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Abstract

Background: Efficiently managing large, heterogeneous data in a structured yet flexible way is a challenge to research
laboratories working with genomic data. Specifically regarding both shotgun- and metabarcoding-based metagenomics,
while online reference databases and user-friendly tools exist for running various types of analyses (e.g., Qiime, Mothur,
Megan, IMG/VR, Anvi’o, Qiita, MetaVir), scientists lack comprehensive software for easily building scalable, searchable,
online data repositories on which they can rely during their ongoing research. Results: metaXplor is a scalable,
distributable, fully web-interfaced application for managing, sharing, and exploring metagenomic data. Being based on a
flexible NoSQL data model, it has few constraints regarding dataset contents and thus proves useful for handling outputs
from both shotgun and metabarcoding techniques. By supporting incremental data feeding and providing means to
combine filters on all imported fields, it allows for exhaustive content browsing, as well as rapid narrowing to find specific
records. The application also features various interactive data visualization tools, ways to query contents by BLASTing
external sequences, and an integrated pipeline to enrich assignments with phylogenetic placements. The project home
page provides the URL of a live instance allowing users to test the system on public data. Conclusion: metaXplor allows
efficient management and exploration of metagenomic data. Its availability as a set of Docker containers, making it easy to
deploy on academic servers, on the cloud, or even on personal computers, will facilitate its adoption.

Keywords: metagenomics; metabarcoding; shotgun; sample; sequence; assignment; taxonomy; web; NoSQL; data
management

Findings
Background

The capacity to obtain DNA or RNA sequences without isolating
or cultivating microorganisms from a given host or environmen-
tal sample through metagenomic techniques has been cardinal
for our current understanding of viral and microbial diversity [1,
2]. As the application of such techniques ascertained the ubiq-

uity and immense diversity of microorganisms, it also led to a
more holistic view of the functioning of life [3, 4]. This change in
paradigm revolutionizes the way we understand ecological pro-
cesses [5, 6], the emergence of disease [7, 8], or the function-
ing of the human body [9]. As a corollary of the immense diver-
sity of microorganisms, the use of high-throughput sequencing
techniques associated with metagenomics results in the collec-
tion of huge amounts of molecular data. With the addition of

Received: 15 July 2020; Revised: 13 November 2020; Accepted: 10 January 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/10/2/giab001/6126034 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 06 M

ay 2021

http://www.oxfordjournals.org
http://orcid.org/0000-0001-7429-2091
mailto:guilhem.sempere@cirad.fr
http://orcid.org/0000-0001-7429-2091
http://orcid.org/0000-0001-7429-2091
http://creativecommons.org/licenses/by/4.0/


2 metaXplor: an interactive viral and microbial metagenomic data manager

new projects, the methodical storage and query of such hetero-
geneous data, including metabarcoding and shotgun data, be-
come increasingly difficult and stable tools that provide means
to manage, share, and search them are required. While tools and
platforms such as Qiime [10], Mothur [11], Megan [12], IMG/VR
[13], Anvi’o [14], Qiita [15] or Metavir [16] offer extensive sets of
tools to analyse and compare datasets obtained from distinct
metagenomic projects, they are not specifically designed for the
identification of distant homologies or tracking newly discov-
ered sequence/gene families across projects. Thus, metaXplor
was developed to ease the search of viral sequences within exist-
ing projects using similarity-based search algorithms and phylo-
genetic tools. Along with these sequence-centric functionalities,
the platform also facilitates keeping track of study data and (re-
)analysing them. We considered it useful to provide the commu-
nity with a user-friendly online system to explore large sequence
datasets and easily extract parts of them for later reuse.

