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Abstract: While much literature has focused on preferences regarding risk, preferences over 
skewness also have significant economic implications. An important and understudied aspect of 
skewness preferences is how they affect risk taking. In this paper, we design a novel laboratory 
experiment that elicits certainty equivalents over lotteries where the variance and skewness of 
the outcomes are orthogonal to each other. This design enables us to cleanly measure both 
skewness seeking/avoiding and risk taking behavior, and their interaction, without needing to 
make parametric assumptions. Our experiment includes both left- and right-skewed lotteries. The 
results reveal that the majority of subjects are skewness avoiding risk takers who 
correspondingly also take more risk when facing less skewed lotteries. Our second contribution 
is to link these choices to individual rank-dependent utility preference parameters estimated 
using a separate lottery choice protocol. Using a latent-class model, we are able to identify two 
classes of subjects: skewness avoiders with the classic inverse s-shaped probability weighting 
function and skewness neutral subjects that do not distort probabilities. Our results thus 
demonstrate the link between probability distortion and skewness seeking/avoidance choices. 
They also highlight the importance of accounting for individual heterogeneity. 
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1. Introduction 

While much literature has focused on preferences regarding risk, preferences over 

skewness also have important economic implications. Skewness seeking, for example, can 

explain the overpricing and less than average returns of (right-) skewed securities (Barberis, 

2013), overinvestment in winner-take-all careers and the high rates of small business failures, the 

attraction of lotteries (Garrett and Sobel, 1999), and even the well-known “favorite – long shot 

bias” where people overprice long shots and underprice favorites (Golec and Tamarkin, 1998). 

An important and understudied aspect of skewness preferences is how they affect risk 

taking. That is, are people more or less willing to take risk when facing more skewed outcomes?  

Answering this question is important for many economic decisions. For example, people may 

purchase less insurance as skewness increases if they are more willing to take risks, and new 

crop varieties that reduce downside risk (i.e. technologies that reduce the probability of crop 

failure) may affect farmers’ willingness to adopt new technologies and seeds, or to buy 

insurance.1 

To study how the skewness of outcomes affects risk taking we design a novel laboratory 

experiment that elicits certainty equivalents over lotteries where the variance and skewness of 

the outcomes are orthogonal to each other. Our design enables us to cleanly measure both 

skewness seeking/avoiding and risk taking behavior, and their interaction, without needing to 

make parametric assumptions. An important part of our design is the inclusion of both right- and 

left-skewed lotteries, with the latter less commonly studied. However, left skewness is a feature 

in many important economic decisions such as financial markets, agricultural production, 

insurance risks, health outcomes, employment income, and so on. In these situations, there is a 

                                                 
1 New agricultural technologies will generally change both the skewness and variance of crop yields (e.g., Chavas 
and Shi, 2015, or Emerick et al., 2016). 
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small likelihood of very unfavorable outcomes such as negative profits, unemployment, serious 

illness, etc. As Barberis (2013, p.182) describes, while some individual securities are right-

skewed, “the aggregate stock market is negatively skewed: it is subject to occasional large 

crashes”. Increasing global connectivity magnifies these potential financial risks as exemplified 

by the recent global stock market crash associated with the coronavirus (COVID-19) pandemic. 

Similarly, the threat of climate changes brings an increased likelihood of extremely bad 

(catastrophic even) outcomes (e.g. Hanemann et al., 2016). 

The most common pattern we observe in our experiment is skewness avoidance and risk 

taking, which is particularly prevalent when considering lotteries with the same direction of 

skewness (i.e. all left- or all right-skewed). Correspondingly, subjects also take more risk when 

facing less skewed lotteries. Nevertheless, we observe considerable heterogeneity in behavior. 

Our second novel contribution is to link these behaviors to individual structural risk preference 

parameters estimated using a separate lottery choice task. This allows us to investigate the role of 

individual heterogeneity, particularly utility curvature and probability weighting, in a manner 

that previous studies have only hinted at. For this purpose, we use the Harrison and Rutström 

(2009) protocol, which is specifically designed to measure individual risk preference parameters. 

For each subject, we estimate their utility curvature and probability weighting parameters in the 

rank-dependent utility (RDU) model (Quiggin, 1982). We find two classes of subjects: skewness 

avoiders who have an inverse s-shaped probability weighting function, and skewness neutral 

subjects that do not distort probabilities.2 Our results are the first to demonstrate the relationship 

                                                 
2 Subjects characterized by an inverse s-shaped probability weighting function overweight small probabilities and 
underweight large probabilities. 
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between skewness seeking/avoiding and probability distortion at the individual level.3 

We are only aware of three other studies that investigate how skewness affects risk taking 

behavior. Grossman and Eckel (2015) use a variation of their Eckel and Grossman (2002, 2008) 

risk elicitation task and find that when choosing among options with greater skewness, subjects 

tend to choose riskier options than they did when facing options with lower skewness. In their 

experiment, subjects choose from six lotteries with the same skewness (and kurtosis) but 

different expected values or variances. Subjects make (up to) three lottery choices with skewness 

increasing from zero to two positive levels. However, when controlling for the largest gain in the 

lottery, their results reverse with subjects taking less risky choices as skewness increases. While 

Grossman and Eckel (2015) note this is consistent with overweighting the long shot, their 

experiment is not designed to provide evidence of probability weighting. Astebro, Mata and 

Santos-Pinto (2015) use a variation of the Holt and Laury (2002) risk elicitation task, modified 

for different levels of (right) skewness. They find that greater skewness leads to greater risk 

taking among both students and executives, and with low and high incentives. Using the same 

choices to estimate average preference parameters for their samples, they rule out risk loving as 

an explanation but provide support for optimism and likelihood insensitivity. In a different 

experimental setting using binary lotteries, Ebert (2015) finds that with a symmetric risk, 

subjects are mostly risk averse but with a right-skewed risk they are mostly risk loving. Thus, 

similar to these other studies, he finds that risk taking increases with greater skewness. 

In contrast to these studies, we structurally estimate individual level risk preference 

                                                 
3 There are two reasons why we do not estimate a model such as cumulative prospect theory (CPT) that allows for 
subject loss aversion. First, the existing literature on the interaction between variance and skewness has focussed on 
the role of probability distortion and not on loss aversion. Since ours is the first study to estimate individual 
structural parameters and link them to skewness and risk taking behavior, we focus on the key concept in the 
literature. Second, as noted by Barberis (2013), a weakness of CPT is the need to make assumptions regarding the 
appropriate reference point.   
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parameters using a standard protocol and relate these to decisions over skewness and risk 

observed in a separate experimental task. Our results demonstrate the important relationship 

between probability distortion and skewness seeking/avoiding, as well as revealing considerable 

individual heterogeneity. In addition to measuring individual risk preference parameters, our 

experiment also differs by using mixed lotteries that are both left- and right-skewed, whereas the 

three studies described above use only right-skewed lotteries over gains.4 Finally, our design 

allows us to study not only how skewness affects risk taking but also how the risk of lotteries 

affects observed skewness-related behavior.5 

Our work is also related to the “favorite – long shot bias”; a robust finding in horse 

betting that long shots (right-skewed lotteries) are overpriced, leading to lower returns on 

average than favorites. While earlier explanations were that bettors were risk lovers, Golec and 

Tamarkin (1998) provide evidence consistent with skewness seeking and risk aversion rather 

than risk loving preferences. In later work, both Jullien and Salanie (2000) and Snowberg and 

Wolfers (2010) found that models allowing for bettor misperceptions fit the racetrack data better 

than risk loving preferences do. Importantly, both of these papers rely on a representative agent 

model and so do not study individual heterogeneity as we do. Further, controlled laboratory 

experiments can properly isolate factors in a way that is not possible with naturally occurring 

data where the variance and skewness of bet returns are correlated. Nevertheless, an implication 

from the long-shot bias is that bettors’ preference for skewness is sufficiently strong to overcome 

aversion to risk and lower expected returns, which reinforces the importance of studying the 

                                                 
4 While Ebert (2015) does include left-skewed lotteries in his experiment (as discussed below), he only studies the 
interaction of risk taking and skewness seeking with right-skewed lotteries (as compared to symmetric, or zero-skew 
ones). 
5 We know of only one study that asks this reverse question although this is not isolated in the experimental design 
but revealed in regression results. Specifically, Brunner et al. (2011) finds that higher variance generates more 
skewness-seeking choices in their experiment using binary lotteries. 
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interaction between risk and skewness. 

