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Abstract
Canopy light interception determines the amount of energy captured by a crop, and is thus critical to modeling crop
growth and yield, and may substantially contribute to the prediction uncertainty of crop growth models (CGMs). We thus
analyzed the canopy light interception models of the 26 wheat (Triticum aestivum) CGMs used by the Agricultural Model
Intercomparison and Improvement Project (AgMIP). Twenty-one CGMs assume that the light extinction coefficient (K) is
constant, varying from 0.37 to 0.80 depending on the model. The other models take into account the illumination condi-
tions and assume either that all green surfaces in the canopy have the same inclination angle (h) or that h distribution fol-
lows a spherical distribution. These assumptions have not yet been evaluated due to a lack of experimental data.
Therefore, we conducted a field experiment with five cultivars with contrasting leaf stature sown at normal and double
row spacing, and analyzed h distribution in the canopies from three-dimensional canopy reconstructions. In all the cano-
pies, h distribution was well represented by an ellipsoidal distribution. We thus carried out an intercomparison between
the light interception models of the AgMIP–Wheat CGMs ensemble and a physically based K model with ellipsoidal leaf
angle distribution and canopy clumping (KC

ell). Results showed that the KC
ell model outperformed current approaches under

most illumination conditions and that the uncertainty in simulated wheat growth and final grain yield due to light models
could be as high as 45%. Therefore, our results call for an overhaul of light interception models in CGMs.

Introduction
Crop growth models (CGMs) are popular tools used to opti-
mize crop management, assess the impact of climate change
on crop production (Liu et al., 2016), or assist plant breeders
(e.g. Martre et al., 2015a, 2015b, 2015c; Chenu et al., 2017).
To meet this need, CGMs should be capable of predicting

the response of genotypes to various environments (Yin
et al., 2003; Parent and Tardieu, 2014; Messina et al., 2018).
This requires improved CGMs to reconcile biological realism
and parsimony in the description of eco-physiological pro-
cesses (Hammer et al., 2019) while considering feedbacks be-
tween key processes (Tardieu and Parent, 2017). Model
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parameters should also have sound biological meaning and
if possible, be measurable using modern high-through phe-
notyping methods (Tardieu et al., 2017), be less dependent
on the environmental conditions, and allow for more ge-
netic dependency (Hammer et al., 2006, 2016).

This means that CGMs should predict complex traits such
as yield with fewer compensations for errors (Muller and
Martre, 2019). Among the several processes that need to be
described in CGMs, canopy light absorption is very impor-
tant since it drives the energy available for photosynthesis
and transpiration. In the many CGMs that use the classical
light use efficiency (LUE) approach to model biomass pro-
duction (Monteith, 1977), errors in light absorption can eas-
ily be compensated for by changes in the LUE or the green
area index (GAI). Canopy light absorption in most CGMs is
described using the simple big-leaf approach originally pro-
posed by Monsi and Saeki (2005). However, this approach
may be too simplistic to accurately account for the impact
of illumination conditions (fraction of diffuse incoming radi-
ation and sun position) and canopy structure (primarily
GAI, surface inclination angle, and planting arrangement) on
light absorption by the canopy (Pury and Farquhar, 1997).

Several alternative approaches to the big-leaf approach
have been developed to model canopy light absorption. The
most popular ones include the single-layered (Pury and
Farquhar, 1997) and multi-layered (Sellers et al., 1992; Wang
and Leuning, 1998) sun/shade approach, the three-dimen-
sional (3D) voxel-based canopy description (Sinoquet et al.,
2001), and the 3D canopy architecture description (Chelle
and Andrieu, 1998). They differ mainly in the level of details
with which canopy architecture is described and the approx-
imations in the radiative transfer. The photosynthetic pig-
ments absorb the incoming radiation in the 400–700 nm
spectral domain called the photosynthetically active radia-
tion (PAR; McCree, 1972). The fraction of incoming PAR
absorbed by the photosynthetically active elements of cano-
pies (FAPAR) quantifies the PAR absorption efficiency
(Monteith, 1977; Sinclair and Muchow, 1999). FAPAR results
from complex interactions between the incident radiation,
characterized by its spectral and its directional distribution,
and the structure and biochemical composition of canopies
(Hanan and Begue, 1995; Weiss and Baret, 2011).

Canopy structure plays a key role in canopy light intercep-
tion, whereas there is substantial structural difference among
crops. Our focus in this study was on wheat (Triticum aesti-
vum), the most surface-grown crop in the world and which
contributes �20% of the total calories and protein in the
human diet (Shiferaw et al., 2013). Because of the strong ab-
sorption of PAR radiation by the photosynthetic pigments,
multiple scattering contributes only marginally to the radia-
tive transfer, and FAPAR can be closely approximated by
the fraction of PAR intercepted by the photosynthetically
active radiation (FIPAR) elements of canopies. This approxi-
mation is well verified for wheat that does not present
glossy or hairy leaves (Andrieu and Baret, 1993; M~ottus
et al., 2013).

The Monsi and Saeki (2005) model assume that all ele-
ments in the canopy are the same and are randomly distrib-
uted in the canopy volume. In these conditions, the
incremental change of transmitted PAR, dPAR, due to an in-
cremental increase of canopy leaf area, dL, is proportional to
an extinction coefficient K: dPAR ¼ �KdL. The fraction of
PAR transmitted to the ground level (s) is computed by in-
tegrating the previous differential equation over canopy
depth: s ¼ e�K�L. L corresponds to the GAI, which describes
the area of the green elements per unit horizontal ground
area. Therefore, according to the Monsi and Saeki (2005)
model, FIPAR is given by:

FIPAR ¼ 1� s ¼ 1� e�K�GAI (1)

A projection function (G) is introduced to account for the
actual effective cross section of the elements, which depends
on the orientation of the green elements approximated as
small flat surfaces and on the direction of the incident light
W ¼ b;uð Þ; with b and u being the sun elevation and az-
imuth angles, respectively (Campbell and Norman, 2012). G
is the projected area of a unit GAI onto a surface perpendic-
ular to the incident radiation direction. K is therefore given
by:

K ¼ C Wð ÞGðWÞ
sinb

(2)

where sinb accounts for the optical path that depends on
the direction of the incident light and CðWÞ is a clumping
factor that describes the spatial dependency of the positions
of the leaves in the canopy (Weiss et al., 2004). It depends
on the incident angle W (Andrieu and Sinoquet, 1993).
Clumped leaves with C Wð Þ < 1 tend to overlap in the W
direction, while regularly distributed leaves with
C Wð Þ > 1 tend to avoid themselves. However, for the sake
of simplicity, C Wð Þ is frequently assumed to be independent
of direction W. Besides, CðWÞ depends both on the plant
structure, that is, the location of foliage along the plant
stems, and on the canopy structure, that is, the distribution
of the plants within the canopy (Weiss et al., 2004).