Application description

metaXplor is a sequence-centric web-interfaced application that
is designed for managing, sharing, and exploring metagenomic
datasets. Being distributable, its main features are to (i) central-
ize them at the laboratory or institute level, (ii) share them with
local collaborators or partner scientists, (iii) easily filter on pro-
vided metadata to quickly get hold of sequences of interest at
any time, (iv) compare external sequences with those contained
in the system, and (v) refine provided taxonomic assignments
using phylogenetic placement. The application is accessible via
a web browser. It can handle multiple database hosts (defined
via a configuration file), each of them being likely to point to sev-
eral databases. An administration interface previously proven
in Gigwa v2 [17] allows for managing databases, projects, users,
and permissions. It provides means to manage data privacy lev-
els, to suppress existing data, and to define which users can con-
sult or amend existing datasets.

Data import

Administrators can import project data themselves or grant
users permission to do so. Imports can be achieved by supplying
a zip archive (either by uploading it or by specifying its http URL)
containing 4 types of files:

� A tab-delimited text file providing sample metadata, in-
cluding 3 standard BioSample [18] attribute names (sam-
ple name, collection date, lat lon) and any additional user-
defined fields;

� A second tab-delimited text file, used for specifying how
samples contributed to each sequence in the project: these
numeric values may represent the number of reads from
each sample that are recruited by a contig in the case of shot-
gun metagenomic data, or per sample operational taxonomic
unit abundances in the case of metabarcoding data;

� A standard FASTA file providing nucleotide information for
all sequences mentioned in the latter;

� A third tab-delimited text file providing assignment details
for all sequences that were successfully assigned to NCBI ac-
cessions, also based on user-defined fields. For compatibility
with various processing methods that may be used for gen-
erating data, several assignment lines may be provided for
a single sequence, and/or several accession IDs may be sup-
plied (as CSV) on each assignment line. A bash script for con-

verting tabular BLAST outputs to the appropriate format can
be downloaded from the documentation page.

Imported sequences are thus divided into 2 categories: as-
signed to known accessions or unassigned. For each imported
project, nucleotide and protein BLAST [19] banks are automat-
ically created using all associated sequences, in order to allow
for subsequent query. The contents of all fields present in the
sample and assignment files are stored and indexed in a NoSQL
database. The system caches relationships between NCBI acces-
sions and taxonomy IDs in order to link each assigned sequence
to a taxon. Whenever necessary, the cache contents are enriched
during import by invoking NCBI’s Entrez [20] web services. If sev-
eral accession IDs are supplied for a single assignment, then the
first common ancestor of their taxa is added to the correspond-
ing record.

Data exploration

All assigned sequences present in the system are searchable via
the exploration interface, which makes it possible to work si-
multaneously on any combination of projects from the selected
database. Color codes are applied to sequence-level, sample-
level, and assignment-level fields for quick identification. This
versatile interface provides means to combine filters on any of
the fields added via project imports. Various kinds of advanced
filtering widgets are thus proposed depending on the field’s data
type:

� plain lists for text fields containing ≤1,000 distinct values;
� autocompleting lists for text fields containing >1,000 distinct

values;
� minimum-maximum ranges for numeric and date fields;
� tree-based selector for the taxonomy field;
� visual geographic map selector for the sample collection lo-

cation field, based on Leaflet [21], OpenStreetMap [22], and
Carto [23] technology.

Search results can be browsed in 4 different ways. The de-
fault display is a sortable table with selectable fields support-
ing pagination, which can be configured to group results at the
sequence, sample, or assignment level. Table rows are clickable
and lead to a dialog box with all the information related to the
selected record. The other 3 displays, all interactive, allow search
results to be browsed as a taxonomic tree, a Krona [24] pie chart,
and a zoomable geographic map showing sample collection lo-
cations (Fig. 1).

When multiple assignment methods are involved in se-
lected projects, the user is invited to select one of them for
the construction of taxonomy trees and pies. In such cases the
assignment-method widget is also active by default in the ex-
ploration filters (so is the best-hit widget when sequences con-
tain multiple assignments) because this is necessary for result
counts to be identical between the table view and the taxonomy
views.

