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ABSTRACT -  
Validation is mandatory to quantify the reliability of satellite biophysical products that are now routinely 
generated by a range of sensors. This paper presents the VALERI project dedicated to the validation of the 
products derived from medium resolution satellite sensors (www. avignon.inra.fr/valeri/). It describes the sites 
used, and the methodology developed to get the high spatial resolution map of the biophysical variables 
considered, i.e. LAI, fAPAR and fCover that can be estimated from ground level gap fraction measurements. 
Sites were selected to represent , with the other validation projects, the large variation of biomes and conditions 
observed over the Earth’s surface. Each site is about 3×3 km² in size and should be flat and relatively 
homogeneous at the medium resolution scale. For each site, the methodology used to generate the high spatial 
resolution biophysical variable maps is described. It is mainly based on concurent use of local gound 
measurements and a high spatial resolution satellite image, generally SPOT-HRV. Local ground measurements 
should be representative of an elementary sampling unit (ESU) that has approximately the same size as a SPOT-
HRV pixel. The ground measurements mainly consist of gap fraction measurements achieved with LAI-2000 or 
hemispherical photographs. The ESUs are selected over the whole 3×3 km² site in order to sample the range of 
vegetation types observed. A transfer function is subsequently established over the ESUs to relate the ground 
measurements of the biophysical variables considered to the correspodonding high spatial resolution satellite 
image data. Finally, co-kriging is applied to generate the high spatial resolution map of the biophysical variables 
over the 3×3 km² area. 
The methodology presented in this paper can serve as a basis for validating medium resolution satellite products. 
These methodological aspects are discussed and conclusions drawn on the limitations and prospects of 
beforementioned validation activity. 
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1 INTRODUCTION 
Medium spatial resolution satellite sensors operating in the solar domain (400-2500 nm) offer a unique way to 
monitor terrestrial surfaces over regional to global scales. Several applications are already using these data on an 
operational basis. They span over three main categories of users, namely, the scientific community, public 
institutions such as governments or international organisations, and private companies. Table 1 lists the users and 
their specific objectives along with the corresponding satellite products required, the associated spatial resolution 
and scale, information update period and duration of time series of observations. This table results from a 
compilation of several documents including those derived by international initiatives such as IGOS (Cihlar, 
Denning et al. 2000), GTOS (Heal, Menaut et al. 1995), (Cilhar, Denning et al. 2000), IGBP (Belward, Estes et 
al. 1999), ((NOAA) 1997), as well as the reports issued for the preparation of present and future medium 
resolution missions (POLDER, VEGETATION, MODIS, MISR, NPOESS, GLI, MERIS, MSG, AVHRR). It 
illustrates the wide range of use and order of magnitude of the spatial and temporal sampling associated to the 
observations. 
As satellite products, both quantitative (the biophysical variables such as fAPAR, fCover, albedo, chlorophyll 
content and LAI) and qualitative or relative information (VI and classification) are required: 

• Land use : Classification techniques applied for land use mapping will not be discussed here since it is 
not the main focus of this paper. However, the use of seasonality derived from a biophysical variable 
time course can improve the classification process, 

• Albedo: is the main term for energy balance models of the Earth’s surface. It corresponds to the amount 
of energy scattered by the surface in all upward directions and integrated over the whole spectrum 
(Jacob, Weiss et al. 2002). Albedo depends on the irradiance conditions as well as location (latitude) 
and date considered. It is generally decomposed into white and black sky quantities (Wanner, Strahler et 
al. 1997). 

• fCover: the cover fraction simply describes the amount of vegetation. It is also generally related to the 
green parts of the canopies. This variable intervenes in a range of processes, and governs the partition 
between soil and vegetation contribution for emissivity, temperature and evaporation. It does not 
depend on latitude and date as opposed to fAPAR and albedo. 

• fAPAR: the fraction of photosynthetic active radiation absorbed by a canopy is used as main input in 
net primary production models describing photosynthesis and thus the carbon budget. Only the green 
parts which are the only ones directly involved in photosynthesis processes should be considered. 
fAPAR is generally integrated over the diurnal course and depends thus on the corresponding irradiance 
conditions. 

• LAI: the leaf area index is the main driver of most canopy functioning and SVAT models since it 
represents the acual size of the interface between the canopy and the atmosphere. The leaf area index 
should be defined here as the area of the green leaves (one sided) per unit of horizontal soil (Privette, 
Morisette et al. 2001).  

• Chlorophyll content: This biophysical variable computed at the canopy level is linked to the nitrogen 
status that strongly influences photosynthesis and respiration processes. It can be considered as the 
terrestrial counterpart to chlorophyll concentration in oceanic phytoplankton.  

• Vegetation indices (VI): a large variety of vegetation indices have been designed to monitor vegetation 
amount while minimizing the effect of confounding factors such as soil background, atmosphere, 
topography or geometry of observation. They consist of relatively simple combinations of reflectance 
observed in few wavebands. However, in most cases, they are not strictly linked to a particular 
biophysical variable, and can not be considered as a true biophysical variables. Nevertheless, good 
relationships are generally found between fAPAR, fCover, LAI and a VI within restricted set of 
conditions. Except when assigning a precise meaning to the ‘vegetation amount’ that VIs are targeting, 
VIs can not be properly optimized, neither rigorously evaluated or validated. For this reason, it is 
preferable to characterize vegetation amount by a given biophysical variable. The cover fraction, 
fCover, is a good candidate since it is relatively easy to estimate as compared to LAI. In addition, fCover 
is almost scale invariant, and independent of illumination conditions such as albedo or fAPAR.  