Therefore, modeling light interception requires knowing
the distribution of leaf orientation and leaf clumping.
Further, the directionality of the incident radiation that gov-
erns the interception efficiency at the instantaneous time
scale should also be described, including its variation during
the day and the growing season. Most CGMs do not ac-
count for these additional factors and a thorough quantita-
tive evaluation of the errors of FIPAR estimation in CGMs is
still lacking. Therefore, the objective of this study was to an-
alyze the main approaches used in CGMs for computing
FIPAR for wheat crops. More than 40 CGMs (White et al.,
2011) have been proposed to describe wheat productivity
and yield as a function of the environmental conditions. We
first reviewed the values of light extinction coefficient
reported for wheat and the FIPAR models used in wheat
CGMs that are considered in the Agricultural Model
Intercomparison and Improvement Project (AgMIP)
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(Rosenzweig et al., 2013). We then investigated the actual
distribution of the inclination of wheat elements (leaves,
stems, and ears) and generated a reference dataset using the
3D ADEL–Wheat architectural model (Fournier et al., 2003).
We evaluated the accuracy of the FIPAR models in the
AgMIP–wheat CGM ensemble at five locations spanning the
range of latitudes at which wheat is grown globally. Finally,
we discussed our results by highlighting the main factors
that drive wheat canopy PAR interception efficiency, with
emphasis on the time scale.

Review of light extinction coefficient values
reported for wheat
The approach usually used to estimate K is to invert
Equation 1 using concurrent measurements of FIPAR and
GAI. In most studies, several replicates of FIPAR and GAI
measured at several dates along the growth cycle, or across
modalities, are used to get robust estimates at the
expense of a more limited capacity to describe the possible
changes of K with time or modalities (Table 1).
Alternatively, measuring the vertical profile of FIPAR and
GAI was used to invert Equation 1 (Moreau et al., 2012).
However, in this case, the possible variation of leaf orienta-
tion and clumping with canopy depth may also confound
the estimated value of K.

GAI is used in Equation 1 since it accounts for all the
green area of leaves, stems, and ears. When K is estimated
using green leaf area index (GLAI; Calderini et al., 1997;
Muurinen and Peltonen-Sainio, 2006) or LAI (Green, 1989;

Dreccer, 2000; Carretero et al., 2010), the green stem or ear
contribution is not explicitly accounted for. Further, in the
case of LAI, the senescent leaves are taken into account al-
though they have no potentials to transform the inter-
cepted radiation into assimilates. Therefore, the use of GLAI
or LAI in place of GAI may cause biased estimates of K.
However, Table 1 does not show apparent bias in the
reported K values, probably because the other factors of var-
iability mask this expected effect.

The reported values of K vary between 0.28 and 0.90 with
a median value of 0.59 (Table 1). For a given cultivar, K was
reported to change between cultivation practices (Asrar
et al., 1984; Dreccer, 2000) or with growth stages (Yunusa
et al., 1993). Other studies show substantial genotypic differ-
ences (Green, 1989; Miralles and Slafer, 1997; Shearman
et al., 2005) and strong genotype by environment effect was
found in some cases (Moreau et al., 2012) while no substan-
tial cultivar effect was observed in other studies (Yunusa
et al., 1993; Calderini et al., 1997; Shearman et al., 2005).

Review of light interception models in wheat CGMs
We reviewed the canopy light interception models in 26 of
the 28 different wheat CGMs used in the AgMIP (Table 2)
(Asseng et al., 2013, 2015; Martre et al., 2015a, 2015b, 2015c;
Asseng et al., 2019). Two CGMs were not considered
(AQUACROP and OLEARY) because they calculate biomass
accumulation using a transpiration efficiency approach and
thus PAR interception is not calculated per se in these
CGMs. The AgMIP–Wheat multi-model ensemble comprises

Table 1 Summary of extinction coefficient K reported for wheat

GLAI, GAI
or LAI

Clear
Sky

Hour
(solar)

Latitude
(�)

Longitude
(�)

Factors Growth Stages Light Extinction
Coefficient
(unitless)

Reference

NS NS 11–13 39 296 2 cultivars
3 densities

From booting to soft dough 0.65–0.89 Asrar et al. (1984)

LAI Yes NS 39 296 2 cultivars
3 densities

From emergence to maturity 0.33–0.84 Fuchs et al. (1984)

LAI NS 8–16 53 21 5 cultivars Before anthesis 0.28–0.44 Green (1989)
LAI NS 12 52 5 2 nitrogen

2 densities
From emergence to maturity 0.30–0.90 Dreccer et al. (2000)

LAI NS 11–13 234 258 2 nitrogen
2 disease

Heading to anthesis 0.56–0.68 Carretero et al. (2010)

LAI Yes 11–13 234 258 Tall, semi-dwarf,
and dwarf
isogenic lines

From 30 days after sowing to the
time when the canopy reached
the maximum LAI

0.48–0.78 Miralles and Slafer (1997)

GLAI Yes 12 231 258 7 cultivars From emergence to anthesis 0.37–0.46 Calderini et al. (1997)
GLAI NS 11–13 60 23 3 cultivars

2 nitrogen
From leaf 3 to maturity 0.62–0.79 Muurinen and

Peltonen-Sainio (2006)
GAI NS 10–14 52 0 Growth stage Between leaf 3 and heading

Between heading and anthesis
During grain filling

0.46
0.61
0.56

Thorne et al. (1988)

GAI NS 12 232 116 3 cultivars Before heading
After heading

0.31–0.60
0.60–0.77

Yunusa et al. (1993)

GAI NS 12 235 141 2 years From emergence to maturity 0.82 O’Connell et al. (2004)
GAI NS NS 53 21 8 cultivars Beginning of stem extension

Anthesis
0.48–0.58
0.53–0.63

Shearman et al. (2005)

GAI NS 10–14 45–52 3 to 21 16 cultivars
2 nitrogen

Anthesis 0.33–0.54 Moreau et al. (2012)

NS, not specified.
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>80% of the wheat CGMs currently used (Asseng et al.,
2019). We considered FIPAR rather than FAPAR to focus on
the way models describe canopy architecture and account
for the illumination conditions while not considering the im-
pact of leaf and soil optical properties as required for
FAPAR computation. Except for those with a very bright
background (white sandy soil or snow), most arable soils
have relatively low reflectance values in the PAR spectral do-
main (Jacquemoud et al., 1992). Further, the green elements
strongly absorb light in the PAR domain, resulting in very
low reflectance and transmittance values (Jacquemoud and
Baret, 1990). In most cases, FIPAR is therefore a close ap-
proximation of FAPAR (Bégué et al., 1996; Widlowski, 2010).
For the models that describe FAPAR, we, therefore, assumed
that the leaves absorb all the radiation (i.e. reflectance and
transmittance equal zero) and the soil background is black.
This assumption is supported by a sensitivity analysis of the
differences between FIPAR and FAPAR (Jacquemoud et al.,
2009) in soil reflectance, leaf chlorophyll concentration, GAI,
average surface inclination angle, fraction of diffuse radiation,
and sun elevation angle (see Supplemental Methods S1;
Supplemental Results S1; Supplemental Table S1;
Supplemental Figures S1 and S2).

The FIPAR models can be grouped into several categories
mainly depending on the assumptions used to model K
(Eq. 2). Below, we first review the models used for direct illu-
mination conditions. Description of variables and parameters
of the FIPAR models is listed in Table 3.