It is important to note that we study skewness seeking/avoiding behavior rather than 

prudence. Consistent with Ebert and Wiesen (2011), we define skewness seeking as preferring a 

lottery with a larger skewness over another lottery with a smaller skewness but the same 

expected value, variance and kurtosis.6 In contrast, prudence is a stricter feature of preferences, 

implying skewness seeking behavior that is robust to different levels of kurtosis. Ebert and 

Wiesen (2011) find evidence of prudence, with most prudent subjects also being skewness 

seeking but not necessarily vice versa.7 In our experiment, we hold kurtosis constant and use the 

terminology “skewness seeking” to mean subjects prefer a lottery with larger skewness to one 

with smaller skewness and exactly the same mean, variance and kurtosis. Similarly, we study 

“risk taking” rather than risk preference, with the former referring to preferences over changes in 

standard deviation holding the other moments constant.8 

As mentioned earlier, most studies include only right-skewed lotteries. Exceptions 

include Ebert and Wiesen (2011) who study eight pairs of binary lotteries that have the same 

expected value, variance, (and kurtosis, by definition because they are binary lotteries), and 

absolute skewness, but one is right-skewed and the other left-skewed. They find significant 

evidence of skewness seeking (defined here as choosing the right-skewed lottery) with 77% of 

choices in this direction. Ebert (2015) includes both left- and right-skewed lotteries in his 

experiment involving binary lottery choices, as well as symmetric (i.e. zero-skew) lotteries. He 

                                                 
6 Larger skewness can therefore mean either a more right-skewed lottery or a less left-skewed lottery. 
7 Trautmann and van de Kuilen (2018) survey the growing number of experimental studies that study prudence using 
the risk apportionment task theoretically developed by Eeckhoudt and Schlesinger (2006). The aggregate level 
findings regarding prudence are considered inconsistent with standard models of expected utility, and while the 
potential for non-EU models is noted, these are not investigated using individual level data (e.g. Ebert and Wiesen, 
2014). 
8 This is true for the first part of the experiment where we observe behavior towards standard deviation and 
skewness. In the second part of the experiment, we use lottery choices to elicit risk preferences, that is, the curvature 
of the utility function and a parameter of probability distortion. These elicited risk preference parameters are then 
used to explain behavior in the first part of the experiment. 
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finds that subjects care about differences in the direction of the skewness but less about the 

magnitude of skewness, finding no evidence of skewness seeking when comparing two right-

skewed lotteries. Ebert (2015, p. 86) finds evidence for skewness preferences, “that individuals 

both like right-skew and dislike left-skew, and we do not find that one is more important than the 

other”. In a striking contrast, Symmonds et al. (2011), in a neuroeconomics study, consider 

lotteries with both left and right skewness and finds that preference for left skewness is actually 

more prevalent than skewness seeking. The design is very different in this study, which involves 

complicated lotteries with between three to nine outcomes.9 More generally, these contrasting 

findings suggest that it is important to study skewness seeking/avoiding behavior across different 

domains including both left and right skewness. 

 

2. Experimental Design and Methodology 

Our experiment consists of the three following tasks always presented in the same order: 

eliciting willingness to pay for lotteries varying in standard deviation and skewness, eliciting 

individual structural risk preference parameters (utility curvature and probability weighting), and 

a final questionnaire eliciting standard demographic information.10 The tasks are always 

presented in the same order so that our primary task always comes first before subjects become 

bored or fatigued. We discuss the two first tasks in turn. Experimental instructions (translated 

from French) are provided in Appendix A. 

 

                                                 
9 Symmonds et al. (2011) is the closest in design to our experiment in the sense that they use an orthogonal design 
involving six levels of skewness and ten levels of variance. However, in their design rather than explicitly eliciting 
the certainty equivalent, the subject chooses between each gamble and a single sure amount. The single sure amount 
has three levels, and this choice is repeated for each gamble using each level. In total, each subject makes 180 
decisions in rapid succession. 
10 The experiment also involved an additional unrelated task, however as the results from this task are not used in 
this article we do not discuss it further. 
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2.1 Eliciting Willingness to Pay for Lotteries Varying in Standard Deviation and Skewness 

We designed eight lotteries varying in standard deviation and skewness but with a 

constant mean and kurtosis, for which we seek to elicit certainty equivalents (CEs). As shown in 

Table 1, the lotteries have two different levels of standard deviation but four different levels of 

skewness, two negative and two positive, but with the same absolute value. Positively skewed 

lotteries are right-skewed, while negatively skewed lotteries are left-skewed. We use lotteries 

with three possible outcomes as this allows us to control the kurtosis, mean, and variance, while 

changing the skewness. We keep the probabilities fixed but change the outcomes, which always 

include a mix of gains and losses. Subjects are endowed with €6 at the beginning of this first task 

to cover the largest possible loss.11 Each lottery is defined as {(X1, 0.5), (X2, 0.4), (X3, 0.1)}, 

with X1, X2, X3 representing the outcomes and 0.5, 0.4 and 0.1 their respective probabilities. All 

amounts are in Euros. 

We elicit willingness to pay for each lottery using the CE method commonly used in the 

risk literature. The subject makes a series of binary choices between the lottery and a sure 

amount using the multiple price list technique. Following the recent literature (Etchart-Vincent 

and L’Haridon, 2011; Diecidue et al., 2015; Cubbitt et al., 2015; Ifcher and Zarghamee, 2016), 

each binary choice involves a sure amount varying from the lowest to the highest payoff of the 

lottery with a €0.50 step. To avoid inconsistencies in behavior (switching back and forth), some 

articles (Etchart-Vincent and L’Haridon, 2011; Cubbitt et al., 2015) report asking subjects to 

state the row at which they would switch from choosing the lottery to choosing the sure amount. 

In our setting, we also decide to constrain subjects to switch only once. 

 

                                                 
11 This is a losses-from-an-initial-endowment payment scheme as widely used by experimentalists both for practical 
and ethical reasons. As shown by Etchart-Vincent and L’Haridon (2011), in a similar CE elicitation task, such a 
payment scheme does not suffer from bias towards more risk-seeking or more risk-averse behavior. 
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Table 1. Lotteries Employed in the Experiment  
 

Lottery X1 

(p=0.5) 

X2 

(p=0.4) 

X3 

(p=0.1) 

Expected 

Value 

Standard 

Deviation

Skewness Kurtosis 

A -2.96 7.26 10.74 2.50 5.55 0.105 1.174 

B -1.83 9.28 -2.98 2.50 5.55 0.397 1.174 

C 7.96 -2.26 -5.74 2.50 5.55 -0.105 1.174 

D 6.83 -4.28 7.98 2.50 5.55 -0.397 1.174 

E -0.23 4.88 6.62 2.50 2.77 0.105 1.174 

F 0.34 5.89 -0.24 2.50 2.77 0.397 1.174 

G 5.23 0.12 -1.62 2.50 2.77 -0.105 1.174 

H 4.66 -0.89 5.24 2.50 2.77 -0.397 1.174 

Note: Only the information contained in columns 2 to 4 is provided to the subjects. 

 

To help subject comprehension, the lottery options were presented to subjects using pie 

charts. Figure 1 shows an example for Lottery F. 

We employ a within-subject design and ask each subject to reveal their willingness to pay 

for each of the eight lotteries. To control for potential order effects, although they seem unlikely 

as each lottery is quite different, we created eight sequences that were randomized across 

subjects.12 

  

                                                 
12 The eight sequences are shown in Appendix C. Each lottery appears once in each sequence; each lottery appears 
in a given rank (1 to 8) in each sequence; each lottery is always played with the same preceding lottery except when 
it is played first: for example, D is always played after C (except in sequence 6 where it is played first), so there is 
more control.  
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observations.13 About 6% of these choices consisted of indifference between the two lotteries, 

which is somewhat higher than the 1.7% in Harrison and Rutström (2009) but may reflect subject 

fatigue as this task comes after the elicitation of CEs.  

Our design allows structural estimation of individual risk preference parameters; 

specifically, utility curvature and probability weighting. We use a RDU model (Quiggin, 1982), 

which extends Expected Utility Theory (EUT) by considering probability distortion. The utility 

function over income x is as follows: 

𝑈ሺ𝑥ሻ ൌ 𝑥ఈ  (1) 

where 𝛼 is the shape parameter of the utility function and x is the lottery prize plus the 

endowment. Under RDU, probabilities 𝑝 are transformed by a probability weighting function, 

which we specify according to Tversky and Kahneman (1992):14 

Γሺ𝑝ሻ ൌ
௣ം

ሾ௣ംାሺଵି௣ሻംሿ
భ
ം
  (2) 

where 𝛾 is a parameter describing the shape of the probability weighting function. 

We follow the empirical modelling strategy of Harrison and Rutström (2008) to estimate 

individual structural parameters in our sample. Details are provided in Appendix D. We perform 

two estimations. We first estimate one concavity parameter and one probability weighting 

parameter for the whole sample of 210 subjects, clustering at the individual level, using all 

12,505 observations. Then we estimate one concavity parameter and one probability weighting 

parameter for each individual using the 60 lottery choices per subject, except for missing 

observations due to time expiring as mentioned above. 