This brief description of the products required by users of medium resolution satellite data, stresses the 
importance of biophysical variables such as fCover, fAPAR, LAI and albedo that can ultimately replace the 
current use of vegetation indices. The spatial resolution required ranges between 0.1 to 10 km, although there are 
not too many strong arguments to specify an optimal value. These values come partly from the analysis of the 
current applications of medium resolution sensors and are certainly biaised. However, they strictly depend on the 
use considered, as well as on the spatial heterogeneity of the landscapes and the non linearity between 
reflectance and the biophysical variable considered (Becker and Li 1995) (Raffy, Soudani et al. 2003). From this 
point of view, the scale effect will be quite important for LAI, and chlorophyll content (Weiss, Baret et al. 2000), 



marginal for fAPAR and fCover (Malingreau and Belward 1992) (De Fries, Townshend et al. 1997; Weiss, Baret 
et al. 2000), and neglectable for albedo which is directly linked to a radiation flux quantity that is measured from 
satellite reflectances. From these arguments, it is relatively straightworward to conclude that relatively high 
spatial resolution (few tenths of meters), allowing global and frequent coverage (better than 10 days information 
update) would be more than welcome for most of the applications listed in Table 1! 
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Identification of inter-annual 
climate and vegetation trends  X X X  X  X X  X 10-30 >10 

Modeling canopy functioning 
within Earth system models  X X X X  X x  X X X X 10 10 

Monitoring land cover change X      X X x X X 10-30 >5 

Scientific community involved in 
global change studies including 
climate, green house gases 

Modeling ecosystem dynamics X  X X  X  X X  X  10-30 >10 
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Scientific community involved in 
Hydrology and water cycle studies  

Quantitative vegetation 
monitoring X  X X X X X X X X X X 10 >10 

Early warning systems (GIEWS, 
FEWS) 

Vegetation monitoring with 
comparison to a reference time 
course 

X X X  X  X  X  10 >10 

pest risks evaluation (locusta, rift 
valley fiever, …) 

Characterization of pests biotas, 
epidemiology X  X X  X  X X  X  10 >10 

Meteorological organisations 
operating NWP (ECMWF, …) 

Definition of the surface scheme X  X  X X   X X X X 10 Cont1.

Operationnal agrométéorological 
systems (Agrhymet, …) 

Production and productivity 
estimation X x  X  X X  X  X  10 >10 

Desertification and deforestation 
monitoring (UNEP / FAO, ) 

Quantitative monitoring of 
vegetation X  X   X X x X  X X 10  

Monitoring land cover change  X      X X X X X 10-30 >10 
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Governments for the 
implementation and verification of 
international treaties (Kyoto, …)  carbon sources and sinks X   X X X X X X X X  10 Cont1.

Conjoncture analysis: phenology 
and change detection  X X  X x  X  X  10 >10 

Evaluation of the land use  X      X X  X  10-30 5 

Maping risk/damage levels (fire, 
pests, flooding, drought, …) X   X  X X X X  X  10 >10 

Pr
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International agriculture and 
forestry companies,  
Insurance companies,  
Traders 
 

Production estimates X   X  X X X X  X  10 >10 

Table 1. Satellite data users, and the associated specific objectives and satellite products required. The X 
correspond to requirement in terms of product type, spatial resolution and scale, information update period and 
duration of time series of observations. 



Table 1 shows that the duration of observations needs to be either continuous for operational meteorological 
services, or requires past time series of 5 to more than 10 years. Such long term studies allow to build a reference 
profile accounting for climate fluctuations, and to detect changes when the trend is subtle (Myneni, Keeling et al. 
1997). The expected period for information updates is around 10 to 30 days, mainly governed by vegetation 
dynamics that can be very fast for some biomes and seasons (Gond, de Pury et al. 1999). To fulfill these 
conditions, three requirements have to be combined: 

• to ensure the continuity of satellite observations. This is actually the case since the first launch of 
AVHRR in 1981, with a multiplicity of sensors since 1997 with ATSR, POLDER/ADEOS, 
VEGETATION, SEAWIFS, MODIS, MISR and MERIS. For the future, the space agencies are 
planning to launch new sensors to ensure the continuity of such global observations. 

• to develop algorithms allowing the derivation of biophysical products in a consistent way from the 
past, current and future satellite sensors. The quality of the products should also be assessed with 
respect to their uncertainties that will vary with the sensor or combination of sensors used. There is 
currently no consensus on an algorithm and they thus have to be evaluated and compared. It is possible 
that for some specific applications, process models will assimilate directly the radiance values. 
However, in this case, the validation of the intermediate products is also mandatory to make sure that 
the models used and the assimilation procedure are properly implemented and pertinent. 

• to validate the products and provide estimates of uncertainties. The validation is the process of 
assessing by independent means the accuracy of data products derived from the system outputs (Justice, 
Starr et al. 1998). This will provide the confidence intervals that is mandatory in a number of 
applications, including those based on a data assimilation approach. 

 
This study focuses on the validation activity in the framework of several projects that are currently developed 
(Justice, Belward et al. 2000). (Justice, Starr et al. 1998; Privette, Myneni et al. 1998; Justice, Belward et al. 
2000; Morissette, Privette et al. 2000; Weiss, Baret et al. 2000; Privette, Morisette et al. 2001; Baret, Weiss et al. 
2002; Chen, Pavlic et al. 2002; Duchemin, B. et al. 2002; Liang, Shuey et al. 2002; Tian, Woodcock et al. 2002; 
Tian, Woodcock et al. 2002; Weiss, Baret  et al. 2002). They are coordinated within the Commitee on Earth 
Observation Satellites (CEOS) by the Working group on Calibration and Validation (WGCV), sub-group on 
Land Product Validation (LPV) in order to get consistent approaches and to use in a synergistic way the data 
gathered by individual teams. The validation projects aim at providing high spatial resolution maps (order of 10-
50 m) of the biophysical variables of interest over a network of sites covering a wide range of vegetation types 
and conditions.This high spatial resolution map could then be exploited by agregation of the data to the proper 
satellite resolution to provide the independent ground truth for the validation. 
This paper focuses on the VALERI project (Validation of LAnd European Remote sensing Instruments) for 
which a proper methodology is proposed to generate the high spatial resolution map of the biophysical products. 
Therefore the final step of the validation exercise is not addressed here. It consists to compare biophysical values 
agregated at the scale of the medium spatial resolution sensors and derived from ground measurements to those 
of the corresonding satellite products. This final step of the validation will be presented within future papers. 
This article describes the network of sites and the methodology that is illustrated by actual results. As a matter of 
fact, the methodology has evolved since the beginning of the project in 2000. The methodology presented here 
after is now almost stabilized and considered to be mature enough to be applied on a routine basis for such 
validation activity. VALERI mostly focused on products that can be derived from simple gap fraction 
measurements, i.e. fCover, fAPAR and LAI. 
THE NETWORK OF SITES 
The selected sites must fulfill a number of criteria to enable the provision of accurate estimates of biophysical 
variables from ground measurements.  
Size: The spatial resolution of the sensors considered ranges from few hundred of meters (MODIS, MERIS) to a 
few kilometers (MSG) with most of the sensors being around 1 km² (AVHRR, VEGETATION, SEAWIFS). 
Therefore, the validation sites must cover at least a 3×3 km² area. Larger sites would be ideal for even coarser 
resolution sensors such as POLDER. However, the corresponding resources required for characterizing such a 
large site would be too high. As an alternative, products derived from POLDER can be evaluated by comparison 
with other sensors products or over spatially homogeneous areas.  
Homogeneity: it should be relatively homogeneous, i.e. the biophysical variable value as well as the 
corresponding radiometric values may change only marginaly when shifting the position of a 1km² pixel within 
the 3×3 km² square. 
Topography: the area should be relatively flat to simplify the interpretation both of the ground measurements 
and the satellite data. 