Data export and phylogenetic assignment

Once a dataset of interest has been selected, it can be down-
loaded in the same formats as supported for imports: a FASTA
sequence file, and tab-delimited text files providing sample
metadata, sequence composition, or assignment information.
Data can also be exported in the popular BIOM [25] format, thus
allowing easy manipulation of exported data in a variety of vi-
sualization or analysis tools such as Phinch [26] or Calypso [27].
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Figure 1: Graphical dataset representations: (A) taxonomic tree featuring per-taxon sequence counts; (B) Krona pie displaying the same data in a more interactive
manner; (C) zoomable, draggable sample collection location map with icons linking to full sample information.

Because this format enforces a precise and limited set of taxon-
omy ranks, sequence metadata are enriched with a field named
“full taxonomy” that can include ranks beyond those defined in
the BIOM format, e.g., several ranks associated with virus classi-
fication. Exports are automatically compressed into zip archives
and may be either directed to the client computer for direct
download or temporarily materialized as physical files on the
web server. In the latter case, a download URL is provided, mak-
ing it easy to share with collaborators or feed into external sys-
tems. Indeed, next to the export button, a “sharing” icon pro-
vides means to configure “online output tools” to which metaX-
plor will be able to push exported data. As an example, this fea-
ture is compatible with Galaxy [28] data sources and thus allows
any exported file to be transferred into a Galaxy history by a sim-
ple button click. The metaXplor instance administrator can con-
figure ≤5 default output tools, and each user can define a custom
one for his personal purpose. This feature will facilitate conduct-
ing online analyses from selected datasets.

When a FASTA file is exported to the web server, the appli-
cation offers to run a phylogenetic assignment on its contents.
The user is then invited to either select a reference package [29]
among those provided by the system (de novo generated or ob-
tained from paprica [30]) or upload a custom refpkg archive. A
nucleotide sequence alignment is first applied using MAFFT [31]
v7.313 before pplacer [32] v1.1.alpha19 proceeds with position-
ing exported sequences onto the existing reference tree. Then,
guppy [32] v1.1.alpha19 is used for sequence classification (“clas-
sify” option) and to generate an XML version of the pplacer tree
(“fat” option). Last, Archeopteryx.js [33] is invoked to display an
interactive solution for the end-user to investigate the results.
After classification is performed, users with write permissions
on any involved project have the facility to save newly found as-
signments to the database, thus enriching its contents for the
benefit of all users. Figure 2 illustrates the user-friendliness of
the phylogenetic placement feature.

Running BLAST or Diamond against database contents

Another section in the application provides means to search
for similarity between an external set of sequences and those
present in the system, the latter being used as a reference bank.
Available algorithms are BLAST v2.6.0 and Diamond [34] v2.0.4.
Job results consist of a standard BLAST output file per selected
target project, which can be investigated online in an interactive

manner thanks to the BlasterJS [35] library, as shown in Fig. 3.
Matching sequences can also be downloaded in FASTA format
for further analyses (e.g., alignment, viral genome reconstruc-
tion).

Several BLAST types are supported: BLASTx (comparison of
a DNA query sequence, after its translation into the 6 possi-
ble frames, with a protein sequence database) with Diamond
as a faster alternative, BLASTp (comparison of a protein query
sequence with a protein sequence database) with Diamond as
a faster alternative, BLASTn (comparison of a DNA query se-
quence with a DNA sequence database), tBLASTn (comparison
of a protein query with a DNA database, in the 6 possible frames
of the database), and tBLASTx (comparison of the 6-frame trans-
lations of a nucleotide query sequence with the 6-frame transla-
tions of a nucleotide sequence database). This functionality was
designed to provide means to quickly check whether newly ob-
tained, locally held sequences share similarity with material al-
ready stored in previous projects.