                                                 
13 From the subject’s point of view, choosing indifference or letting the time expire leads to the same incentive 
structure (i.e. the experimenter flips a coin). Thus, a subject might let time expire to express indifference but we 
have no way of knowing this. 
14 We also estimated the model using the Prelec (1998) function. Results were qualitatively similar but the statistical 
significance of parameters in the final latent class model was higher with the Tversky and Kahneman (1992) 
function. 
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2.3 Implementation 

At the end of the experiment, one of three tasks (the 8-lottery task, the 60-lottery task and 

a third unrelated task not reported in this paper) was randomly chosen for payment. Then one out 

of eight choices (if 8-lottery task) or one out of 60 choices (if 60-lottery task) or one out of five 

choices (if unreported task) was randomly chosen and played out for real. If the 8-lottery task 

was chosen, then a particular row was also randomly selected for the chosen lottery with the 

subject paid either the sure amount for that row, if they choose that, or the lottery is played 

according to the probabilities indicated. Subjects were paid these lottery outcomes plus the initial 

endowment of either €6 (8-lottery task) or €8 (60-lottery task).  

The experiment was fully computerized and programmed using the LE2M software 

developed at the Laboratory for Experimental Economics – Montpellier (France).15 We 

conducted 12 sessions at the University of Montpellier in June 2018, with approximately 20 

subjects per session. The first session with 20 subjects was a pilot to check our program and is 

excluded from the analysis. We have complete data from 210 subjects. The subjects, recruited 

using ORSEE (Greiner, 2015), were mostly students and 55% were male. While most had 

experience in experiments (89%), none had previously participated in a similar experiment. The 

experiment typically lasted for one hour and average earnings were €8, ranging from €1.50 to 

€16.50. These earnings were added to the show up fee of €2 for students of the Economics 

Department (where the experimental lab is located) and €6 for those from outside the 

department. 

 

  
                                                 
15 https://www.cee-m.fr/leem/ 
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3. Results I: Skewness Seeking and Risk Taking Behavior 

Our results are structured as follows. First, we describe the evidence for skewness 

seeking among our subjects, distinguishing between left- and right-skewed lotteries. Second, we 

study how risk taking changes as skewness increases. Third, we look at the interaction. These 

results derive purely from the first (8-lottery) part of the experiment and do not rely on 

parametric assumptions. In the following section, we explain our findings by examining 

individual level behavior using structural parameters estimated using the second (60-lottery) part 

of the experiment. Unless stated otherwise, all reported p-values are from paired two-sided t-

tests. 

 

3.1 Aggregate Level Behavior 

For each of our 210 subjects we elicited the CE for the eight different lotteries in part one 

of the experiment. Choices were made in €0.50 steps. We computed the CE for each lottery by 

taking the midpoint of the range where the subject switched from the lottery to the sure amount. 

Table 2 summarizes the distribution of elicited CEs for each of the eight lotteries. 

Figure 3 shows the mean CE for each lottery where the eight lotteries are arranged 

according to skewness and variance. On the arrows, we report the results of paired t-tests 

comparing the CEs of two orthogonal lotteries. Horizontal comparisons involve lotteries that 

differ only in skewness, while vertical comparisons compare pairs of lotteries that differ only in 

variance. Diagonal arrows combine the two effects. 

Recall that we use the terminology “skewness seeking” when subjects prefer a lottery 

with a larger skewness to one with a smaller skewness and exactly the same mean, variance, and 

kurtosis. Note that “larger” skewness also encompasses the case of a smaller negative skewness. 
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In addition, the terminology of “risk taking” behavior or preferring a “riskier” lottery refers only 

to an increase in standard deviation of a lottery. 

 

  Table 2. Summary Statistics on Elicited CEs (€) 

Lottery X1 

(p=0.5) 

X2 

(p=0.4) 

X3 

(p=0.1) 

1st 

Quart 

Median 3rd 

Quart 

Mean Std. 

Dev. 

Min Max 

A -2.96 7.26 10.74 2.25 3.75 6.25 4.03 2.88 -2.75 11.25 

B -1.83 9.28 -2.98 0.75 2.75 4.75 2.95 2.93 -3.25 9.75 

C 7.96 -2.26 -5.74 0.25 2.25 4.25 2.39 3.03 -6.25 8.25 

D 6.83 -4.28 7.98 1.25 3.75 5.75 3.28 2.98 -4.75 8.25 

E -0.23 4.88 6.62 2.25 3.25 4.75 3.36 1.92 -0.75 7.25 

F 0.34 5.89 -0.24 1.25 2.25 3.25 2.42 1.50 -0.75 6.25 

G 5.23 0.12 -1.62 1.75 2.25 3.75 2.48 1.57 -2.25 5.75 

H 4.66 -0.89 5.24 1.75 2.75 3.75 2.82 1.52 -1.25 5.75 

 

Consider first the four right-skewed lotteries, A, B, E, and F. These are shown on the 

right panel of Figure 3. The two horizontal comparisons show that the more (right) skewed 

lotteries are valued less than the lower skewed lottery with the same expected value, variance 

and kurtosis; i.e. CEB < CEA and CEF < CEE, and these differences are highly significant (p-

values < 0.01). These results suggest that rather than being skewness seeking, subjects are 

skewness avoiding, and this is true for lotteries with both low and high variance. The two vertical 

comparisons in the right panel show that subjects value riskier lotteries more than a lottery with 

lower variance but the same expected value, skewness and kurtosis; i.e. CEA > CEE and CEB > 

CEF, and these differences are significant (p-values<0.05). These results imply that subjects are 

risk takers, and this is true for lotteries with both low and high positive skewness. The diagonal 
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the difference is significant (p-value<0.05). In contrast, the CE of lotteries C and G is not 

significantly different. The combined effect of an increase in variance and an increase in 

skewness (shown on the diagonal) is again negative, with CEC < CEH implying that the 

skewness effect dominates. The difference is weakly significant (p-value<0.10).  

Overall, the two panels show a consistent pattern of skewness avoiding and risk taking 

behavior, which is true with both right- and left-skewed lotteries. Next, we compare lotteries 

with the same absolute level of skewness but different directions. On average, subjects continue 

to be skewness avoiders when we compare lotteries with a large absolute skewness (0.397) as 

CEF < CEH (significant at 0.01) and CEB < CED (although not significant at usual levels).16 

However, the results differ when we compare lotteries with the same small absolute skewness 

(0.105), as subjects prefer the right-skewed lottery to the left-skewed one. Specifically, CEA > 

CEC and CEE > CEG, and these differences are highly significant (p-values<0.01). 

While skewness avoidance is the dominant behavior, these different results when 

considering lotteries A and E suggests that subject decisions are influenced by factors beyond the 

moments of the lotteries. In particular, consider how X3, the least likely outcome which occurs 

with p=0.10, varies across the eight lotteries. As reported in Table 1, lotteries A, D, E and H, all 

have their best lottery outcome as X3, while lotteries F, G, B and C all have their worst outcome 

(always a loss) as X3. In the four pairwise lottery comparisons where only the magnitude of 

skewness is changing and not the direction (i.e. CD, BA, FE, GH), the four more right-skewed 

lotteries (C, B, F, G) all have their worst outcome as X3, and skewness avoiding is the 

predominant behavior. In contrast, when we compare lotteries that have the same absolute 

skewness (e.g. AC and EG), the more right-skewed lotteries (A and E) have their best outcome 

                                                 
16 These results are not shown in Figure 3 to avoid cluttering the diagram. 
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as X3, and then behavior reverses as subjects are predominantly skewness seeking. This might 

explain the differences we find and could relate to subjects overweighting the least likely (X3) 

outcome.17 This motivates the second part of our experiment. 

 

3.2 Individual Level Behavior 

Taken at the aggregate level, subjects are predominately skewness avoiding risk takers. In 

this section, we examine individual behavior. For each horizontal pairwise comparison of 

lotteries (e.g. lottery B versus A) we count the number of individuals that reported CEs 

consistent with skewness seeking (i.e. CEB > CEA), skewness neutrality (CEB = CEA) or 

skewness avoidance (CEB < CEA). For each pairwise comparison, the percentages of skewness 

seeking and skewness avoiding behaviors are shown in Figure 4.18 In seven out of the twelve 

pairwise horizontal comparisons the proportion of skewness avoiders is larger than the 

proportion of skewness seekers. Consistent with the results discussed above, the highest shares 

of skewness avoiders are observed where the two lotteries have the same direction of skewness 

(either right- or left-skewed). This implies that our average findings are reflective of general 

behavior among our subjects. 