Biome type: the selection of sites is made in order to sample the variability of biomes and conditions 
encountered over the Earth’s surface. Obviously this is also governed by the availability of local support for the 
measurements. Furthermore, the VALERI activity is coordinated with that of other validation initiatives such as 
that NASA’s MODLAND, CCRS LAI validation activity (Chen, Pavlic et al. 2002), (Privette, Myneni et al. 
1998), (Morissette, Privette et al. 2000) (Fernandes, Burton et al. 2003) through the CEOS.  
Num Site Country Lat. (°) Long. (°) Date FAO Biome Type NDVI 
1.1 AekLoba Sumatra 2.63 99.58 04/01 Broadleaf Forest 0,65 (0,04) 
2.1 Alpilles France 43.81 4.74 03/01 Cropland 0,41(0,19) 
2.2     07/02  0,38 (0,15) 
3.1 Barrax Spain 39.06 2.10 07/03 Cropland 0,28 (0,19) 
4.1 Concepcion Chile -37.47 -73.47 04/03 Needle leaf forest 0,69 (0,09) 
5.1 Counami French Guyana 5.35 -53.24 09/01 Broadleaf Forest 0,69 (0,03) 
5.2     10/02   
6.1 Fundulea Romania 44.41 26.58 03/01 Cropland 0,59 (0,16) 
6.2      05/01  0,62 (0,23) 
6.3      05/02   
6.4     05/03   
7.1 Gilching Germany 48.08 11.33 07/02 Mixed forest 0,60 (0,12) 
8.1 Gourma Mali 15.32 -1.55 09/00 Savanna 0,22 (0,01) 
8.2     09/01   
8.3     09/02   
9.1 Haouz Morocco 31.66 -7.60 03/03 Cropland  
10.1 Hirsikangas Finland 62.64 27.01 08/03 Needle leaf forest 0,60 (0,10) 
11.1 Jarvselja Estonia 58.29 27.29 07/00 Mixed forest 0,63 (0,06)  
11.2      07/01  0,70 (0,06) 
11.3     07/02   
11.4     07/03   
12.1 Laprida Argentina 36.99 -60.55 11/01 Grassland 0,62 (0,09) 
12.2     11/02 Grassland  
13.1 Larose Canada 45.38 -75.22 08/03 Mixed forest 0,70 (0,06) 
14.1 Larzac France 43.95 3.12 07/02 Grassland  
15.1 Nezer France 44.57 -1.04 07/00 Needle leaf forest 0,44 (0,11) 
15.2 Nezer    04/01  0,61 (0,11) 
15.3 Nezer     06/01  0,54 (0,09) 
15.4 Nezer     04/02  0,45 (0,10) 
16.1 Puechabon  43.72 3.65 06/01 Closed Shrubland 0,54 (0,10) 
17.1 Romilly France 48.45 3.94 06/00 Cropland 0,63 (0,14) 
18.1 Sierra_Cinc

ua 
Mexico 19.67 -100.28 12/01 Needle leaf forest 0,52 (0,15) 

19.1 Sud_Ouest France 43.51 1.24 07/02 Cropland 0,52 (0,16) 
20.1 Turco Bolivia -18.23 -68.18 07/01 Baren & Sparsely Veg. 0,11 (0,02) 
20.2 Turco    08/02  0,11 (0,01) 
20.3 Turco    04/03  0,13 (0,02) 
21.1 Zhang_Bei China 41.29 114.69 08/02 Grassland  
22.1 Gnangara Australia 116.11 32.37 03/04 Broadleaf Forest  

Table 2. Description of the sites sampled within VALERI. The NDVI values computed on the 3×3km² from the 
SPOT-HRV reflectance (TOA) is given, with standard deviation in parenthesis. The biome types correspond to 
the 17 FAO land cover classes. 
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Figure 1. Map of the VALERI sites and those of other validation activities. The 17 FAO classes are represented 
(deciduous and evergreen forests are merged together). This classification was produced by VUB and Vito, with 
the support of OSTC using VEGETATION data (www.geosuccess.net/Geosuccess). 

FAO Cover Classes VALERI 
sites 

Total Validation 
sites 

% Total sites % FAO 
vegetation Classes

Needleleaf forest 7 24 35.3 6.4 
Broadleaf forest 4 10 14.7 11.9 
Mixed forest 6 31 45.6 4.9 
Closed shrublands 1 1 1.5 2.0 
Open shrublands 0 4 5.9 14.0 
Woody savannas 0 3 4.4 7.9 
Savannas 3 5 7.4 7.2 
Grassland 4 10 14.7 8.6 
Permanent wetlands 0 0 0.0 1.0 
Croplands 10 16 23.5 10.8 
Cropland & natural vegetation mosaic 0 0 0.0 10.8 
Barren and sparsely vegetated 3 3 4.4 14.4 
TOTAL 38 107 100.0 100.0 
 

Table 3. Number of sites sampled per biome type. The VALERI sites and the sites from the other initiatives 
(EOS/NASA, CCRS, and others) are separated. “% Total sites” is the number of sites sampled (VALERI and 
others) for each biome class divided by the total number of sites sampled over all the biome classes. The 
fraction of land area represented by each class is also given for comparison (data coming from (Loveland, Reed 
et al. 2000). 

