysis = phosphoglycerate kinase (pgk) + pyruvate kinase (pyk);
TCA cycle = succinyl-CoA synthetase (assimilated to akgdh); acetate metabolism = acetate
kinase (ack, assimilated to out_Ac). ATP consumption: glycolysis = glucose PTS system
(Glucupt_U + Glucupt_1) (assuming 1 consumed PEP is equivalent to 1 consumed) +
6-phosphofructokinase (pfk); ppc (equivalent to pep carboxylase (forward flux) and pep
carboxykinase (reverse flux).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11050271/s1, Supplementary data 1: List of the 180 E. coli BW 25113 strains selected
for the fluxomics experiments. Supplementary data 2: Metabolic model considered in the flux
calculations. Supplementary data 3: Complete dataset obtained for all the fluxomic experiments
performed in the study. Supplementary data 4: Calculation of ATP and redox fluxes. Supplementary
data 5: Isotopic data collected by LC HRMS and NMR.
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