Our aggregate level results suggested that risk taking was the predominant decision 

among our subjects. In a similar manner, we now consider individual risk taking behavior by 

examining the four vertical comparisons among lotteries that differ only in variance. We classify 

                                                 
17 Exploring probability weighting is especially relevant. As mentioned earlier, Eckel and Grossman (2015) find that 
when controlling for the largest gain in the lottery, subjects take less risky choices, instead of riskier choices, as 
skewness increases. Bordalo, Gennaioli, and Shleifer (2012) offer an alternative theory, salience theory, to explain 
why subjects might be risk averse in some situations and risk seeking in others. Some payoffs might draw subjects’ 
attention (be salient). Subjects are then risk seeking when a lottery’s upside is salient and risk averse when its 
downside is salient. 
18 For each lottery pair we use a chi-square test (of equality of proportions) to compare the observed proportions of 
skewness seeking, skewness neutral, and skewness avoiding subjects to random proportions. The latter are obtained 
by drawing randomly 10,000 CEs for each lottery in uniform distributions and counting the number of draws falling 
in each of the three categories. The null hypothesis that the choices are random is strongly rejected in each case. 



 

an indiv

same, an

results a

compari

Figur

Note: the 

 

W

individu

behavio

of indiv

             
19 Here to
are rando

vidual as a r

nd risk avoi

also confirm

isons, the m

re 4. Propor

proportion of

While these

ual behavio

or, which we

viduals appe

                  
oo the chi-squa
om for each of 

risk taker if 

iding if the 

m what was

majority of su

rtions of Sk

f skewness neu

e results sh

r, the resul

e seek to ac

ears to vary w

                  
are test (of equ

f these pairwise

their CE is 

other way 

 observed a

ubjects are r

kewness See
Lotte

utral subjects m

how that o

lts in Figur

ccount for in

with the ske

uality of propo
e comparisons

higher for t

around. The

at the aggre

risk taking.1

 

ekers and S
ery Compa

makes up the b

our aggrega

res 4 and 5

n the next s

ewness of th

ortions) reject
s. 

the higher v

e results are

gate level: 

19 

Skewness A
arisons) 

balance 

ate level fi

5 also revea

section. In a

he lotteries. 

s the null hypo

ariance lotte

e summarize

in three out

Avoiders (H

ndings refl

al considera

addition, the

In particula

othesis that th

ery, risk neu

ed in Figure

t of the fou

Horizontal P

lect the pre

able heterog

e risk taking

ar, for each 

he choices and 

19 

utral if the 

e 5. These 

ur pairwise 

Pairwise 

edominant 

geneity in 

g behavior 

individual 

proportions 



20 
 

we counted the number of risk taking choices out of four. Of the 210 subjects, only 34 exhibit 

risk taking behavior in all four cases, while 18 subjects are risk avoiders in all four cases. These 

mixed results suggest that risk taking changes with skewness, reiterating the importance of 

studying the interaction between skewness and variance. 

 

Figure 5. Risk-related Behaviors (Vertical Pairwise Lottery Comparisons) 

 

 

3.3 Skewness and Variance 

We next ask whether subjects are more or less willing to take on risk as skewness 

increases. If subjects are more risk taking as skewness increases, then the difference in CEs 

between lotteries B and F will be larger than the difference between CEs for lotteries A and E.  

Said differently, is the extra amount that subjects are willing to pay for a riskier lottery larger 

when the lottery is more right-skewed? In fact, we find the opposite: CEB – CEF = 0.52 is less 

than CEA – CEE = 0.66 although the difference is not significant (p-value=0.51). When 

0%

10%

20%

30%

40%

50%

60%

70%

A vs E B vs F C vs G D vs H

Right-skew Left-skew

Risk avoider

Risk taking

Risk neutral



21 
 

comparing left-skewed lotteries, however we find a significant difference: CEC – CEG = -0.09 is 

less than CED – CEH = 0.46 (p-value = 0.0053). Therefore, subjects are willing to pay more for 

riskier lotteries that are more left-skewed. Alternatively, since they are skewness avoiding they 

prefer to take on risks they like. When looking at individual behavior we find 89 subjects for 

whom (CEB – CEF) is larger than (CEA – CEE), i.e. 42% of our subjects are more risk taking as 

right-skewness increases. With left-skewed lotteries we find 126 subjects for which (CEC – CEG) 

is smaller than (CED – CEH), hence 60% of subjects are more risk taking when the lottery is more 

left-skewed. 

We also ask if subjects’ attitudes to skewness are different as variance increases. That is, 

are subjects more skewness avoiding when the lottery has a higher variance? With right-skewed 

lotteries we find no significant difference, although CEA – CEB = 1.10 is greater than CEE – CE

F = 0.94 (p=0.50). The difference is however significant for left-skewed lotteries, with CED – 

CEC = 0.89 greater than CEH – CEG = 0.34 (p=0.0035). When making these comparisons at the 

individual level, we have 97 subjects (46%) for whom (CEA – CEB) is greater than (CEE – CEF) 

and 126 subjects (60%) for whom (CED – CEC) is greater than (CEH – CEG). 

In summary, these results on the interaction of variance and skewness are mixed. We 

only find significant effects when considering left-skewed lotteries. However, it is also evident 

that there is considerable heterogeneity in behavior. 

 

4. Results II: Can Individual Risk Preference Parameters Explain Behavior? 

In this section, we first describe the estimation of mean and individual risk preferences 

using the RDU model based on the 60 lottery choices in the second part of the experiment 

(Section 4.1). We then link these individual risk preference parameters with heterogeneous 
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skewness seeking/avoiding and risk taking behavior in the eight lotteries in the first part of the 

experiment (Section 4.2). 

 

4.1 Estimation of Individual Risk Preference Parameters 

The two parameters of the RDU model, utility curvature and probability weighting as shown in 

equations (1) and (2), are estimated with Maximum Likelihood (ML) using the 12,505 active 

choices of the 210 subjects. The mean results are reported in Table 3. As shown, the estimated 

parameters ̂  and ̂  are both significantly lower than one, which is indicative of a concave 

utility function and an inverse s-shaped probability weighting function, respectively. The latter 

indicates that, on average, subjects overweight small probabilities and underweight large 

probabilities. 

 

Table 3. ML Estimates of RDU Preference Parameters 

 Estimated Coefficient 
(Standard Error) 

Utility curvature parameter (̂ ) 0.877*** 
 (0.014) 

Probability weighting parameter ( ̂ ) 0.879*** 

 (0.014) 
# Observations 12,505 
# Individuals 210 
Log likelihood -7607.049 
Test of equality of parameters to one  

̂ = 1 Rejected*** 
̂ =1 Rejected*** 

Notes: *** stands for p<0.01; Standard errors have been clustered at the 
individual level. 

 

We next estimate risk preference parameters for each individual in the sample. Summary 

statistics are provided in Table 4. The estimated value for the  parameter varies from 0.18 to 
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1.94, with a median equal to 0.97, so we have both concave and convex utility functions in our 

subject pool. The estimated  parameter varies from 0.12 to 3.59 with a median at 0.88. The 

mean of both parameters is close to 1.20 

 

Table 4. Summary Statistics for Estimated Individual Risk Preference Parameters 

Variable Obs. 1st 

Quart. 

Median 3rd 

Quart. 

Mean SD Min Max 

Utility curvature parameter (̂ ) 210 0.863 0.971 1.098 0.975 0.231 0.180 1.944 

Prob.-weighting parameter ( ̂ ) 210 0.737 0.877 1.042 0.946 0.397 0.123 3.591 

 

Slightly over half of the subjects (56%) are found to have a concave utility function and more 

than two-thirds (72%) exhibit an inverse s-shaped probability weighting function. Based on these 

two estimated characteristics we classify subjects into four categories as summarized in Table 5. 

The most common pattern (45% of the sample) is to exhibit both concave utility and inverse s-

probability weighting. 

 

Table 5. Frequency of Subjects with Risk Preference Parameters Above and Below 1 

  Probability weighting function ( ̂ ) Total
  < 1 > 1  

Utility curvature parameter (̂ ) 
< 1 45% (95 subjects) 10% (22 subjects) 117 

> 1 27% (57 subjects) 17% (36 subjects) 93 

Total 152 58 210 

 

4.2 Can Individual Risk Preference Parameters Explain Behavior? 

In this section, we aim to link subjects’ individual risk preference parameters to their 

                                                 
20 Figure F1 in Appendix F shows the distribution of the two parameters in the sample. 
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behavior in the first part of the experiment. Results discussed in Section 3 showed evidence of 

considerable heterogeneity in behavior. In line with earlier literature (e.g. Harrison and Rütström, 

2009) we allow for heterogeneous behavior by specifying a latent-class Logit (LCL) model to 

describe the decision made by each subject when facing the choice between a lottery and a sure 

amount in part one of the experiment (see Appendix E for a description of the LCL model). 