The distribution of the VALERI sites around the globe (Figure 1 and Table 2) shows that the main biomes are 
sampled, except the “Cropland and natural vegetation mosaic” that represents almost 10% of the global land 
surface and the “Permanent wetlands” which are not globally very important surface wise (Table 3). The 
difficulty to validate medium spatial resolution satellite products over heterogeneous landscapes explains 
certainly why the “Cropland and natural vegetation mosaic” class was not investigated up to now. The “Open 
shrublands” and “Woody savannas” that are not yet sampled within VALERI were sampled by other validation 
activities as shown in Table 3. It shows also that the “Needleleaf forests” and “Mixed forests” are much more 
sampled than the other biomes. This results mainly from the intensive Canadian activity that holds since 1994 
mainly over Boreal forests (Chen, Pavlic et al. 2002). The classes corresponding to low vegetation amounts are 



relatively undersampled with only one site for ”Open shrublands”, “Woody savannas” and “Barren and sparsely 
vegetated”.  
The distribution of the NDVI values (Table2) within VALERI shows also that the higher NDVI values are more 
frequently sampled. This can partly be explained by the sampling period, that was generally close to the 
maximum vegetation amount. 
The design of the global sampling strategy should also be oriented by the user requirements. However, conflicts 
will rapidly occur between different applications: carbon cycle applications will certainly put the emphasis on 
forests, whereas food security applications will focus on crop- and grasslands, and desertication investigations 
will obviously focus on sparsely vegetated areas. All these coniderations will have to be accounted for in the 
future selection of the VALERI validation sites. Furthermore, the evaluation of the uncertainties associated with 
the validation activity will be assessed by repeated observations over sites corresponding with almost steady 
vegetation. For this reason, few sites are sampled several time (Nezer, Counami, Järvselja) to check the 
consistency of the ground estimates of the biophysical variables scaled up to medium spatial resolution sensors. 
 
THE METHODOLOGY APPLIED ON EACH SITE 
Overview 
A dedicated methodology has been developped to set a consistent framework for the validation exercise. It is 
based on the concurrent use of a high spatial resolution satellite image and ground measurements. As opposed to 
the methodology based on patches of landscape elements as proposed by (Tian, Woodcock et al. 2002) for the 
validation of MODIS products, the VALERI approach is based on clusters of local measurements that aim at 
representing a small group of pixels of the high spatial resolution satellite image. These clusters are called 
‘Elementary Sampling Units’ (ESUs). A series of ESUs is distributed over the whole 3×3 km² site to sample the 
variability in vegetation structure. A transfer function is then calibrated over the ensemble of ESUs to relate the 
biophysical variable measured to the corresponding high spatial resolution radiometric data. This transfer 
function, once calibrated over the ESUs, could then be extended over the whole site using the high spatial 
resolution image. In order to take advantage of all available information, co-located kriging is applied 
(Goovaerts 1997). This allows to both account for the measurement points and for the previously generated high 
spatial resolution image. Figure 2 sketches the approach used. In the following, we will present and discuss the 
different steps of this methodology. 



 
Figure 2.: Scheme describing the strategy used to derive the biophysical maps at high spatial resolution from the 
combination of the individual ground measurements (the yellow spots) performed over the Elementary 
Sampling Units (ESUs) and the high spatial resolution satellite images over the whole 3×3 km² site. The 
medium spatial resolution satellite pixel is represented in faded colors. 

Spatial sampling strategy for the whole 3×3 km² site 
The objective here is to set the minimum number of ESUs at the optimal location both to (i) establish robust 
relationships between the measured biophysical variables and the corresponding high spatial resolution 
radiometric values over the ensemble of ESUs, and to (ii) get a good description of the geostatistics of the 
biophysical variable considered over the whole site. For these reasons, the site is divided into nine 1 km² squares, 
to get a more even distribution of the ESUs over the site, improving the estimation of the geostatiscal 
characteristics at this scale. Subsequently, in each 1 km² square, 3 to 5 ESUs are considered. Their location is 
chosen to globally sample equally in proportion all the cover types present in the whole site as well as the 
variability within each cover type. In addition, two constraints have to be accounted for: first the ESUs have to 
be close to an access (road, path, …) for more conveniency, but far enough from a landscape boundary to 
minimize the possible contamination of the radiometry of the considered ESU due to the misregistration between 
the GPS geolocated ESU and the corresponding high spatial resolution image. Second, the ESUs should also be 
ideally spread spatially equal within the 1km² square to improve the geostatistical variables estimation. 
Furthermore, the 1 km² square that is located at the centre of the WS should be more densely sampled (between 5 
to 7 ESUs) for a better description of the geostatistics for the medium range lags.  
This proposed scheme leads to a total number of 30 to 50 ESUs to sample the whole site. Considering the size of 
ESUs (around 20×20 m²), the sampling rate of the WS ranges between 0.13% and 0.22%. Depending on the type 
of instruments used for the local measurements of the biophysical variables, and the difficulty to access the 
ESUs, the required manpower is between 4 man-days (2 teams of 2 people for one day) to 20 man-days. Ideally 
the measurement period should not exceed one week, otherwise the vegetation might significantly evolve. 



Once the high spatial resolution image is acquired, the quality of the sampling is evaluated based on the simple 
NDVI distribution. Ideally, the distribution of NDVI values of the ESUs should be close to that of the whole site. 
However, because the size of the sample is drastically different for the ESUs (between 30 to 50) and for the 
whole site (22500 in the case of a 3x3km² SPOT image), it is not statistically consistent to directly compare the 
two NDVI histograms. Therefore, we proposed to compare the NDVI cumulative frequency of the two 
distributions by: 

1. Computing the cumulative frequency of the NDVI values of the 30 to 50 ESUs. 
2. Applying a given translation to all of the 50 pixels (modulo the size of the image).  
3. Computing the cumulative NDVI frequency of the new set of translated pixels. 
4. Repeating steps 2 and 3, 199 times with 199 random values of the translation vectors. 

This provides a total population of N=199+1(actual) cumulative frequency on which a statistical test at 
acceptance probability %951 =−α  is applied: for a given NDVI level, if the actual ESU density function is in 
between two limits defined by the 5 ( 5.2 =Nα ) highest and lowest values of the 200 cumulative frequencies, 
the hypothesis that the two NDVI distributions are equivalent is accepted. Otherwise it is rejected and the results 
should be used with greater care.  
Results obtained for the Alpilles site (Figure 3 left), show that the actual cumulative frequency is very close to 
the 5 lowest distributions, particularly for NDVI values between 0.3 and 0.5, as well as between 0.6 and 1. The 
sampling appears therefore not fully representative. However, the land cover shows that the surface that were not 
covered by vegetations were significant and were obviously not sampled by ESUs (roads, senescent wheat, bare 
soil, …). Therefore, it should be more sound to discard in the sampling strategy these areas where the green LAI 
is known to be 0 (roads, houses, …) by applying masks on the images for such land cover types. Conversely, for 
the 2001 Puechabon site (Figure 3 right), the sampling was satisfactory since a relativey large number of ESUs 
were sampled.  

 
Figure 3. Illustration of the test applied to verify the representativeness of the ESUs. The figure on the left 
correponds to the Alpilles site. That on the right corresponds to Puechabon site. If the NDVI distribution (the 
dots) are in between the 5 minimum and maximum cumulative distributions, then the ESU sampling is 
considered to be representative. 