Architecture and Data Model
Application architecture outline

The software architecture of metaXplor (Fig. 4) can be described
as follows:

� A standard HTML/Bootstrap/jQuery [36, 37] interface allows
users and administrators to conveniently interact with the
system;

� One or several MongoDB [38] servers are used as a persis-
tence layer for data that are searchable via the “Explore” in-
terface, i.e., all data except actual nucleotide sequences. Be-
cause MongoDB is a scalable solution that provides means to
index >60 fields per collection, fast response times can be en-
sured even when running highly combined queries on large
amounts of data;

� A high-performance computing (HPC) server running Ora-
cle/Sun Grid Engine (SGE) [39] holds nucleotide and protein
BLAST banks for each set of sequences involved in a project.
This entity is responsible for running all CPU-intensive
jobs except those that are database-related: BLAST/Diamond
bank creation and query, phylogenetic assignment;

� A Java back-end consisting in a web application based on
Spring Framework [40] acts as a central point for metaX-
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4 metaXplor: an interactive viral and microbial metagenomic data manager

Figure 2: Phylogenetic assignment interface: (A) submission form allowing placement of exported or external sequences on an online or external reference tree,
supporting add, addlong, and addfragments MAFFT alignment options; (B) Archeopteryx.js-driven interactive result display.

Figure 3: BLAST/Diamond functionality interface: (A) submission form allowing application of a selected search algorithm on multiple queries and subject projects,

with adjustable evalue and num alignments parameters; (B) BlasterJS-driven dynamic multiple query result view; (C) download options and alignment details, also
handled by BlasterJS.
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Figure 4: High-level diagram of metaXplor application illustrating its components and the interactions they establish between one another, and with users or admin-

istrators.

plor and orchestrates data flow by interpreting user input,
building database queries and sending them to MongoDB, in-
voking SGE via Opal Toolkit [41] web services, building GUI
views and contents, compiling export files, and so forth. This
component also keeps an indexed fasta file per project to
allow quick access to nucleotide sequences when brows-
ing/exporting data.

For metaXplor design, we focused on durability, maintain-
ability, and extendibility by electing an industry development
paradigm based on proven open-source standards such as the
Spring Framework and Apache Tomcat. Regarding database
needs, NoSQL seemed to be the best-suited solution for han-
dling large datasets, and, more precisely, the MongoDB choice
was found relevant because of its robustness, scalability, and
schemaless design, which proved helpful in supporting user-
defined fields. To our eyes, its large developer community also
gives it status as a standard.

To ease deployment, the system is made available as a set of
Docker [42] containers:

� MongoDB container: unmodified official Docker image for
MongoDB document databases, which provides high avail-
ability and easy scalability. It is maintained by the Docker
Community;

� HPC container: based on the official Docker image for Apache
Tomcat, it embeds all tools required for detaching CPU-
intensive jobs from the main web application. Thus, it fea-
tures additional software such as SGE for job management
(via an integration based on the docker-sge Dockerfile [43]),
Opal Toolkit for interfacing with the latter, and all above-
mentioned bioinformatics programs;

� Web application container: also based on the official Docker
image for Apache Tomcat, it features the main metaXplor
web application (Java back-end, HTML/Javascript interface).

This solution offers much flexibility in the sense that metaX-
plor can be straightforwardly configured in accordance with

available hardware, from a minimal set-up on a worksta-
tion for testing purposes to a production environment where
each container would run on a machine optimized for its
purpose.

Data model

In metaXplor, structured data (examples of the content of col-
lections involved in the exploration functionality being given in
Fig. 5) are organized in MongoDB as follows:

� A single “commons” database per instance contains collec-
tions holding reference data shared by all projects: NCBI
taxonomy, accession-to-taxon mapping cache (described be-
low), and reference package descriptions;

� Each metagenomic database added via the system consists
of the following collections: projects (with attributes speci-
fied at import time), dbFields (list of dynamically added fields
according to import file contents), samples, sequences (unas-
signed), assignedSequences (embedding assignments), and
various cache collections (1 for BLAST results, 1 for phylo-
genetic assignment results, 1 for taxonomic trees, and 1 for
each searchable field).

The central model entity in metaXplor’s database structure
is the “sequence.” Each one originates from ≥1 “samples,” as de-
fined in the sequence composition file. For instance, a singleton
read sequence would originate from only 1 sample whereas con-
tigs may have been assembled using reads from various sam-
ples. Operational taxonomic unit representatives would also re-
late to the various samples in which they were detected.