Each subject in the first part of our experiment made 170 binary choices (between a 

lottery and a sure amount). We characterize each alternative by its first three moments (mean, 

variance, and skewness). For the alternative corresponding to the sure amount, the second and 

third moments are equal to zero. The specification that best fits the data models the discrete 

choice between the lottery and the sure amount as a function of the mean, variance, and 

skewness of each alternative. In addition, class membership depends on gender (a dummy 

variable that takes the value one if the subject is a male, and zero otherwise) and the two 

parameters characterizing a subject’s utility curvature and probability distortion (as obtained 

from the estimation of the RDU model). Other subject characteristics such as age, university 

major and current degree, were insignificant and were excluded from the model. 

The LCL model is suitable to analyze heterogeneity in discrete choice behavior and is an 

alternative to the traditional multinomial logit model and the mixed logit model. The underlying 

theory behind the LCL model assumes that the discrete choice made by each individual depends 

on observable characteristics of the alternatives she is facing and on latent heterogeneity which is 

unobserved by the econometrician. Contrary to the mixed logit model, which relies on 

continuous distributions of heterogeneity, the LCL model approximates the underlying 

continuous distributions of parameters with discrete distributions. This is done by assuming that 

the population is implicitly sorted into C classes characterizing heterogeneity, with class-
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membership being unknown to the analyst. Since the LCL model relies on a discrete 

approximation of continuous distributions it might be considered less flexible than the mixed 

logit model but the discrete approximation makes the model free of any assumptions about the 

distributions of parameters across individuals.21 

Researchers commonly use criteria to choose the number of (latent) classes. The most 

common criteria are the Akaike Information Criterion and the Bayesian Information Criterion, 

both criteria being based on the log-likelihood the model reached at convergence. In our model, 

both criteria were minimized for a number of classes equal to 20. However, such a large number 

of classes is problematic for two reasons: first, the significance of parameter estimates in the 

model decreases with the number of classes and second, the characterization of each class 

becomes more difficult. This is especially true when the number of variables used to explain 

class membership is small (three in our case). We thus decided to limit the number of classes. In 

terms of parameter interpretation and significance of parameter estimates, a model with two 

classes was found to be most suitable.22 

Estimation results using 35,700 observations (170 binary choices made by each of the 

210 subjects) are shown in Table 6. Subjects in both classes value the mean positively and the 

coefficient is of the same magnitude in the two classes. However, subjects in Class 1 prefer 

alternatives with a lower variance but are indifferent to the third moment or skewness, whereas 

subjects in Class 2 prefer alternatives with a higher variance and a lower skewness. We find that 

the probability of being in Class 1 increases if the subject is a female, if subjects have a lower 

                                                 
21 The multinomial logit model relies on the assumption of independence from irrelevant alternatives, which is 
considered strong in most settings. For this reason, the mixed logit model and the LCL model are often preferred. 
Various competing models have been tried (multinomial logit, conditional logit, mixed logit) with the latent-class 
logit model offering the best compromise since it allows identifying sub-groups of subjects with heterogeneous 
underlying preference patterns, and also performs well in terms of parameter significance. 
22 Estimated parameters (and corresponding standard errors) obtained for a three-class LCL model do not allow 
identifying a third group of subjects in addition to the two classes identified with the two-class LCL. 
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utility curvature parameter (̂ ), and for subjects who are characterized by a more inverse s-

shaped probability weighting function (lower ̂  parameter). On the contrary, male subjects, 

those with a higher utility curvature parameter and an s-shaped probability weighting function 

are more likely to be in Class 2. The LCL model demonstrates the importance of individual 

heterogeneity and suggests there may be a connection between probability weighting and 

skewness seeking/avoidance behavior. 

 

 Table 6. Estimation of the Latent-Class Logit Model with Two Classes 

 Coefficient Std Error P-value 
Class-1 model    
Mean 0.845*** 0.0124 0.000 
Variance -0.157*** 0.0064 0.000 
Skewness 0.040 0.0780 0.604 
    
Class-2 model    
Mean 0.861*** 0.0154 0.000 
Variance 0.433*** 0.0103 0.000 
Skewness -0.329*** 0.0906 0.000 
    
Probability of Class-1 membership  
Constant 1.429 0.7582 0.060 
Male (0/1) -0.659** 0.2975 0.027 
Utility curvature 
parameter ̂  

-1.943*** 0.7122 0.006 

Prob-weighting 
parameter ̂   1.139** 0.4908 0.020 

    
# Observations 
# Individuals 

35,700  
210 

  

Log-likelihood -11749.805   
Notes: *** p<0.01, ** p<0.05, * p<0.1 

 

To check how well the model performs in differentiating between the two classes, we 

look at the highest (posterior) probability of class membership (the higher this probability, the 
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better the model in terms of class differentiation). Over the 210 subjects, the average highest 

probability is greater than 0.99 and the minimum is 0.78, which indicates that the model 

performs well in distinguishing between subjects’ preference patterns.  

Finally, Table 7 reports the average characteristics within each class where each subject 

is assigned to either Class 1 or Class 2 based on the highest posterior probability of membership 

in one class or the other. Approximately half of the sample falls into each class. As expected, we 

find a lower proportion of males in Class 1 compared to Class 2. The average subject in Class 1 

has a slightly concave utility function and does not distort probabilities. In contrast, the average 

subject in Class 2 is characterized by an inverse s-shaped probability weighting function and has 

a linear utility function. 

 

Table 7. Average Characteristics within Each Class 

 # Ind. Male (0/1) Utility curvature 
parameter ̂  

Prob-weighting 
parameter ̂  

Class 1 117 0.47 0.937 0.992 

Class 2 93 0.62 1.024 0.889 
 

We then try to answer the question: are subjects more risk taking when skewness 

increases? To do this we create an interaction term between variance and skewness and re-

estimate the two-class LCL model assuming that the choice between the lottery and the sure 

amount depends on the mean, the variance, and the above interaction term. Results are shown in 

Table 8. For those in Class 1 the interaction term is not significant so subjects do not take more 

or less risk if skewness increases. This is consistent with class members being indifferent to 

skewness. For those in Class 2, the interaction term has a positive sign, which indicates that 

subjects in this class are willing to pay more for riskier lotteries if skewness increases, and that 
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their dislike for skewness is somewhat reduced if variance increases. 

  

Table 8. Estimation of the Latent-Class Logit Model with Interaction Term 

 Coefficient Std Error P-value 
Class-1 model    
Mean 0.844*** 0.0120 0.000 
Variance -0.155*** 0.0065 0.000 
Skewness -0.198 0.2426 0.414 
Var. x Skewness 0.056 0.0546 0.303 
    
Class-2 model    
Mean 0.861*** 0.0150 0.000 
Variance 0.437*** 0.0103 0.000 
Skewness -1.181*** 0.2888 0.000 
Var. x Skewness 0.201*** 0.0646 0.002 
    
Probability of Class-1 membership  
Constant 0.595** 0.2661 0.025 
Male (0/1) -0.647** 0.2997 0.031 
Utility curvature 
parameter ̂  

-0.119** 0.0492 0.015 

Prob-weighting 
parameter ̂   0.265 0.1744 0.129 

    
# Observations 
# Individuals 

35,700  
210 

  

Log-likelihood -13537.375   
Notes: *** p<0.01, ** p<0.05, * p<0.1 

 

5. Discussion 

 In order to study skewness seeking/avoiding behavior and its interaction with risk taking, 

we designed a novel laboratory experiment that elicits CEs over lotteries where the variance and 

skewness of the outcomes are orthogonal to each other. We then related these choices to 

individual structural parameters elicited in a separate experimental task and estimated using the 

RDU model. At the aggregate level, we observed frequent skewness avoiding and risk taking 

behavior. However, these aggregate level results mask considerable individual heterogeneity in 
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behavior. By linking these decisions to estimated individual risk preference parameters, we 

identified two classes of subjects. Slightly over half of our subjects (55%) dislike variance but 

are indifferent to skewness, while the remainder (45%) like greater variance but dislike greater 

skewness. Importantly, class membership is related to individual risk preference parameters. 

Specifically, the average member in the first class has a slightly concave utility function and 

barely probability weights, while those in Class 2 have nearly linear utility functions and s-

shaped probability weighting functions implying they overweight small probabilities and 

underweight large ones. Our results are the first to demonstrate the link between probability 

weighting and skewness seeking/avoidance behavior at the individual level. Crucially, our 

findings highlight the importance of accounting for individual heterogeneity. 

At the aggregate level, we found evidence of an interaction between risk taking and 

skewness avoiding behavior only for left-skewed lotteries, where subjects are more risk taking 

the smaller the skewness was. This interaction effect is consistent with the average finding of 

risk taking skewness avoiders being more willing to take on risks they like. However, we also 

find evidence of substantial individual heterogeneity in this behavior. Our LCL model finds that 

subjects who are indifferent to skewness (i.e. those in Class 1), are similarly unaffected by the 

interaction with variance. On the other hand, those in Class 2 dislike skewness, although this 

dislike is moderated by greater variance. That is, the interaction between variance and skewness 

seeking is positive for those in Class 2.  