An additional method was also used to map the areas poorly represented by the ensemble of ESUs. The convex 
hull of the radiometric values of the high spatial resolution image is computed. Then, each pixel that falls outside 
this convex hull is flagged. This means that the biophysical variable of interest of any pixel that belongs to the 
radiometric convex hull, could be interpolated from the values of the ESUs. This is not the case for pixels outside 
the convex hull, where the estimation of the corresponding biophysical variable will be based on extrapolation of 
the values of the ESUs. Extrapolation of empirical relationships should always be handled with great care. Figure 
4 shows an example of such maps. 
 

Figure 4. Maps of the pixels flagged because they were outside the radiometric convex hull. 

Local estimation of the biophysical variables over the elementary sampling units 
Depending on the features of canopies, two types of measurements are performed at ground level on the ESUs to 
estimate LAI, fAPAR and fCover. If the vegetation can be considered as homogeneous (at the ESU scale), the 
estimation is made using gap fraction measurements following cross or square spatial sampling (Figure 4). A 
detailed study not presented here has shown that both sampling strategies are very similar. An alternative 
sampling scheme (transect in figure 4) is used when the vegetation is heterogeneously distributed within the ESU 
such as in the case of sparse canopies. Note that the area actually sampled might be larger than the original 20m 



square for tall vegetation canopies such as forests. For a canopy of height h and maximum zenith angle used 
θmax, the actual side of the ESU would be 20+ 2.h.tan(θmax). In the case of 30m forests and θmax up to 60° the side 
of the ESU will be close to 125m!  
Gap fraction measurements. The gap fraction is an integrated canopy structural quantity. The vertical gap 
fraction corresponds directly to the complement to unity of the cover fraction (fCover). The gap fraction in the 
sun direction provides a direct estimation of instantaneous fAPAR (Baret, Andrieu et al. 1993). However, 
dynamic vegetation models often require estimates of fAPAR integrated over the day. This can be achieved by 
estimating both the black-sky fAPAR (directional fAPAR) and the white sky fAPAR (diffuse fAPAR for a given 
sky luminance distribution often assumed isotropic) similarly to what is proposed for albedo (Martonchik 1994). 
Then, the daily integrated value can be derived from the knowledge of the variation of the diffuse fraction along 
the day, the sun position course and the corresponding incoming radiance. Finally, gap fraction measurements 
allow to estimate the LAI of canopies with an asumption about the spatial organisation of the vegetation 
elements. This principle is exploited by the LAI2000 instrument to estimate LAI that provides an estimate of 
effective LAI, i.e. assuming all the elements being green and randomly distributed. The same principle can be 
also applied to hemispherical photographs (e.g. (Chen, Black et al. 1991), (Leblanc, Fernandes et al. 2002). The 
use of color hemispherical photographs reduces the uncertainty associated to the green fraction estimation that is 
often significant for forest canopies (Fernandes, White et al. 2002). Hemispherical photography provides also 
information on the clumpiness through the gap size distribution (Chen and Cilhar 1995). This is the reason why 
hemispherical photographs are progressively replacing LAI2000 devices within the VALERI project. 
Furthermore, hemispherical photographs can be used in the case of low vegetation canopies by taking 
downwards looking photographs. They can also be used in more variable illumination conditions, particularly 
when looking upwards, which makes the measurements more flexible as compared to LAI2000. The latter 
requires stable diffuse illumination conditions. A dedicated software was developped to process these color 
photographs with emphasis on green element classification and processing of series of photographs (CAN-EYE 
www.avignon.inra.fr/can_eye). A more detailed review of the LAI estimation from gap fraction measurements is 
given by (Weiss, Baret et al. 2004) with special attention to the hemispherical photographs technique. 
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Figure 5.: The three spatial sampling schemes used to characterize an Elementary Sampling Unit. The small 
circles for the “square” and “cross” patterns represent the elementary points. The dashed lines for the “transect” 
pattern represent lines were measurements are performed at regular intervals and used for sparse canopies. The 
bold cross in the middle of each pattern represents the location of a GPS measurement. 

The ESU is sampled by taking 12 measurements organized either in a “square” or “cross” patterns (Figure 4). 
The center of the ESU is geolocated using a non differential GPS that provides an accuracy typically around 5 to 
10 m. Each elementary point is sampled by one LAI2000 or hemispherical photograph (Weiss, Baret et al. 2004). 
The “cross” pattern was originally designed to get geostatistical information for the short distances. However, it 
has been shown by simulations (results not presented in this paper) that the spatial sampling associated to the 
“square” pattern (Figure 4) leads to similar performances as that of the “cross”. The accuracy of the 
measurements was estimated to be close to 15% for effective LAI over crops.  

Intersect measurements. For sparse and locally discontinuous vegetation, the above methods are not optimal, 
requiring a much denser sampling pattern. A variation of the general sampling scheme is proposed, based on the 
transects method (Buckland and Turnock, 1992). First, vegetation classes have to be defined for the whole site. 
Then, each ESU is sampled according to the “transect” pattern (Figure 5): the fractional cover for each 
vegetation class is estimated by the fraction of the line that intersects these vegetation classes. LAI is then 
assessed through destructive sampling of the representative vegetation classes considered. fAPAR could be 
estimated using hemispherical photographs performed at these locations. 



Spatial extension of the ESUs to the whole site 
The local measurements performed over the series of ESUs will be extended to the whole site using a dedicated 
process (Figure5) for which the different steps will be described in the following. 
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Figure 6.: Flow chart showing the way both high spatial resolution products are estimated from the combination 
of the ground measurements over the ESUs and the high spatial resolution image over the WS. 