Models of light interception for direct illumination
conditions
Constant light extinction coefficient

The simplest and most popular FIPAR model in wheat
CGMs (Table 2) assumes a constant light extinction
coefficient (Kcst) and FIPAR is calculated using Equation 1.
By definition, Kcst is assumed to be valid for any light direc-
tion and therefore applies to both direct and diffuse inci-
dent PAR. The values of Kcst used in wheat GCMs range
from 0.44 to 0.80 (Table 2), with a median value of 0.52,
that is, close to that calculated from field measurements
(Table 1).

Some adaptations have been proposed to account for the
impact of plant arrangement or ontogenic changes in can-
opy structure on Kcst. In the System Approach to Land Use
Sustainability (SALUS), the sowing pattern is accounted for
by using an empirical relationship derived from experimental
observations (Dzotsi et al., 2013):

Kds
cst ¼ 1:5� 0:768 d�s2ð Þ0:1 (3)

where d is the plant density (plants m�2) and s is the row
spacing (m). Kds

cst varies between 0.37 and 0.67 for d ranging
between 100 and 400 plants m�2 and s ranging from 0.15
to 0.35 m, with Kds

cst decreasing with increasing row spacing
and plant density.

In the latest version of APSIM Wheat (Brown et al., 2018a,
2018b), Kcst increases during the stem extension period be-
cause of the change in leaf inclination, but probably also be-
cause the stem and ear area were not explicitly accounted for:

KHS
cst ¼

0:5; HS � x

0:5 1þ 0:2
HS� x

FLN� x

� �
; HS > x

8<
: (4)

where HS is the Haun stage (Haun, 1973) of the main
stem, FLN is the final number of leaves on the main stem,
and x is the Haun stage at which KHS

cst starts to increase.
x is given by:

x ¼ 0:973� FLN� 0:777 (5)

For the same reasons as for APSIM Wheat, in Nwheat
model, Kcst changes from 0.6 before anthesis to 0.7 after an-
thesis (Keating et al., 2003).

Average surface inclination
The average surface inclination angle over the whole canopy
(h) can be calculated as the average zenith angle of all the
green surface elements weighted by their area. This includes
green leaves, visible green sheath parts, internodes, and ears.
At the canopy level, assuming that all the green surfaces
have the same inclination angle and a uniform azimuthal
distribution, the projection function, Gavr b; hð Þ is given by
(Goudriaan, 1988):

Gavr b; hð Þ¼
sinb�cos h; b� h
2

p
sinb�cos h arcsin

tanb
tan h

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h� sin2b

p� �
;

b< h

8><
>:

(6)

K can then be calculated as:

Kdir
avr ¼

Gavr b; hð Þ
sinb

(7)

This formulation of the projection function is used in
GECROS (Yin and van Laar, 2005) with a default value of h
for wheat of 50�.

Spherical surface inclination distribution
In the simple case where the surfaces of all green organs are
distributed as the facets around a sphere, G ¼ 0:5
(Goudriaan, 1977, 1988). In this case, K is given by:

Kdir
sph ¼

0:5

sinb
(8)

In the SPASS model, K is calculated using Equation 8
(Wang, 1997).

Goudriaan and Van Laar (1994) proposed an adaptation
of the spherical model to better match field observations.
They proposed to account for the departure between ob-
served FAPAR and the one computed assuming a spherical
surface angle distribution by using a correction factor (Csph),
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calculated as the measured K for diffuse PAR (Kdiff
meas) relative

to the theoretical value for spherical surface angle distribu-
tion. Csph is given by:

Csph ¼
Kdif

meas

0:8
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r
p (9)

where r is the scattering coefficient of leaves in the PAR do-
main. This approach is used in SUCROS (Goudriaan and
Van Laar, 1994), WOFOST (Goudriaan and Van Laar, 1994),
and WheatGrow (Liu, 2000). In these GCMs, K for direct
light is thus given by:

KC
sph ¼ Csph � Kdir

sph (10)

In SUCROS and WOFOST, Kdif
sph is considered as constant

and is set equal to 0.6 for wheat (Goudriaan and Van
Laar, 1994). Thus Csph ¼ 0:75 and KC

sph ¼ 0:375=sinb. In
WheatGrow, Kdif

sph ¼0.67, and thus KC
sph ¼ 0:42=sinb (Liu,

2000). Here, we used the value of Csph proposed by
Goudriaan and Van Laar (1994).

Ellipsoidal surface inclination distribution
The spherical distribution can be generalized by consider-
ing that the orientation of the surfaces of the green
organs is distributed as the facets around an ellipsoid of
revolution with a vertical rotation axis (Campbell, 1986).
The ellipsoid is characterized by its eccentricity, v, that is,
the ratio between its vertical and horizontal diameters. By
varying v, the distribution of angles simulates planophile
up to erectophile leaf stature, as well as the spherical dis-
tribution when v ¼ 1:0. The ellipsoidal function is a
good trade-off between simplicity and flexibility in charac-
terizing the distribution of surface inclination at the can-
opy scale (Weiss et al., 2004; Wang et al., 2007).
Nevertheless, it has never been evaluated over wheat

Table 3 Name, unit, and definition of variables and parameters of the FIPAR models

Name Unit Definition

CGAI – Clumping factor estimated using GAI
Csph – Clumping factor with spherical distribution
d m22 Plant density
f – Fraction of diffuse PAR to the total incident PAR
FIPAR – Fraction of incident PAR intercepted by the canopy
FIPARdir – Fraction of intercepted direct PAR
FIPARdif – Fraction of intercepted diffuse PAR
FIPARday – Daily value of the fraction of IPAR
FLN Leaf number Final number of leaves on the main stem
g – Inclination angle distribution function
G – Projection function
Gavr – Projection function assuming that all the green surfaces (leaves, stem and ears)

have the same inclination angle and a uniform azimuthal distribution
GAI m2 (leaf) m22 (ground) GAI
GAIeff m2 (leaf) m22 (ground) Effective GAI
GAImes m2 (leaf) m22 (ground) Measured GAI
HS leaf number Haun stage (decimal mainstem leaf number)
Kdir

avr – Extinction coefficient with average distribution for direct PAR
Kcst – Constant extinction coefficient
Kds

cst – Constant extinction coefficient accounting for plant density and row spacing
KHS

cst – Constant extinction coefficient accounting for the increment after stem elongation
Kdir

ell – Extinction coefficient with ellipsoidal distribution for direct PAR
KC

ell – Extinction coefficient with spherical distribution and considering clumping effect
Kdif

mes – Measured extinction coefficient for the diffuse incoming PAR
Kdir

sph – Extinction coefficient with spherical distribution for direct PAR
KC

sph – Extinction coefficient with spherical distribution and considering clumping effect
PAR W m22 Incoming photosynthetically active radiation
s m Row spacing
bb Radian Half azimuth range for which the upper side of a leaf is illuminated
b Radian Sun elevation angle
s – Fraction of PAR transmitted to the ground level
K – Normalized ellipse area
r – Scattering coefficient of leaves for PAR
h Radian Inclination angle of the green surfaces in the canopy
h Radian Average inclination angle of the green surfaces in the canopy
x Leaf number Haun stage at which KHS

cst starts to increases in the KHS
cst model

v – Eccentricity of the ellipsoidal leaf inclination distribution
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canopies due to the lack of leaf curvature measurements,
which require considerable field work.