Our finding of skewness avoiding behavior is novel in the experimental literature. Even 

though this aggregate level behavior masks individual level heterogeneity, our LCL model 

reveals that nearly half of our subjects (i.e. those in Class-2) display similar behavior. Further, 

even those in Class 1 are actually neutral about skewness. In contrast, the predominant finding in 
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the previous literature is skewness seeking (e.g. Ebert, 2015; Ebert and Wiesen, 2011), or the 

even stricter criteria of prudence (see Trautmann and van de Kuilen, 2018, for a survey of 

prudence experiments).23 Nevertheless, almost all of these existing studies consider only the 

special case of choosing between simple binary lotteries. Our design instead uses a more general 

form of lottery that involves three outcomes over mixed gains and losses and includes both left- 

and right-skewed lotteries. Our more complex lottery design generates results closer to those of 

Symmonds et al., (2011) who found that preference for left skewness was actually more 

prevalent than skewness seeking in a neuroeconomics experiment involving complicated lotteries 

with between three to nine outcomes.24 

Another difference in our experimental design is that we elicit certainty equivalents rather 

than using lottery choices. This is crucial for our purpose because measuring the intensity of 

preferences allows us to study the interaction between risk taking and skewness seeking/avoiding 

behavior.25 Our method of eliciting CEs is employed in numerous recent experimental studies of 

individual behavior (e.g. Etchart-Vincent and L’Haridon, 2011; Diecidue et al., 2015; Cubbitt et 

al., 2015; Ifcher and Zarghamee, 2016). Even within the experimental prudence literature, the 

prevalence of prudence varies greatly with the elicitation method. In particular, significantly less 

prudence is observed with simple compared with compound lottery formats (Maier and Ruger, 

2012; Haering et al., 2017). On the other hand, while Deck and Schlesinger (2018) find no 

                                                 
23 Recall that prudence is a preference for skewness that is robust to changes in kurtosis. 
24 Diecidue et al. (2015) demonstrate how the measurement of second-order risk preferences (also via CEs) is 
similarly affected by lottery complexity. Specifically, they find evidence of risk seeking behavior over complicated 
lotteries (defined as having three or five outcomes) but risk aversion when lotteries were less complex (having only 
two outcomes). 
25 Most prudence experiments use compound binary lottery choices to align with theoretical constructs. Exceptions 
are Ebert and Wiesen (2014) who elicit how much compensation subjects require to choose the imprudent option 
over the prudent one, and Heinrich and Mayrhofer (2018) who use the same method to investigate if higher order 
risk preferences are influenced by social settings. In an unpublished study, Tarazona-Gomez (2004) elicits certainty 
equivalents using a design strongly motivated from expected utility theory, and finds only weak evidence of 
prudence. 
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difference in aggregate prudence preferences between simple and compound lottery formats, at 

the individual level the correlation between what people do in the two formats was insignificant. 

 

6. Conclusion 

Overall, our study finds evidence of frequent skewness avoiding or neutral behavior and 

uniquely links this behavior to individual risk preference parameters of utility curvature and 

probability weighting. Our results regarding the prevalence of skewness avoiding and neutral 

behavior are unusual in the experimental literature. This suggests caution on two levels. First, 

researchers should be cautious when extrapolating that subjects are universally skewness seeking 

based on experiments that use only a very specific design (i.e. compound binary lottery choices). 

Our results suggest very different behavior when lotteries are more complex and CEs are 

elicited. While the focus on prudence is of theoretical importance, we suggest that it has limited 

the scope of experimental designs and resulted in missing other potentially important patterns of 

behavior. Second, we should be similarly cautious when extrapolating from our single set of 

experimental results based on a novel design. Because our design involved mixed gain and loss 

lotteries in the context of both left- and right-skewed lotteries, the stakes had to be relatively low 

in order to keep net payments non-negative. An obvious extension would develop a similar 

design involving larger stakes and possibly just gain lotteries. Our design also omitted symmetric 

lotteries (i.e. with zero skew) although arguably this should not matter as the lotteries are 

presented in a non-transparent manner. Overall, we encourage future researchers to explore 

different types of lotteries using a similarly orthogonal design in order to verify the robustness of 

our findings and to explore skewness seeking/avoiding behavior in different contexts. Other 

studies could vary the likelihood of the different options to check the robustness of the 
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relationship to probability distortion. 

Our findings also generally reinforce the call for the use of more flexible models than 

EUT (such as Rank-Dependent Utility or Cumulative Prospect Theory models) to describe 

observed behavior under risk (Barberis, 2013). Risk aversion may not be sufficient to fully 

characterize individuals’ preferences under risk in most risky situations. Parameters such as 

preference towards skewness (either positive or negative) as well as probability weighting and 

loss aversion may help better understanding individuals’ decisions. This is true in both 

experimental and real life settings. The latter can be exemplified by the agricultural economics 

literature, which is producing growing empirical evidence on the role of downside risk aversion 

and probability weighting in explaining farmers’ decisions such as technology adoption and 

insurance contracting (Chavas and Nauges, 2020). Among other examples, Liu (2013) showed 

that Chinese cotton farmers who are more risk averse, or more loss averse, adopt the genetically 

modified Bt cotton later, whereas farmers who overweight small probabilities adopt Bt cotton 

earlier. In addition, Babcock (2015) showed that loss aversion and the choice of the reference 

point that determines gains and losses are major factors in predicting crop insurance decisions of 

US farmers. 
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Appendix A: Experimental Instructions (Translated from French) 

Introduction 

Thank you for participating in this experiment in decision making. You will be compensated with 
whatever you earn during the experiment according to the procedures described in the instructions. 

The instructions will be read to you in a short while. You may consult these instructions at any time 
during the experiment. In case you should have any questions or doubts, please raise your hand and an 
experimenter will come and assist you in private. 

Even if you agree to participate, you are free to withdraw at any time during the experiment. Should you 
decide to withdraw, you will forgo your earnings from the experiment and receive only the show-up fee. 

Please consider each decision carefully. Take a careful look at outcomes and the probabilities associated 
to them before taking a decision. Remember that your final payoffs from this experiment will depend on 
the decisions you make (and of course, on chance). 

This experiment consists of three parts. Once everybody has finished the tasks in Part I, new instructions 
will be read to you for Part II, and then for Part III.26 At the very end of the experiment, you will be asked 
to fill out a questionnaire. The answers to the questionnaire as well as all your answers to each of the 
tasks will be private, and cannot be traced back to you personally. Once you are finished completing the 
questionnaire, an experimenter will call you up. Your payoff will then be determined in private, you will 
be given the money you won, after which you can leave. Payoffs are measured in Euros. 

Do not talk during the experiment and do not write on the documents which are given to you. Please 
remain seated when you are finished with the tasks and please switch off your mobile phone. 

We will start with Part I of the experiment. 

Good luck! 

 

PART I 

Choice tasks – illustrative example 

In this part, you will be asked to choose repeatedly between a fixed amount of money and a lottery. The 
lottery will always give you a chance to win one of three amounts of money. Figure 1 shows a typical 
choice task. 

Let’s comment on this EXAMPLE. For each row, you are asked to indicate whether you would prefer to 
play the lottery or to obtain the sure amount of money by ticking the preferred option. If you choose the 
lottery, a number between 1 and 100 will be randomly drawn to determine your payoff.  

In the example shown on Figure 1, you will receive 500 if the number being drawn falls between 1 and 10 
(which has a 10% chance of happening). If the number that is drawn falls between 11 and 50 (a 40% 
chance of happening) then you will get 100. If the number that is drawn falls between 51 and 100 (a 50% 
chance of happening) then you will get 200. Please pay close attention to the amounts to be won as well 
as to the odds associated with each outcome, since they change across decisions. 

                                                 
26 Since results from Part III are not analysed in this paper we omit the instructions for this part. 
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you prefer the sure amount of money, you will simply be paid that amount. In case you have chosen the 
lottery for the randomly determined row, then that lottery will be played according to the probabilities 
indicated. You will then be paid the outcome corresponding to the number that is drawn. The initial 
endowment of 8 Euros will be added to your payment. 

Should any questions arise, please raise your hand and I will come and answer you in private. 

  



 

Choice t

In this pa
B. There
pick the 
now com

Figure 3

 
You hav
option o
color ind
 
In lottery
and 100 
 

 I
 I

 
In lottery
winning 
 

 I
 I
 I

 
You hav
 
THIS W
outcome

 
Types of

asks – illustr

art, you will 
e are no righ
lottery that y

mment. 