Development of a transfer function 
The transfer function relates the high spatial resolution radiometric data to the corresponding ground 
measurements. It can be calibrated and evaluated over the ESUs, and subsequently applied to the whole site to 
derive a first version of the high spatial resolution map of the biophyisical products. Several types of transfer 
functions were investigated that can be either based on radiative transfer model inversion or purely empirical. 
The associated advantages and drawbacks will be discussed and illustrated over the Alpilles site. 
Radiative transfer model inversion. The use of radiative transfer model inversion may lead to some circularity 
in the case of the validation of products that are derived from similar model inversion techniques applied at the 
medium spatial resolution. The comparison will be mainly indicative of the scaling problem, or of differences 
between the characteristics of the high and medium spatial resolution sensors (radiometric accuracy, atmospheric 
correction, bands and directions used). Nevertheless, the ground data can be here used to control the 
performances of the inversion process at the high spatial resolution. This validation approach was used for 
MODIS products (Tian, Woodcock et al. 2002). The comparison between to ground measurements over the 
ESUs provides also a correction that can be applied to the raw estimates by model inversion. This correction will 
be anyway achieved as we will see later, when applying the cokriging technique to the whole site.  
Model inversion could be only applied if top of canopy reflectances are available, i.e. if an atmospheric 
correction was applied. This is unfortunately not always the case because in many situations the atmospheric 
properties were not measured during the high spatial resolution satellite overpass, and these satellites (mainly 
SPOT-HRV) offer only little possibility of autonomous atmospheric correction. 
Figure 6 shows the result over the Alpilles site using SPOT-HRV as the high spatial resolution image. The 
calibrated top of atmosphere radiance were transformed into top of canopy reflectance values using the 6S model 
and the aerosol optical thickness as measured in the Avignon AERONET site (www.aeronet.com). The SAIL 
(Verhoef 1984; Verhoef 1985) coupled to the PROSPECT models (Jacquemoud and Baret 1990) were inverted 
using a look up table as described in detail by (Weiss, Baret et al. 2000). The range of variation of the input 
model variables are defined in Table 4, and the distribution laws are considered to be independent and uniform. 
The number of cases selected as the solution was optimised as well as the number of bands. It appears that using 
just the red and near infrared bands with 406 cases selected as the most probable solution over the 25000 
simulated cases in the LUT, achieved the best performances evaluated using the RMSE values over the ensemble 
of ESUs. The corresponding estimated values of LAI assumed to be the median of the 406 best solutions were 
then corrected by applying a linear correlation with the measured reflectance values over the ESUs. This allows 
to remove any residual biase. The resulting RMSE value is 0.54 (Figure 6) as compared to 0.55 when the final 
linear correction was not applied. 



 
Variable Min Max 
LAI 0 6 
ALA 40 85 
HotSpot 0.01 1 
Bsoil 0.5 3 
Cab 20 100 
Cdm (20%) 0.0025 0.0042
Cw (80%) 0.01 0.017 
Cbp 0 0 
N 1 2.5 

Table 4. Range of variationof the input variables of the coupled SAIL and PROSPECT models used to generate 
the look up table exploited within the model inversion approach (for more details, see (Weiss, Baret et al. 
2000)). 
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Figure 7. Comparison between the LAI values measured over the ESUs and those estimated through the several 
transfer functions. Results obtained over the Alpilles site in 2001. For the FOTE technique, the colinarity 
condition (equation 2) is indicated for each ESU. 
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Parametric model. This method consists to fit an empirical parametric model between the biophysical variable 
of interest as measured over the ESUs and the corresponding radiometric response. It thus allows to use raw 
radiance values from the satellite. It will generally provide good performances over the cover types sampled by 
the ESUs. In the case of sites with contrasted cover types, a segmentation of the image has to be performed, and 
the parametric model has to be calibrated for each main cover type. When a large number of cover types has to 
be considered, it may happen that for some of them the number of corresponding ESUs is low, and the internal 
variability sampled restricted. In these conditions, the fiting might have very little predictive capacities. This 
reenforced the importance of a well designed selection of the ESUs within the WS.  
The empirical transfer function used are based on multiple linear regression but could also include the use of 
vegetation indices. The dependant variable is the ground measurement, and the independent variables are either 
the DC, radiances or reflectances, vegetation indices, or their logarithmic transforms. The uncertainty of the 
ground measurement for the dependant variable, and that associated to the radiometric noise and localisation 
effects are accounted for in the fitting of the parametric model. As a matter of fact, the GPS position is associated 
to an uncertainty, as is the geolocation of the high spatial resolution satellite pixels. These two positioning 
uncertainties translate into a radiometric uncertainty that will mainly depend on the local heterogeneity around 
the ESU.  
Note that the method that consists in assigning to each class the corresponding mean measured LAI value 
computed over the ESUs belonging to this class, as used by (Tian, Woodcock et al. 2002) for MODIS validation, 
is a special case of this empirical fitting method with a nul slope and an offset equal to the average value of the 
ESUs. In the case of a unique class, this turns to be the most basic method, where the LAI value over the site is 
just computed as the average of all the LAI measurements over all the ESUs. 
In the case of Alpilles site, a multiple linear relationship was established between the SPOT-HRV top of 
atmosphere radiometric data and the corresponding LAI as measured over the ESUs. Note that 10 additional 
ESUs corresponding to bare soil (LAI=0.0) were used in the development of the regression. Results (Figure 6) 
show that the RMSE was 0.45 when evaluated by cross-validation over the ESUs (without including the 10 bare 
soil additional ESUs). Comparison was also achieved with logarithmic transforms and vegetation indices, but the 
simple linear regression of the three top of atmosphere SPOT-HRV bands was performing the best. 
Non parametric method. To avoid choosing a parametric model, and also partly to prevent from classifying the 
site into several vegetation types for which a dedicated parametric relationship has to be established, a non 
parametric method was investigated. It consists in generating a look up table over the ESUs made with the 
SPOT-HRV top of atmosphere radiometric data and the corresponding measured LAI values. Then, for each 
pixel of the whole site, its LAI value will be computed as the mean of the n LAI values corresponding to the 
ESUs having the closest radiometric response. The number n could be optimized over each data set investigated 
using cross validation techniques. 
For the Alpilles site, the optimal value of the number n was found to be n=3. Note that, here again, the 10 
additional bare soil ESUs were used in the generation of the empirical LUT. Results show (Figure 6) that this 
approach is performing the best with RMSE=0.36. 
FOTE hybrid method. The advantages and limitations associated to the purely empirical and purely physical 
methods linked to the representativity of the ESUs have been discussed above and appear to be antagonist. To 
take advantage of these two types of approaches, an hybrid one is proposed. It assumed that, within a cover type, 
the radiometric values, ρ, of the high spatial resolution image is only governed by variations of the biophysical 
variable of interest, i.e. LAI in our case. The first order Taylor Element (FOTE) of the radiative transfer model M 
writes: 