The analytical expression of the ellipsoidal inclination dis-
tribution function, g hð Þ, is given by (Campbell, 1990):

g hð Þ ¼ 2�v3 � sinh

K cos2hþ v2 � sin2hð Þ2
(11)

where K is a normalized ellipse area, approximated by:

K ¼ vþ 1:774ðvþ 1:182Þ�0:733 (12)

v is related to the average inclination angle at the canopy
scale (h) through an empirical equation:

v ¼ h
9:65

� ��0:6061

� 3 (13)

Following the approach proposed by Verhoef (1998), K of
any leaf angle distribution is computed as the integral over
the whole range of leaf inclination (0 < h < p=2) of
K b; hð Þ weighted by the corresponding frequency, g hð Þ.
Since the analytical solution is not straightforward, a discrete
approximation was proposed by Verhoef (1998) for a sample
of n inclination angles:

Kdir
ell ¼

Pn
i¼1 g hið Þ � K b; hið ÞPn

i¼1 g hið Þ
(14)

According to Verhoef (1998), it is sufficient if the inclina-
tion angle is discretized into 13 classes (5�, 15�, 25�, 35�,
45�, 55�, 65�, 75�, 81�, 83�, 85�, 87�, and 89�), expressed in
radians in Equations 14 and 15. Kellðb; hiÞ for inclination an-
gle hi writes:

Kdir
ell ¼

2

p
bb �

2

p

� �
coshi þ

sinbb � sinhi

tanb

� �
(15)

with,

bb ¼
p; hi < b

arcos � tanb
tanhi

� �
; hi � b

8<
: (16)

where bb (radian) is the transition angle, which is half of the
azimuth range for which the upper side of a leaf is
illuminated.

Alternatively, Kell can be approximated by (Campbell and
Norman, 2012):

Kdir
ell ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ cot2b
p

vþ 1:774ðvþ 1:182Þ�0:733 (17)

In this work, we used Equation 17 to calculate Kdir
ell :

The calculation of Csph using Equation 9 is an approxima-
tion since FIPAR for diffuse radiation calculated from
Equation 21 cannot be analytically put in the form of
Equation 1 to derive Kdif

sph. Therefore, Baret et al. (2010) pro-
posed to estimate the clumping factor as the ratio of the ef-
fective GAI, estimated from the directional variation of

FIPAR (GAIeff ), to the actual GAI from destructive measure-
ment (GAImes):

CGAI ¼
GAIeff

GAImes
(18)

Where GAIeff is calculated following Miller (1967):

GAIeff bð Þ ¼ 2

ðp=2

0

�ln 1� FIPAR bð Þð Þcosb� sinb� db (19)

We use the approach of Baret et al. (2010) to take into
account leaf clumping in the ellipsoidal surface inclination
distribution model. The extinction coefficient for an ellipsoi-
dal surface inclination distribution accounting for leaf
clumping (KC

ell) is then given by:

KC
ell ¼ CGAI � Kdir

ell (20)

Accounting for diffuse radiation
At a given time of the day, the incident radiation is coming
both from the sun direction and from the light scattered in
the atmosphere, which is generally assumed to be isotropic.
The total amount of radiation intercepted at a given time t
of the day is thus given by:

FIPAR ¼ f tð Þ � FIPARdif þ 1� f tð Þð Þ � FIPARdir b tð Þð Þ (21)

where f tð Þ is the fraction of diffuse radiation in the PAR do-
main, and FIPARdir and FIPARdif are the FIPAR for direct
and diffuse radiation, respectively. The daily value of FIPAR
(FIPARday) can then be calculated by integrating the instan-
taneous values as follows:

FIPARday ¼

Psunrise

sunset
FIPAR� PAR

Psunrise

sunset
PAR

(22)

When FIPAR does not depend on b, as for the Kcst model,
the instantaneous value of FIPAR is independent of the dif-
fuse fraction since FIPAR ¼ FIPARdif ¼ FIPARdir. The
spherical inclination distribution and average inclination
models use a different value of K for FIPARdif and FIPARdir.
The CGMs that use a spherical inclination distribution
model use a constant value of K for diffuse PAR (Table 2).
Here we used the value of 0.6 proposed by Goudriaan and
Van Laar (1994). In GECROS, which uses an average inclina-
tion model at the canopy scale, K for diffuse radiation (Kdif

avr)
is calculated following Goudriaan (1988) and is given by:

Kdif
avr ¼ � 1=GAIð Þ

� lnð0:178� e �Kb15�GAIð Þ þ 0:514� e �Kb45�GAIð Þ þ 0:308

� e �Kb75�GAIð ÞÞ
(23)

where Kb15, Kb45, and Kb75 are the extinction coefficients cal-
culated using Equation (7) for b equals 15�, 45�, and 75�, re-
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spectively. The weights 0.178, 0.514, and 0.308 represent the
contributions from the 30� classes (0–30�, 30–60�, and 60–
90�) of a standard overcast sky.

For the ellipsoidal inclination distribution model, we calcu-
lated FIPARdif as the integral over the hemisphere of the di-
rectional FIPARdir:

FIPARdif ¼ 2

ðp=2

0

FIPARdir bð Þ � cosb� sinb� db (24)

Canopy elements considered as intercepting area
As already discussed, GAI should be considered in
Equation 1, including both one-sided area of flat green
organs (leaves) and half the developed area of nonflat green
organs (stems or ears) (Lang, 1991; Chen and Black, 1992).
However, K is often estimated using measurements of FIPAR
and the corresponding area of some of the crop elements
(Table 1). All the models consider the leaf lamina, but only
few consider the area of stems and ears (Table 2), although
this may represent a substantial fraction of GAI (Weiss et al.,
2001). Some models such as APSIM wheat and Nwheat
compensate for the fact that the stems and ears are not ex-
plicitly accounted for by increasing K after the onset of stem
extension (APSIM wheat) or after anthesis (Nwheat).
However, for the other models, no obvious trend is observed
between the value of the extinction coefficient and the ele-
ments accounted for in the GAI (Table 2), similarly to what
was found from the ground measurements (Table 1). In the
case of the SUCROS, WOFOST, and WheatGrow, which do
not account for stems and ears area (Table 2), the empiri-
cally adjusted clumping factor may partly compensate for
this approximation.

Results

The ellipsoidal inclination distribution faithfully
represents the actual distribution of surface
inclination in wheat
The 3D canopies reconstructed from the digitalization of
the field-grown plants were used to extract the inclination
angle distribution, corresponding to the distribution of the
zenith angle of all green elements in the canopy. The vari-
ance of h over treatments was much larger at GS31 than at
GS39 (Supplemental Table S2). At both growth stages, h

varied more between cultivars than with row spacing.
However, both cultivar and row spacing effects on h were
not statistically significant (P> 0.01; Supplemental Table S3).
The canopies were more erectophile at GS39 as compared
to GS31, mostly because h of leaf elements increased from
39� at GS31 to 63� at GS39 (Supplemental Table S2;
Supplemental Figure S3). Stems were also more erectophile
at GS39 (h¼ 84�) than at GS31 (h ¼ 75�).