: Example of

Optio

Optio

□
ve to indicate
r of you are 

dicates a loss

y A, you stan
is randomly 

If the numbe
If the numbe

ry B, you sta
300. A numb

If the numbe
If the numbe
If the numbe

ve to indicate 

WAS JUST AN
es. 

f choices 

rative exampl

be asked rep
ht or wrong a
you prefer or

f a choice tas

on A 
 

 
on A 

□ 
e whether yo
indifferent. 
 of 300 and t

nd 38% chan
drawn. 

er that is draw
er that is draw

and 49% ch
ber between 

er that is draw
er that is draw
er that is draw

if you prefer

N EXAMPL

le 

peatedly to c
answers. You
r state indiff

sk 

 

ou prefer pla
On the abov
the green col

nce of losing

wn falls betw
wn falls betw

hance of losi
1 and 100 is 

wn falls betw
wn falls betw
wn falls betw

r option A, o

E. Decision t

PART II

hoose or stat
ur decision d
ference. Figu

 
 

Don’t car

□ 

aying the lott
ve graphs, th
lour indicates

g 800 and 62

ween 1 and 38
ween 39 and 1

ing 800, 38%
randomly dr

ween 1 and 49
ween 50 and 8
ween 88 and 1

option B or if

tasks to be un

te indifferenc
depends only
ure 3 provide

re 

tery A or the
e red colour 
s a gain of 80

% chance of

8, you lose 80
100, you earn

% chance of
rawn. 

9, you lose 80
87, you win 8
100, you win 

f you are indi

ndertaken in 

ce between a
y on your per
s an EXAMP

Op

Op

e lottery B b
indicates a 

00. 

f gaining 300

00. 
n 300. 

f winning 80

00. 
800. 
300. 

ifferent. 

Part II will i

a lottery A an
rsonal prefer
PLE, on whi

ption B 
 

 
ption B 

□ 
by ticking the
loss of 800, 

0. A number 

00 and 13% 

include diffe

39 

nd a lottery 
rences. Just 
ich we will 

 

e preferred 
the yellow 

between 1 

chance of 

rent lottery 



40 
 

You will be asked to take 60 decisions. For each one, you will receive an initial endowment of 8 Euros. 
You will need to decide between a lottery A and a lottery B or indicate indifference as exemplified in 
Figure 3 above. Each amount in Euros will always be associated to the same colour:  

 Red will represent an amount of -8 Euros (hence a loss of 8 Euros) 

 Blue will represent an amount of -3 Euros (a loss of 3 Euros) 

 Yellow will represent an amount of 3 Euros (a gain of 3 Euros) 

 Green will represent an amount of 8 Euros (a gain of 8 Euros) 

Please pay close attention to the amounts to be won as well as the probabilities (% chance) associated 
with each outcome since they vary from one decision problem to the other. Since your final payoff 
depends on these decisions, it is crucial for you to pay close attention to these features. 

 

Payoff determination 

After you have taken all the 60 decisions, one of your decisions will be randomly drawn for real pay, i.e. 
the amounts indicated in the decision problem will be paid out for real. First, either Part I, or Part II, or 
Part III will be randomly selected for real play (with equal chance of being selected). If Part II is selected, 
then one of the 60 decision tasks is drawn at random, using a chance device with equal probability for 
each decision task to be extracted. For the selected decision task, the lottery that you have selected (A or 
B) will be played. If you have chosen indifference, the computer will flip a coin and randomly chose the 
lottery (A or B) to be played. You will then be paid the amount corresponding to the lottery outcome to 
which the initial endowment of 8 Euros will be added. 

Should any questions arise, please raise your hand and I will come and answer to you in private. 

 

FINAL QUESTIONNAIRE  

 

Please answer the following questions about yourself. All answers are confidential and cannot be traced 
back to you. 
Age: 
Gender:  □ male □ female 
Nationality: 
Are you a university student?  □ yes □ no 
What is your studies major? 
What is your current degree?  
Have you participated in an economics experiment before? □ yes □ no 
 
 
Thank you for taking part in this experiment. Please remain seated until an experimenter calls you up.  
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Appendix B: The 60-Lottery Choice Task 

 P0le
ft 

priz
e0 

P1le
ft 

priz
e1 

P2le
ft 

priz
e2 

P3le
ft 

priz
e3 

P0ri
ght 

priz
e0 

P1ri
ght 

priz
e1 

P2ri
ght 

priz
e2 

P3ri
ght 

priz
e3 

1 38% -8 62% -3 0% 3 0% 8 75% -8 0% -3 0% 3 25% 8 

2 62% -8 0% -3 38% 3 0% 8 75% -8 0% -3 0% 3 25% 8 

3 13% -8 38% -3 49% 3 0% 8 0% -8 100
% 

-3 0% 3 0% 8 

4 38% -8 0% -3 62% 3 0% 8 49% -8 0% -3 13% 3 38% 8 

5 0% -8 25% -3 50% 3 25% 8 0% -8 13% -3 74% 3 13% 8 

6 75% -8 0% -3 0% 3 25% 8 62% -8 0% -3 38% 3 0% 8 

7 0% -8 50% -3 50% 3 0% 8 13% -8 25% -3 62% 3 0% 8 

8 0% -8 25% -3 0% 3 75% 8 0% -8 13% -3 49% 3 38% 8 

9 0% -8 75% -3 0% 3 25% 8 0% -8 62% -3 38% 3 0% 8 

10 13% -8 25% -3 62% 3 0% 8 0% -8 62% -3 38% 3 0% 8 

11 0% -8 74% -3 13% 3 13% 8 0% -8 62% -3 38% 3 0% 8 

12 0% -8 37% -3 26% 3 37% 8 0% -8 25% -3 50% 3 25% 8 

13 0% -8 62% -3 38% 3 0% 8 0% -8 75% -3 0% 3 25% 8 

14 25% -8 0% -3 50% 3 25% 8 13% -8 0% -3 87% 3 0% 8 

15 0% -8 25% -3 50% 3 25% 8 0% -8 13% -3 87% 3 0% 8 

16 38% -8 0% -3 62% 3 0% 8 25% -8 75% -3 0% 3 0% 8 

17 13% -8 74% -3 0% 3 13% 8 0% -8 100
% 

-3 0% 3 0% 8 

18 62% -8 38% -3 0% 3 0% 8 87% -8 0% -3 0% 3 13% 8 

19 13% -8 62% -3 25% 3 0% 8 25% -8 25% -3 50% 3 0% 8 

20 0% -8 13% -3 49% 3 38% 8 0% -8 25% -3 0% 3 75% 8 

21 13% -8 74% -3 13% 3 0% 8 25% -8 50% -3 25% 3 0% 8 

22 13% -8 49% -3 38% 3 0% 8 25% -8 0% -3 75% 3 0% 8 

23 13% -8 0% -3 25% 3 62% 8 0% -8 0% -3 100
% 

3 0% 8 

24 0% -8 62% -3 38% 3 0% 8 13% -8 25% -3 62% 3 0% 8 

25 75% -8 25% -3 0% 3 0% 8 87% -8 0% -3 0% 3 13% 8 

26 0% -8 37% -3 26% 3 37% 8 0% -8 25% -3 62% 3 13% 8 

27 0% -8 13% -3 87% 3 0% 8 0% -8 25% -3 50% 3 25% 8 

28 0% -8 62% -3 13% 3 25% 8 0% -8 49% -3 38% 3 13% 8 

29 87% -8 0% -3 0% 3 13% 8 75% -8 25% -3 0% 3 0% 8 

30 0% -8 100
% 

-3 0% 3 0% 8 13% -8 38% -3 49% 3 0% 8 

31 0% -8 13% -3 74% 3 13% 8 0% -8 25% -3 50% 3 25% 8 

32 13% -8 0% -3 13% 3 74% 8 0% -8 0% -3 62% 3 38% 8 

33 75% -8 0% -3 0% 3 25% 8 38% -8 62% -3 0% 3 0% 8 

34 37% -8 37% -3 0% 3 26% 8 13% -8 87% -3 0% 3 0% 8 

35 25% -8 62% -3 13% 3 0% 8 37% -8 26% -3 37% 3 0% 8 

36 0% -8 13% -3 62% 3 25% 8 0% -8 25% -3 25% 3 50% 8 

37 0% -8 87% -3 13% 3 0% 8 13% -8 62% -3 25% 3 0% 8 
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 P0le
ft 