Each sequence comes with ≥0 “assignments.” Those that
have none are stored separately as unassigned sequences and
can only be BLASTed against, but not searched via the explo-
ration interface. For those linked to several assignments, the
presence of a best hit flag per assignment method is required for
1 of these assignments. This is then taken into account when ex-
porting in the BIOM format, and, as mentioned before, for build-
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6 metaXplor: an interactive viral and microbial metagenomic data manager

Figure 5: Sample contents of MongoDB collections holding searchable data: the dbFields collection holds the description of each searchable field (i.e., metadata) by
storing the entity type (sequence, sample, or assignment) it describes, the list of projects it appears in, its verbose name, and its data type; the samples collection
contains the list of projects in which each of them appears and all the sample metadata field values; the assignedSequences collection manages all assigned sequences

by keeping track of their length along with sample contribution levels and the list of related assignments holding metadata field values.

ing taxonomic trees or pies, which require a single taxon to be
associated with each sequence.

Imported assignments may be directly provided with a tax-
onomy id field. If not, they are required to be linked to ≥1 NCBI
accession IDs. When a single ID is provided, the system attaches
its corresponding taxon to the assignment record. In the case
of multiple accession IDs, which typically occurs with metabar-
coding data, the first common ancestor of their associated taxa
is selected.

To efficiently perform this mapping task while sup-
porting large data imports, the following mechanism was
designed:

� The taxonomy associated to each of our ∼860,000 cached
accession numbers is taken from SILVA-curated [44] when
available, otherwise from NCBI’s taxonomy database;

� Accession-to-taxonomy associations are stored as a cache
that is first consulted when assignment records are im-
ported;

� For accessions not found in the cache, their details are pulled
from Entrez web services and added to it;

� Finally, assignment records are persisted with accession and
taxon information. Web service invocation failures lead to
storing no taxon ID; such records are detected later on by the
system and new attempts to retrieve the missing information
are performed.

Note that the accession cache collection lies in the shared
“commons” database. This implies that when importing project
data from a given user, any records added to the cache will not

need to be retrieved from web services, should it be encountered
again within the same application instance.

Conclusions

metaXplor is a user-friendly, distributable web-interfaced data-
repository that provides tools to easily combine and filter project
metadata, spatial, and taxonomic information from multiple
meta-omic projects (i.e., shotgun metagenomics, metabarcod-
ing, metatranscriptomics). In addition to offering taxonomic as-
signment browsing, it provides a fully integrated pipeline to
enrich assignments with phylogenetic placements. This uni-
fied interface will greatly help researchers apprehend the re-
lation of a given set of sequences with those from the already
known diversity. Additionally, metaXplor provides functional-
ity to BLAST external sequences against those contained in
its featured projects. Because a large fraction of sequences ob-
tained from metagenomic projects remain unclassified, i.e., the
so-called dark matter [45], referring to sequences not having
any detectable similarity with existing classified sequences, this
functionality provides means to confront both classified and un-
classified sequences from distinct projects. Finally, as an open-
source, web-oriented multi-user platform, the system is adapted
for collaborative work and data sharing as illustrated by the pos-
sibility to push exported data into external tools such as Galaxy.
Thus, at a time when making scientific data FAIR (Findable, Ac-
cessible, Interoperable, and Reusable) is becoming a priority, we
believe that metaXplor will prove useful in many ways. In future
versions, we will consider adding support for further visualiza-
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Sempéré et al. 7

tion/analysis features, and facilitating communication with ad-
ditional external tools.

Availability and Requirements

Data Availability

metaXplor’s source code is available in the South Green GitHub
repository [46]. Deployment can be achieved directly using the
docker-compose.yml file it features, which automatically pulls
required container images from Docker Hub [47]. Snapshots of
our code and other supporting data are openly available in the
GigaScience repository, GigaDB [48].
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