According to Equation 13 (solving the equation with
v ¼ 1), h equals 56� for spherical leaf angle distribution.
At GS31, Caphorn, the most erectophile of the five studied
cultivars, was the cultivar with h closest to that of a spheri-
cal distribution (v ¼ 1.14; Table 4). For the four other culti-
vars, h was lower than 56� (Table 4) and v ranged from
1.40 (for Apache) to 2.07 (for Maxwell). At GS39, h was
close to 70� (i.e. v ¼ 0.50) for the four cultivars (Table 4)
and was thus much higher than the value corresponding to
a spherical distribution.

For all the cultivars, growth stages, and row spacing treat-
ments, the distribution of inclination was not significantly
different from an ellipsoidal distribution (all P> 0.01).
Conversely, in all cases the distribution of inclination was
significantly different from a spherical distribution (all
P< 0.01). When h is >80

�
, the ellipsoidal distribution

tended to underestimate the corresponding probability at
GS31, while overestimating it at GS39 (Figure 1).

Increasing row spacing decreases the clumping
factor
The clumping factor (CGAI) was computed over the recon-
structed 3D wheat canopies by using Equation 18. At GS31,
for the five cultivars CGAI was on average 18% higher for the
standard (CGAI ¼ 0.79) than for the double row spacing
treatment (CGAI¼ 0.67, Figure 2). At GS39, CGAI was always
slightly lower for the double spacing as compared to the
standard spacing. For standard row spacing, CGAI values
were similar for the two growth stages. Conversely, for dou-
ble-row spacing, CGAI was on average 17% higher at GS39
than at GS31, except for Maxwell.

Comparison between FIPAR models
For FIPARdir, at both GS31 and GS39 the ellipsoidal model
outperformed the other models over all solar angles
(Figure 3). At GS31, the root mean squared error (RMSE) for
FIPARdir was reduced by 37% when leaf clumping was

Table 4 Average inclination angle of green elements in the canopy measured at the beginning of stem extension (GS31) and flag leaf ligulation
(GS39) for five winter wheat cultivars grown in the field with standard (17.5 cm, SS) and double (35 cm, DS) row spacing

Growth Stage Average inclination angle of green elements (�)

Apache Caphorn Maxwell Renan Soissons

SS DS SS DS SS DS SS DS SS DS

31 48 6 16 51 6 16 53 6 16 52 6 16 38 6 16 41 6 14 39 6 16 49 6 17 43 6 16 48 6 16
39 69 6 12 65 6 15 73 6 9 72 6 9 69 6 11 72 6 11 70 6 12 69 6 13 71 6 11 67 6 12

Data are mean 6 1 SD.
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accounted for in the ellipsoidal model (Figure 3A). The
spherical models (Ksph and KC

sph) and average leaf inclination
angle (Kavr) provided reasonable performances, while the
models with constant light extinction coefficients (Kcst) sub-
stantially degraded the accuracy of FIPARdir calculation, with
0.013< RMSE< 0.23 (K0:6

cst >K0:9
cst > K0:3

cst ). For FIPARdir, the
differences between the models were larger for low solar ele-
vation angles at GS31 (Figure 3A) and for high solar eleva-
tion angels at GS39 (Figure 3B). For both growth stages, the
differences between the models were the lowest for solar el-
evation between 40� and 55�. Under diffuse illumination
conditions, KC

ell also performed the best at GS31 (Figure 3A),
while at GS39 the RMSE was low for several models and KC

ell
was not the best model (Figure 3B).

Sensitivity of FIPAR to canopy structure and
illumination conditions
Since we found that KC

ell was the best model for FIPAR, we
used it to explore the sensitivity of FIPAR with respect to

changes in canopy structure, GAI and h (Figure 4). Results
show that FIPAR increased rapidly with GAI, as expected
from the exponential form of Equation 1. FIPARdir was in-
sensitive to h when the sun was at 32.5� elevation
(Figure 4B). FIPARdir increased with h for b< 32.5�

(Figure 4C), and decreased with h for b > 32.5�. The influ-
ence of h on FIPARdif was low (Figure 4D) because FIPARdif

was computed by integrating FIPARdir over all directions,
which put maximum weight on elevations close to 45�, that
is, not too far from 32.5�.

Since most CGMs have a daily time step (Table 2), it is
necessary to integrate FIPARdir and FIPARdif over the day,
according to Equation 22 to get FIPARday. Simulations
showed that, for a given canopy structure, the value of
FIPARday may change largely, depending on the illumination
conditions during the day (Figure 5). At GS31, under clear
sky conditions, the solar elevation at solar noon is �45� at
this period of the year and latitude, and FIPARday equals
0.25, while under overcast sky conditions FIPARday is very
close to FIPARdif and is 32% lower than under clear sky
conditions.

Differences between light extinction models over
longer time periods
The comparison of FIPARday simulated with the different
FIPAR models in Grignon for Caphorn and Maxwell cultivars
with standard row spacing showed that most differences be-
tween models appeared during the early vegetative growth
period (Figure 6, A and B). The models that considered solar
elevation and diffuse and direct PAR (all models except Kcst)
showed day-to-day FIPARday variations, demonstrating their
sensitivity to the illumination conditions. Compared with
Kell, Ksph underestimated FIPARday by �12% and 13% for
Maxwell and Caphorn, respectively. FIPARday was �13% and

Figure 1 Distributions of inclination angle of canopies’ green ele-
ments. Measured (bars) distributions of inclination angle of canopies’
green elements at the beginning of stem extension (GS31, A) and flag
leaf ligulation (GS39, B) for the winter wheat cultivars Caphorn (light
blue) and Maxwell (dark blue) grown in the field with standard row
spacing. Solid and dashed blue lines are the distributions of canopy in-
clination angles calculated with the ellipsoidal model for Caphorn and
Maxwell, respectively. Dot-dashed red lines are the distributions of
canopy inclination angles calculated with the spherical model. Vertical
arrows indicate the average angle for each growth stage and cultivar.

Figure 2 Clumping factor versus measured GAI GAImes. The clumping
factor was calculated using Equation 18 and the 3D reconstructions of
canopy structures at the beginning of stem extension (GS31) and flag
leaf ligule (GS39) for five winter wheat cultivars grown in the field
with SS (open symbols) and DS (closed symbols) row spacing. The
two red dashed circles indicate points from stage GS31 and GS39,
respectively.
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6% relatively lower when leaf clumping was accounted for in
the Kell and Ksph models, respectively. The uncertainty in
FIPARday between the CGMs that use the Kcst model was
�15% on average (gray banding in Figure 6). The Kmed

cst
model underestimated FIPARday by 28% and 29% for
Maxwell and Caphorn compared with the KC

ell model. The

performance of the Kavr model was close to the Kell model,
with a relative difference of 2% and 3% for Maxwell and
Caphorn, respectively. Compared with the KC

ell model, the
Kmed

cst model underestimated the cumulative intercepted
PAR (IPAR) by 35% and 10% at GS31 and GS39, respectively
(Figure 6, C and D), while the Ksph and Kavr models overesti-
mated it by 2% and 16% at GS31 and by 2% and 5% at
GS39, respectively.