priz
e0 

P1le
ft 

priz
e1 

P2le
ft 

priz
e2 

P3le
ft 

priz
e3 

P0ri
ght 

priz
e0 

P1ri
ght 

priz
e1 

P2ri
ght 

priz
e2 

P3ri
ght 

priz
e3 

38 87% -8 0% -3 0% 3 13% 8 62% -8 38% -3 0% 3 0% 8 

39 13% -8 62% -3 25% 3 0% 8 0% -8 87% -3 13% 3 0% 8 

40 49% -8 0% -3 13% 3 38% 8 38% -8 0% -3 62% 3 0% 8 

41 25% -8 50% -3 25% 3 0% 8 13% -8 87% -3 0% 3 0% 8 

42 25% -8 0% -3 75% 3 0% 8 13% -8 49% -3 38% 3 0% 8 

43 25% -8 0% -3 75% 3 0% 8 38% -8 0% -3 0% 3 62% 8 

44 0% -8 0% -3 100
% 

3 0% 8 13% -8 0% -3 25% 3 62% 8 

45 13% -8 87% -3 0% 3 0% 8 25% -8 50% -3 25% 3 0% 8 

46 0% -8 62% -3 38% 3 0% 8 0% -8 74% -3 13% 3 13% 8 

47 38% -8 0% -3 0% 3 62% 8 25% -8 0% -3 75% 3 0% 8 

48 0% -8 25% -3 50% 3 25% 8 0% -8 37% -3 26% 3 37% 8 

49 25% -8 50% -3 25% 3 0% 8 13% -8 74% -3 13% 3 0% 8 

50 0% -8 0% -3 62% 3 38% 8 13% -8 0% -3 13% 3 74% 8 

51 37% -8 26% -3 37% 3 0% 8 25% -8 62% -3 13% 3 0% 8 

52 0% -8 25% -3 25% 3 50% 8 0% -8 13% -3 62% 3 25% 8 

53 13% -8 0% -3 87% 3 0% 8 25% -8 0% -3 50% 3 25% 8 

54 0% -8 49% -3 38% 3 13% 8 0% -8 62% -3 13% 3 25% 8 

55 0% -8 25% -3 62% 3 13% 8 0% -8 37% -3 26% 3 37% 8 

56 25% -8 75% -3 0% 3 0% 8 38% -8 0% -3 62% 3 0% 8 

57 13% -8 25% -3 62% 3 0% 8 0% -8 50% -3 50% 3 0% 8 

58 0% -8 100
% 

-3 0% 3 0% 8 13% -8 74% -3 0% 3 13% 8 

59 13% -8 87% -3 0% 3 0% 8 37% -8 37% -3 0% 3 26% 8 

60 25% -8 25% -3 50% 3 0% 8 13% -8 62% -3 25% 3 0% 8 
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Appendix C: Part I Lottery Sequences 

 Sequence 
1 

Sequence 
2 

Sequence
3 

Sequence
4 

Sequence
5 

Sequence
6 

Sequence 
7 

Sequence
8 

1st lottery A H G F E D C B 
2nd lottery B A H G F E D C 
3rd lottery C B A H G F E D 
4th lottery D C B A H G F E 
5th lottery E D C B A H G F 
6th lottery F E D C B A H G 
7th lottery G F E D C B A H 
8th lottery H G F E D C B A 
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Appendix D – Estimation of the Risk Preference Model 

Respondents face a series of binary lottery choices 𝑗 ൌ ሼ1,2, … , 60ሽ where a choice has to be 

made between two lotteries 𝐿𝑒𝑓𝑡 and 𝑅𝑖𝑔ℎ𝑡. We model the decision as a discrete choice model. 

We consider a latent variable 𝑦௜
∗ for individual 𝑖. We observe only the choices 𝑦௜ (1 if 𝐿𝑒𝑓𝑡, -1 if 

𝑅𝑖𝑔ℎ𝑡 and 0 if 𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡) individual 𝑖 makes: 

𝑦௜ ൌ ቐ
1   𝑖𝑓 𝑦௜

∗ ൐ 0
െ1   𝑖𝑓 𝑦௜

∗ ൏ 0
0   𝑖𝑓 𝑦௜

∗ ൌ 0
 

For individual 𝑖 and for a given lottery 𝑘 ൌ ቂ൫𝑝௞, 𝑥௛
௞൯, ቀሺ1 െ 𝑝௞ሻ, 𝑥௟

௞ቁቃ, the expected utility is: 

𝐸𝑈௜
௞ ൌ Γሺ𝑝௞ሻ. 𝑈൫𝑥௛

௞൯ ൅ Γሺ1 െ 𝑝௞ሻ. 𝑈൫𝑥௟
௞൯ 

Subject 𝑖 chooses lottery 𝐿𝑒𝑓𝑡 (𝑦௜ ൌ 1) if Δ𝐸𝑈௜ ൌ 𝐸𝑈௜
௅௘௙௧ െ 𝐸𝑈௜

ோ௜௚௛௧ ൐ 0, lottery 𝑅𝑖𝑔ℎ𝑡 

(𝑦௜ ൌ െ1) if Δ𝐸𝑈௜ ൌ 𝐸𝑈௜
௅௘௙௧ െ 𝐸𝑈௜

ோ௜௚௛௧ ൏ 0 and 𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑦௜ ൌ 0) otherwise. The 

probability of choosing lottery 𝐿𝑒𝑓𝑡 is given in the equation below with 𝜀 a normally distributed 

error term with mean zero and variance one, and Φሺ. ሻ the standard normal distribution function.  

𝑃𝑟𝑜𝑏ሺΔ𝐸𝑈௜ ൐ 0ሻ ൌ Φሺ Δ𝐸𝑈௜ሻ 

We use Maximum Likelihood (ML) to estimate the two parameters of interest: concavity 𝛼 and 

the shape of the probability weighting function 𝛾. The log-likelihood function is given in the 

equation below where Iሺ. ሻ is the indicator function, 𝑦௜ ൌ 1 when lottery 𝐿𝑒𝑓𝑡 is chosen by 

individual 𝑖, 𝑦௜ ൌ െ1 when lottery 𝑅𝑖𝑔ℎ𝑡 is chosen and 𝑦௜ ൌ 0 when 𝐼𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is chosen. 

ln 𝐿ሺ𝛼, 𝛾ሻ ൌ ෍ ቄൣ𝑙𝑛൫ΦሺΔ𝐸𝑈௜ሻ൯൧. Iሺ𝑦௜ ൌ 1ሻ ൅ ൣ𝑙𝑛൫Φሺ1 െ Δ𝐸𝑈௜ሻ൯൧. Iሺ𝑦௜ ൌ െ1ሻ
௜

൅ ቂ𝑙𝑛 ቀ1
2ൗ ΦሺΔ𝐸𝑈௜ሻ ൅ 1

2ൗ Φሺ1 െ Δ𝐸𝑈௜ሻቁቃ . Iሺ𝑦௜ ൌ 0ሻቅ 
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Appendix E – Description of the Latent-Class Logit Model 

The description that follows borrows from Greene and Hensher (2003) and Pacifico and 

Yoo (2013).  

We model a case in which each individual n (n=1,…,N) is offered a total of T choice 

situations. For each choice situation, the individual has a choice between J alternatives. Each of 

the alternatives is characterized by a vector of observables characteristics, here gathered in vector 

m. The individual choice is described by a dummy variable njty , which takes the value 1 if 

subject n chooses alternative j in scenario t, and 0 otherwise. For subject n belonging to class c, 

the probability of choosing the alternative j in choice situation t is specified as a traditional logit 

model for discrete choices: 

 
 
 

1

exp
Prob[subject n in class c chooses alternative j in choice situation t] =

exp

njt c

J

njt c
j

m

m









 (E1) 

where c  are class-c specific parameters. The probability of observing his/her sequence of 

choices over the T choice situations is a product of conditional logit formulas: 

   
 1 1

1

exp

exp

njty

T J
njt c

n c J
t j

njt c
j

m
P

m




 



 
    
 
  




        (E2) 

Class membership is assumed to depend on subject-specific characteristics that are 

constant over time and gathered in vector nz .  

Since class membership is not known ex-ante, we consider the following unconditional 

likelihood of subject’s n choices which is a weighted average over classes of the above 

probability, with  cn   representing the population share of class c: 
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     
1

, ln
C

n cn n c
c

L P    


          (E3) 

The weight  cn   is usually modelled as fractional multinomial logit: 

   

 
1

1

exp

1 exp

n c
cn C

n c
c

z

z


 










, with  1 2 1, ,..., C      class-membership parameters and C  

normalized to 0 for identification. 

The log likelihood for the entire sample reads as follows: 

       
1 1 1

, , ln
N N C

n cn n c
n n c

L L P      
  

          (E4) 

Our sample includes N subjects indexed by n = 1 to 210. Each subject is offered a total of 

T=170 choice situations (t = 1 to 170) and for each choice situation she has a choice between J 

alternatives. In our case J = 2 since each of the 170 choices has to be made between a lottery and 

a sure amount. Each alternative j is described by the vector of its first three moments: its mean 

1
njtm , its variance 2

njtm  and its skewness 3
njtm . When the alternative is the sure amount then 2

njtm = 

3
njtm = 0. In our model nz includes the subject’s gender and two parameters measuring the 

curvature of the utility function and probability distortion as elicited from the estimation of a 

RDU model. 
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Appendix F: Additional Results 

Figure F1: Distribution of Estimated Individual Parameters (210 Subjects) 

Utility curvature (̂ ) Probability weighting function ( ̂ ) 
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