ρρρ ∇−+= )( oioi LAILAI  (1) 

where iρ  is the reflectance column vector of pixel i that contains n elements corresponding to the n bands of the 

high spatial resolution image, oρ  is the average reflectance vector computed over the ESUs, ρ∇  is vector of 
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where LAI∆  corresponds to a small LAI variation. 
Because of the basic assumption about the linearity between reflectance values and LAI, the method could only 
be applied over small range of LAI variations and for a given type of canopy. For this reason, a classification of 
the image must be first performed, and the FOTE method applied over each vegetation class.  
The advantage of this method is to exploit concurrently both ground LAI measurements and radiative transfer 
modelling. It may be understood as correcting the mean LAI value of a given vegetation class as measured over 
some ESUs, by the difference observed in the reflectance signal, weighed by the sensitivity of the reflectance to 
LAI. By definition, the estimation should be unbiased. However, it requires top of the canopy reflectance values, 
i.e. calibrated reflectance corrected from the atmospheric effects. In addition, the method requires all the input 
variables of the radiative transfer model M to be known for the average case of the vegetation class considered. 
This is achieved by inverting M at point LAI0 with the corresponding average reflectance oρ  and LAI0 values. 
This method was also tested over the Alpilles site. A classification was first applied and six classes were 
identified. Then the SAIL model was inverted over the average reflectance values as measured over the ESUs 
belonging to each class. The corresponding derivatives vector ρ∇  was computed. Finally, the image was 
obtained by applying equation (1) for each pixel of each class. Figure 6 shows that performances of this method 
are not very good (RMSE=0.75). This might be due to the strong assumption made on the fact that any variation 
of reflectance value is directly linked to a variation in leaf area index only. Figure 6 shows also that the 
colinearity condition (equation 2) is not always met. 
 
In addition to the above evaluation over the ESUs, analysing the results applied over whole site allows to 
compare the robustness of these transfer functions (Figure 7). The radiative transfer model inversion shows the 
smoothest image with a resulting average LAI value of 0.97 for the whole site. The parametric model based on 
multiple linear regression shows the most crispy image with a LAI value of 0.90 for the whole site. This might 
come from the fact that any variation in reflectance will be translated in a LAI variation, as opposed to the 
radiative transfer model inversion technique that may not confound the effect of other canopy variables. The non 
parametric model shows more discrete patterns with the highest LAI values being slightly “eroded” resulting in a 
LAI value of 0.89 for the whole site. These three methods seemed relatively equivalent as opposed to the FOTE 
method that seemed more unstable particularly for the lowest values and the boundaries, leading to an average 
LAI value of 0.82 over the whole site. 



 
Figure 8. Maps of the LAI values over the Alpilles site as derived from the application of the several transfer 
functions. The mean LAI of the whole site is indicated along with the RMSE evaluated by cross validation over 
the ESUs. 

The significant variation observed for the average LAI and also the LAI distribution indicate that the choice of 
the transfer function is critical. The evaluation over the ESUs as well as that obtained over the whole site, along 
with criterions based on the “independent” character of the validation exercise and the lack of characterization of 
the atmosphere would tend to select empirically based transfer functions. This selection of the best transfer 
function for the purpose of the validation exercise is further re-enforced by the fact that a significant time lag 
may exist between the ground measurements over the ESUs and the acquisition of the high spatial resolution 
image. The non parametric model is certainly a very appealing method that could implicitly account for the 
existence of different vegetation types within the ESU. However, in case of sites with bare soils and low 
vegetation amounts, it should be calibrated (similarly for the parametric model) by including some bare soil 
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“ESU” as implemented in this study to represent such objects. Its main limitation is however the very limited 
extrapolation capacity if areas of the site are not well represented, i.e. falling outside the radiometric convex hull. 
Colocated kriging 
Although the use of the transfer function allows to get a high spatial resolution image, the performances of the 
whole process highly depend on the accuracy of the transfer function. In case of poor transfer functions, or even 
in case of unavailable high spatial resolution satellite image, simple kriging techniques allow to get a back-up 
solution for the generation of the required high spatial resolution map of the biophysical variable. Colocated 
kriging technique allows to balance within a single formalism between these two extreme solutions for the 
generation of the high spatial resolution map of the biophysical variable (de Beaufort 2000). Colocated kriging 
technique is designed to estimate the value of a primary variable at any point in space from the knowledge of the 
measured values sampled over a limited number of points, and from the knowledge of the value of a secondary 
variable that is known at any point of the area investigated and that is linearly related to the primary variable 
(Goovaerts 1997). In our case, the primary variable is the biophysical variable of interest, V, that is measured 
over a limited number of ESUs. The secondary variable, R, is derived from the high spatial resolution image 
thanks to the transfer function V(R). This way, the secondary variable should be linearly related to the primary 
variable and is an unbiased estimate of V knowing R. The kriged value iV̂  of the biophysical variable Vi at pixel i 
is built as a linear combination of the measured values V and the secondary variable V(R):  
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where n is the number of ESUs sampled within the cover type considered, Vj is the biophysical variable 
measured at the ESU j. The weights λi

j and δI  are the solution of a linear system derived by minimizing the 
variance of the prediction error under the assumption of unbiasedness of the prediction error [ ] 0ˆ =− ii VVE  that 
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Note that the simple kriging technique correspond to δi=0, and the single use of the transfer function corresponds 
to λi

j=0. The weights λi
j and δi depend on the variogramme of V established over the ESUs, the sampling pattern, 

the location of the pixel i relative to the data and on the correlation coefficient between V and V(R). If necessary, 
the variogram of the biophysical variable measurements is estimated thanks to the variogramme of V(R) 
computed on the high spatial resolution image. Note that it is important to correctly design the spatial sampling 
scheme for the ESUs to get a good estimation of the variogram at all distances as illustrated in Figure 8. For 
colocated kriging, it is assumed that the cross variogram is the product of the variogramme of the primary 
variable V and the correlation coefficient associated to the transfer function.  
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Figure 8. Variogrammes as observed over the Alpilles site in 2001. Solid line: model of theoretical variogram; 
dots: experimental variogram computed on the ESUs. The first one was computed over the high spatial 
resolution image of the biophysical variable derived by applying the transfer function to the original high 
resolution satellite image. The second one is obtained from the measurements over the ensemble of ESUs (the 
range was derived from that of the previous variogramme (estimated LAI)). The last one is the cross-
variogramme (the range was derived from that of the first variogramme; the sill is computed as the product of the 
correlation coefficient associated to the transfer function with the sill of the estimated LAI).  
 
Models of variogram can be evaluated by reestimating the data of each ESU using all other available data within 
a cross validation process. Results are presented in Figure 9 for three different models of variograms, for which 

the Root Mean Squared Error (RMSE) ( )2ˆ1 ∑ −
i

ii VVn  and the Root Mean Standardized Squared Error (RMSSE) 



( )∑ −
i i

ii VVn 2

2ˆ
1 σ

 are computed. The RMSE is a measure of the estimation performance. The RMSSE compares 

the squared error with the kriging variance given by the model. Results show that the exponential and spherical 
variogrammes lead to very similar performances, whereas the Kbessel variogramme performed poorer with over-
optimistic kriging variance. Hence this model should be discarded.  