Uncertainty in crop growth and grain yield
simulations due to light extinction models
To quantify the uncertainty in crop growth and grain yield
simulations due to light extinction models, we implemented
the FIPAR models we analyzed in this study in the CGM
SiriusQuality, and then simulated total biomass production
and yield at five sites with contrasted illumination condi-
tions. The Kcst model underestimated by 16% (in Wad
Medani, The Sudan) to 50% (in Jokiolinen, Finland) the cu-
mulative IPAR at maturity compared with the KC

ell model
(Figure 7A). The KHS

cst model performs similarly to Kcst model,
with a slight improvement. As expected, the differences
were higher at high latitudes where on average the solar ele-
vation angle is lower and f is higher. The other four models
(Kavr, Ksph, KC

sph, and Kell) overestimated the cumulative
FIPAR at maturity for all the sites compared with the
KC

ell model. The KC
sph model was the closest to the KC

ell model;
on average it overestimated cumulative IPAR by 5%. The rel-
ative differences in simulated total above ground biomass
(Figure 7B) and grain yield (Figure 7C) between the KC

ell
model and the other models were similar to those for the
cumulative IPAR. On average, simulated grain yield was 26%
and 17% lower for the Kcst and KHS

cst models compared with
the KC

ell model, while it was 17%, 17%, 6%, and 11% higher
for the Kavr, Ksph, KC

sph, and Kell models compared with the
KC

ell model (Figure 7C).
Some CGMs that use the Kcst model and the LUE ap-

proach (Monteith, 1977) to simulate biomass production in-
crease LUE on cloudy days to account for the greater
contribution to biomass accumulation by the leaves that are
shaded under clear sky conditions. We, therefore, performed
simulations with SiriusQuality that considered the increase
of LUE on days with high f value for the Kcst and KHS

cst mod-
els that do not separate the diffuse and direct components
of the incoming PAR (Supplemental Figure S4). Results
showed that the relative differences in grain yield between
the Kcst or KHS

cst model and the KC
ell model were halved for

Jokiolinen when considering the increase of LUE as f in-
creased. In Schleswig and Vantas Huelma, the relative differ-
ence in grain yield was then smaller than 5%. In Wad
Medani, the Kcst and KHS

cst models overestimated grain yield
compared with the KC

ell model when the response of LUE to
f was considered.

Discussion
The review of measured K values reported in the literature
showed a large variability. Measurements were achieved

Figure 3 Comparison among light extinction coefficient models.
RMSE for the fraction of intercepted diffuse (FIPARdif ) and direct
(FIPARdir) PAR, calculated with different light extinction coefficient
models at the beginning of stem extension (GS31, A) and at flag leaf
ligulation (GS39, B). FIPARdif and FIPARdir were calculated from the
3D reconstructed canopies and illumination conditions measured in
Grignon in 2013. The RMSE for FIPARdir was calculated for solar eleva-
tions varying from 10� to 85� . Light extinction models are: constant
values (K0:3

cst ; K0:6
cst , K0:9

cst ), constant values increased during the stem ex-
tension period (KHS

cst), average leaf inclination angle (Kavr), spherical leaf
inclination angle distribution (Ksph), spherical leaf inclination angle
distribution accounting for clumping (KC

sph), ellipsoidal leaf inclination
angle distribution (Kell), and ellipsoidal leaf inclination angle distribu-
tion accounting for clumping (KC

ell). Data are RMSE calculated for the
five cultivars and two-row spacing treatments. The greenness of the
background color increases with the corresponding RMSE value.
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under specific illumination conditions that varied among
studies. Further, the inconsistency of area index, including or
not including the stems and ears, and which was used to
derive K from Equation 1, makes the reported K values diffi-
cult to compare. Considering the diversity of growth condi-
tions and cultivars used in the studies reported in the
literature, no clear conclusions could be drawn to explain
the wide range of variability of K and the possible drivers.
The lack of common protocol for field measurements of K
also contributes to the diversity of values reported. A more
physically based approach is necessary to better understand
the limitations associated with these reported K values esti-
mated from field measurements.

The compilation of light interception models used in
wheat CGMs shows that most of them use a simplified for-
mulation with a constant K. The median value of K¼ 0.52
used in wheat CGM is close to the median value calculated
from measurements of FIPAR and GAI in the field
(K¼ 0.59). However, very few models provide justifications
for these values. Further, the use of Kcst does not account
for the illumination conditions experienced by canopies or
differences in canopy structure observed between growth
stages and cultivars. Some empirical models were proposed
to drive K values depending on growth stages (Brown et al.,
2018a, 2018b) or sowing patterns (Dzotsi et al., 2013). The

two other FIPAR models used in CGMs are physically based,
assuming the distribution of canopy element inclination is
equal to a single average value (Kavr) or follows a spherical
distribution accounting (KC

sph) or not (Ksph) for leaf clump-
ing. However, these three models are limited by their lack of
flexibility as well as realism when compared to reference
FIPAR values.

Therefore, we proposed a physically based model (KC
sph)

assuming that the surface inclination distribution follows an
ellipsoidal distribution with some possible leaf clumping. We
demonstrated that the distribution of surface inclination of
green elements in wheat canopies is well represented by an
ellipsoidal distribution with an average inclination angle that
depends on the growth stage and cultivars. Further sensitiv-
ity analysis using the KC

sph model illustrated the importance
of taking into account the illumination conditions, particu-
larly for the vegetative growth stages with low to medium
GAI values, when FIPARday is very sensitive to the illumina-
tion conditions.

A clumping factor was required to better describe FIPAR
as a function of GAI. It varies mostly with row spacing, with
a value close to 0.79 for 17.5 cm row spacing and 0.67 for
35 cm row spacing. These values are lower than the value of
0.9 previously reported for single-row spacing wheat cano-
pies (Baret et al., 2010). This difference may be partly

Figure 4 Sensitivity of the fraction of IPAR to various canopy structure. Sensitivity of the fraction of intercepted directs (FIPARdir; A–C) and dif-
fuse (FIPARdif ; D) PAR to GAI. FIPARdir was calculated for 80

�
(A), 32.5

�
(B), and 15

�
(C) solar elevations. FIPARdif and FIPARdir were calculated

with the ellipsoidal model accounting for clumping (with CGAI¼ 0.79). GAI is plotted on a logarithmic scale. The background color varies from
dark green to yellow indicates the increase of FIPAR value.
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explained by the error in GAI measurements, which is usu-
ally >10%. The 3D reconstruction of the canopies did not
account for the twisting of leaves, which may also contrib-
ute to the difference in CGAI between our study and previ-
ous ones. It should also be noted that CGAI was assumed
here to be independent from the row and solar directions,
while the clumping factor may vary by almost 30% as
reported by (Peng et al., 2018).

We showed that the ellipsoidal model outperformed the
other models for most illumination conditions, but the dif-
ferences between the models decreased for medium to high
GAI values because of the saturation of FIPAR as a function
of GAI. This explains why at GS39 the differences in cumula-
tive IPAR between models were only 2–10% when all mod-
els used the same GAI trajectory. This conclusion is
supported by several sensitivity analyses of CGMs that use
the Kcst model, which shows that variations of K of 20%
around it is nominal value (i.e. about two-third of uncer-
tainty of K reported for wheat CGMs) alone explain <5% of
the yield variance (Makowski et al., 2006; Martre et al.,

2015a, 2015b, 2015c; Casadebaig et al., 2016). However, small
differences in FIPAR during the early growth stages may
have large effects on crop growth and final biomass and
yield (Asseng et al., 2003; Bassu et al., 2011; Wilson et al.,
2015). Our simulations with the wheat CGM SiriusQuality
confirmed that, integrated over the growing season, the dif-
ferences in FIPAR simulated by the different light intercep-
tion models used in wheat CGMs may cause large
uncertainty in simulated wheat growth and final grain yield.
We showed that considering the response of LUE to f in
models that use a constant K and the LUE approach may
partly compensate for the underestimation of light intercep-
tion by the canopy, in particular at high latitudes where the
solar elevation angle is lower or when f is high.

Our results are supported by detailed 3D canopy architec-
ture reconstructions achieved under specific conditions. We
considered contrasting cultivars, growth stages, and sowing
density that represent a large variability of wheat canopy
structure. However, we focused on the growth stages be-
tween the beginning of stem extension and flag leaf ligule.

Figure 5 Diurnal course of the fraction of diffuse PAR (f ) and the fraction of IPAR (FIPAR). A, C demonstrate under clear while (B) and (D) shows
under overcast sky conditions at Grignon, France, calculated using the ellipsoidal model accounting for clumping (with CGAI¼ 0.79). The canopy
structure corresponds to the cultivar Caphorn at the beginning of stem extension (A and B) and flag leaf ligule (C and D) with standard row
spacing.
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Similar efforts should therefore be taken to describe the
periods after heading. In wheat canopies, ears intercept 10–
30% of the incident PAR at the top of the canopy (Thorne
et al., 1988; Bertheloot et al., 2008). Future work should also
consider the post-flowering period where GAI decreases be-
cause of leaf senescence, when the ear layer may contribute
even more to intercept PAR.

One main advantage of using a realistic physically based
FIPAR model is to provide more accurate values of radiation
use efficiency (RUE). When LUE is calibrated from biomass
measurements and estimates of IPAR using a too simple
model, errors in FIPAR computation will induce biases in
LUE estimated values, particularly for the early growth
stages. The proposed physically based light interception
model may reduce uncertainties in yield prediction from
CGMs based on calibrated RUE values (Sinclair and
Muchow, 1999).

The engineering of photosynthetic process has been con-
sidered as promising to increase the genetic yield potential
of crops (Long et al., 2015; Wu et al., 2019). The use of a re-
alistic FIPAR model appears thus very important when
exploiting RUE or leaf photosynthesis traits as functional
traits that characterize genotypes for plant breeding. This

requires the light interception model to be established phys-
ically on realistic representations of the canopy, and also its
interaction with the incident radiation. The proposed ellip-
soidal model offers the possibility to compute the fraction
of sun lit and shaded green elements in canopies (Pury and
Farquhar, 1997) and to consider several layers in the canopy
(Sellers et al., 1992; Wang and Leuning, 1998). Such a model
is described and the source code is provided in Manceau
et al. (2020).

The rapid progress of high-throughput phenotyping
technology offers affordable and operational systems based
on very high-resolution imagery. It allows measuring accu-
rately the green fraction in several directions from which
the two key parameters of the KC

ell model, namely CGAI and
h, can be estimated as a function of the genotype and
growth stage (Liu et al., 2019). This would be of great inter-
est for breeders to design ideotypes better adapted to given
scenarios.

Conclusion
We reviewed the light interception models used in CGM for
wheat crops. The fraction of intercepted radiation is always

Figure 6 Dynamic of daily fraction of IPAR (FIPARday) and cumulative IPAR. The change of FIPARday (A and B) and IPAR (C and D) versus thermal
time after crop emergence for the winter wheat cultivars Maxwell (A and C) and Caphorn (B and D), calculated with different light extinction
models. Light extinction models are: constant values (Kmed

cst ), constant values increased during the stem extension period (KHS
cst), average leaf incli-

nation angle (Kavr), spherical leaf inclination angle distribution (Ksph), spherical leaf inclination angle distribution accounting for clumping (KC
sph),

ellipsoidal leaf inclination angle distribution (Kell), and ellipsoidal leaf inclination angle distribution accounting for clumping (KC
ell). Kmed

cst is the me-
dian value for the 22 models that use a constant K value (Table 2), and the gray banding shows the 5% and 95% percentile. The canopy structure
and weather data correspond to the 2012–2013 experiment in Grignon, France with standard row spacing. Vertical arrows indicate the beginning
of stem extension (GS31) and flag leaf ligule (GS39).
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related to the area of green elements per unit ground area
through an exponential law characterized by an extinction
coefficient, K. Experimental observations of K show that it
ranges between 0.28 and 0.90 with a median value of 0.59.
This wide variability is explained by the wide range of FIPAR
measurement methods, illumination and growth conditions
as well as genotype variability. Further, while GAI that
accounts for all the green surfaces should be considered,
some studies do not account for the stems and ears that
may represent a large fraction of the green surfaces. Most of
the CGMs use a constant K with a median value of K¼ 0.52
with, however, a large variability between CGMs. To

explicitly account for the changes in illumination conditions,
few models use a physically based model assuming either
that the surfaces are inclined at a single angle, or that the
distribution of the inclination of the green surfaces follows a
spherical distribution. However, our experimental observa-
tions demonstrate that the distribution of the inclination of
leaf and stem surfaces is well described by an ellipsoidal dis-
tribution characterized by h. Further, h may change with
cultivar, growth stages and conditions. Additionally, a
clumping factor should be accounted for to describe the
non-perfectly random spatial distribution of green elements
in the canopy volume. We, therefore, propose this physically

Figure 7 Uncertainty in simulated cumulative IPAR, total above-ground biomass, and grain yield at harvest due to different light extinction mod-
els at five sites spanning the range of latitudes at which wheat is grown. Relative differences in the three variables between the different models
and the model with ellipsoidal leaf inclination angle distribution accounting for clumping (KC

ell) considered as reference are shown. Light extinction
models are: constant light extinction coefficient (Kmed

cst ), constant values increased during the stem extension period (KHS
cst), average leaf inclination

angle (Kavr), spherical leaf inclination angle distribution (Ksph), spherical leaf inclination angle distribution accounting for clumping (KC
sph), ellipsoi-

dal leaf inclination angle distribution (Kell). Kmed
cst is the median value for the 22 wheat CGM models that use a constant K value (Table 2).

Simulations were performed using the wheat CGM SiriusQuality. Data are mean 6 1 SD for 30 growing seasons by 5 cultivars.
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based model using an ellipsoidal distribution of surface incli-
nation with a clumping factor. This light interception model
was compared to the other models used in CGMs based on
3D wheat canopy scenes reconstructed from detailed field
measurements. Results show that it outperforms all the
other models to describe the variation of FIPAR due to illu-
mination conditions, genotype effects due to variations of
surface inclination distribution, and canopy structure effects
due to variation in row spacing. These differences are en-
hanced for the earlier stages. We then simulated the time
course of FIPAR with these several light interception models
using the measured time course of GAI at Grignon, France.
Results show that the differences in terms of cumulated
IPAR are not very large between light interception models,
with most differences appearing during the early stages. We

finally evaluated the impact of the light interception model
used in the SiriusQuality CGM on biomass production and
yield. This was done over five sites spanning from 14� to 60�

latitude, representing a wide range of illumination and
growth conditions. Results show clearly the large influence
of the light interception model, particularly for the high lati-
tude sites with particular illumination conditions. These
large differences are explained by the fact that a change in
FIPAR impacts the biomass production and GAI dynamics.
This expresses mostly during the early growth stages.
However, these early differences impact the whole fate of
the crop.