 
Figure 9. Comparison of the performances of three variogramme models (Exponential, Spherical and KBessel) 
applied on biophysical measurements over the ESUs as observed during Alpilles 2001. The evaluation is 
achieved by cross validation. RMSE is the root mean square error and RMSSE is the root mean standardized 
squared error.  

 
Figure 10 shows a kriging map of the Alpilles site (2001) and a map of the weight δ. It is clearly visible that the 
radiometric information is generally the largest contributor to the local variable estimation, except in the very 
local vicinity of the ESUs where the contribution of the measured values over the ESUs dominates thanks to the 
strong but local spatial correlation. This demonstrates the interest of the colocated kriging technique that allows 
to account for the local measurements over the ESUS that represent generally a relatively local area, and the 
transfer function that allows to estimate the biophysical variable of interest at the longer distances thanks to the 
high spatial resolution satellite image and the transfer function. 
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Figure 10. Co-located kriging applied to the Alpilles site (2001). The figure on the left represents the estimated 
LAI map. That on the right represents the weight δ associated to the radiometric information from the high 
spatial resolution image. The ESUs are associated to the lowest values of weights δ The lowest values of the 
weights δ are located near ESUs. Note that for this site, two transects of ESUs were sampled in the middle of the 
site. 
 
The uncertainty associated to the prediction at pixel i, provided by the variogram model is evaluated by the 
kriging variance. It is the minimum variance of the prediction error, 



( )iii VVVar −= ˆ2σ .  (4) 

Figure 11 shows the kringing variance map. We observed that the kriging variance is strictly null at the location 
of the ESUs. The largest values are obtained at a distance larger than 250m corresponding to the range of the 
variograms. We note that this kriging variance map looks like a negative image of the weights δ (Figure 7), 
which is obviously explained by the constraint expressed by equation (3). 
 

 
Figure 11. Kriging variance computed over the 3×3 km² Alpilles site using an exponential variogram 
CONCLUSION 
This paper presented the methodology used within the VALERI project for the validation of the biophysical 
products derived from medium resolution satellite sensors. The VALERI web site (www.avignon.inra.fr/valeri/) 
provides additional information on the methodological aspects as well as on the sites and their characterization. 
The methodology has evolved and and has currently reached a satisfactory level of maturity allowing it to be 
applied routinely on a large number of sites. Nevertheless, a number of critical points have been identified that 
still need additional investigations : 

o Although many studies report the advantage of using hemispherical cameras for an improved estimation 
of gap fraction, no clear demonstration of the operationallity of the system has yet been done. This is a 
very important point, since hemispherical photographs is a convenient technique that offers the potential 
to account for foliage clumpiness and greeness confusion that may very significantly affect the 
characterization of important vegetation types (Fernandes, White et al. 2002). Attention has been paid 
to this critical point and measurements are currently processed to compare estimates of LAI based on 
hemispherical photos to those achieved by other classical methods (Hyer and Goetz 2004). Anyway, 
hemispherical photographs are certainly one of the best methods to compute the fAPAR values. 

o The transfer function is the main process used for extending the local meaurements to the whole site. 
Empirical relationships generally provide the best results when the sampling by the ESUs is 
representative of the whole site. This confirms the importance of a well designed sampling scheme that 
could be based on prior information such as a previous high spatial resolution satellite image, or a land 
cover map. However, potential (but presumably marginal) improvements could be achieved by using 
enhanced transfer function types based on robust regression methods that allows to discard outliers. It is 
also important to include in the calibration data set, a representative sample of perfectly known objects 
such as bare soil, water, roads, for which no green vegetation is observed and thus LAI, fAPAR and 
fCover are nul. 

o The validation activity is currently limited to the biophysical variables that could be estimated from 
ground measurements of the gap fraction. However, it is desirable to extend that to additional 
biophysical products such as the chlorophyll content and the albedo. This will require important efforts 
to investigate the associated spatial and temporal sampling strategies. Further, the high spatial 
resolution satellite images currently used for LAI, fAPAR and fCover might have insufficient spectral or 
directional sampling to establish strong enough transfer functions.  

o The size of the sites is currently limited to 3×3 km², which should be enough for sensors with a spatial 
resolution smaller than 1 km². However, for coarser spatial resolution sensors such as MSG and 
POLDER, special strategies have to be developped for the validation, that will be presumably be based 
on extrapolation of the local measuements over the ESUs outside the 3×3 km².  



 
The main output of such validation activity is a high spatial resolution map of the biophysical variables as 
derived from ground measurements and a high spatial resolution satellite image such as SPOT or TM/ETM+. 
This is consistent with the CEOS recommandations. We should note also that this validation activity implicitely 
turns to be a high spatial resolution satellite sensor product generation activity that could be used for other 
applications than just the validation of medium resolution satellite sensors. A consistent processing of the whole 
data gathered over the ensemble of sites could lead to enhance the description of the relationships between 
canopy radiometric response and the corresponding biophysical variables for a range of vegetation types and 
states.  
Apart from the high spatial resolution biophysical map product, the validation exercise should also include the 
agregation process used to validate the medium resolution satellite sensor products. This agregation process is 
not straightforward when considering the associated uncertainties. Block kriging as proposed by (de Beaufort 
2000) could be used to take advantage from the data available and processing already achieved. However, other 
sources of uncertainties have to be accounted for, including the registration errors of the medium resolution 
satellite sensor images that could be very significant in case of heterogeneous landscapes. Further investigations 
are currently directed towards the agregation problem that represents the ultimate step of the validation process. 
Note that the registration of the medium spatial resolution sensors to the high spatial resolution map generated 
should be as accurate as possible. This could be achieved by correlation techniques, and a particular module was 
developped for this purpose. 
As stated earlier, medium resolution satellite validation activity should benefit from the contribution of 
worldwide distributed validation projects among which VALERI is contributing to. Concurrent use of the several 
validation projects will provide more reliable results. However, this requires a minimum of consistency between 
individual validation projects, both for the site selection and the methodological aspects, but also for the 
accessibility of the data and the documentation of the format used. This re-enforces the role of the Commitee on 
Earth Observation Satellites (CEOS) by the Working group on Calibration and Validation (WGCV), sub-group 
on Land Product Validation (LPV) to reach a sufficient consensus on the validation activity. 
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