It is finally concluded that the light interception model is
critical for realistic simulations in CGMs. We proposed a
physically based model that represents the surface

Figure 8 Input and output of D3P to estimate FIPAR, GAI, CGAI and h : (A) photo of a row of transplants from the field (a-1 and a-2) and 3D
reconstructed images (a-3 and a-4) of the winter wheat cultivar Maxwell at growth stages 31 (a-1 and a-3) and 39 (a-2 and a-4). (B) Nadir view of
the reconstructed 3D wheat canopy where the inclination angle of each triangle is color coded; (C) Hemispherical image with a 160

�
field of view

over the simulated canopy.
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inclination distribution by an ellipsoidal distribution with a
clumping factor. However, this poses the problem of de-
scribing the average surface inclination angle that character-
izes the ellipsoidal distribution and the clumping factor,
along with their possible variation with genotypes, stages,
and environmental conditions. Further work should, there-
fore, be directed to the development of high-throughput
methods to measure the average surface inclination angle
and clumping factor to better understand and model their
variability.

Materials and methods

Crop growth conditions
Experiments were conducted during the 2012–2013 growing
season at Thiverval-Grignon, France (48�510 N, 1�580 E). The
experimental design and growth conditions are described in
detail in Abichou et al. (2019). Five winter wheat (T. aesti-
vum) cultivars with contrasting leaf inclination (Apache,
Caphorn, Maxwell, Renan, and Soissons) were sown on
October 2, 2012 in a deep loamy soil at a density of 170
seeds m�2 with either standard (SS, 0.175 m) or double (DS,
0.350 m) row spacing. The mean plant spacing on the row
were 2.9 and 1.4 cm for SS and DS, respectively, ensuring
similar plant density. The experimental design included two
blocks (15� 1.75 m) per treatment. Crops were grown un-
der nonlimiting water and nitrogen conditions and kept free
of weeds and diseases. N fertilization followed the recom-
mended scheme for the area, with one dose at tillering and
one dose applied shortly before stem extension. Air temper-
ature at 2 m and global and diffuse PAR were recorded by a
meteorological station located next to the experimental
field. Thermal time was calculated from plant emergence on
an hourly basis, assuming a linear response of plant develop-
ment to temperature, with a base temperature of 0�C.

Plant digitalization and 3D canopy reconstruction
Canopies of each cultivar for the two row-spacing treat-
ments were digitized at the beginning of stem elongation
(GS31) (Zadoks et al., 1974) and the ligulation of the flag
leaf (GS39). In each plot, two 0.4-m long segments of one
row were collected, including the soil and the roots down
to 15-cm depth. Row segments were put intact in plastic
containers and then brought to the laboratory where the
plant structure was digitized (Figure 8A). Great care was
paid in this process to preserve the original canopy struc-
ture. Each row segment was photographed (Figure 8A), then
the coordinates of points along leaves midribs and stems
were recorded with a magnetic digitizer (3SpaceE Fastrak,
Polhemus Inc., Colchester, VT, USA) using the 3A software
(Adam et al., 1999). Apart from the skeleton information,
the maximum width and length of the lamina of the indi-
vidual mature leaves of the main stem, and the stem diame-
ter and leaf collar height of each individual leaf were
measured with a ruler on 30 tagged plants. The correspond-
ing lamina width and shape were derived using empirical
parametric models (Dornbusch et al., 2011; Abichou, 2016).

The 3D canopy architecture was then reconstructed as a 3D
mesh composed of triangles using the 3D plant structure
modeling library PlantGL (Pradal et al., 2009).

Calculation of GAI, average surface inclination,
clumping factor, and FIPAR from 3D digitalized
canopies
All the green triangles in the reconstructed 3D canopies
were labeled as lamina or stem. GAImes was calculated as
the sum of the area of all the triangles for the leaves, and
only half the sum of the area of the stem triangles (Lang,
1991; Chen and Black, 1992). GAIeff was calculated as (Chen
and Black, 1991; Weiss et al., 2004):

GAIeff ¼ 2

ðp=2

0

�lnð1� GFðbÞÞcos b cos b db (25)

CGAI was then calculated as the ratio of GAImes to GAIeff

(Eq. 18). h was calculated as the average of inclination angles
of all lamina and stem triangles weighted by their corre-
sponding areas (Figure 8B).

FIPARdir and FIPARdif were calculated from the 3D recon-
structed canopies using the Digital Plant Phenotyping
Platform (D3P; Liu et al., 2019). The virtual 3D plants were
duplicated to create 5� 5 m scenes with row spacing consis-
tent with the experiment. Then the RGB camera simulator
in D3P was used to render hemispherical photos over the
virtual scenes. Photographs were taken 30 cm above the top
of the reconstructed 3D canopies with a 160

�
field of view

and a 25 million pixel resolution. The camera was moved 7
times in a diagonal pattern between the two central rows
to account for the row effect. The camera was maintained
horizontal and parallel to the row direction. Thus, the direc-
tional green fraction was symmetric along and across the
row direction. No azimuthal effect was considered, and
images were processed by rings of 10� elevation angle
(bi � 5� < b < bi þ 5�) to compute FIPARdir (Figure 8C).
FIPARdif was then calculated by using Equation 24. These
FIPARdir and FIPARdif values were used as references to eval-
uate the performance of the FIPAR models reviewed above.

Calculation of FIPAR dynamics
The different FIPAR models were first intercompared at
Grignon, France. Calculations were done using h and GAImes

values for the cultivars Maxwell and Caphorn and the single
row-spacing treatment at Grignon. GAImes was measured
weekly from the ligulation of the fourth leaf to GS39 from
down-looking RGB photographs (Supplemental Methods
S2). The measured GAImes values were interpolated linearly
as a function of thermal time. For the ellipsoidal models, we
assumed that h was constant between crop emergence and
GS31 and then increased linearly between GS31 and GS39.
These assumptions are consistent with the ontogenic
changes in lamina insertion angles reported by Abichou
et al. (2019). We further assumed that the clumping factor
did not change between crop emergence and GS39.
Calculations were done for the 2012–2013 growing season
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at Grignon, France. The hourly PAR intercepted by canopies
(IPAR) was calculated as the incident PAR times FIPAR. The
daily IPAR was then calculated as the sum of hourly IPAR,
assuming f dif

PAR was constant hourly.

Evaluation of the impact of light extinction
coefficient models on simulated total above-ground
biomass and grain yield
To quantify the impact of light extinction coefficient models
on simulated wheat crop growth and grain yield uncertainty,
we created a model component in the BioMA software
framework that implements the light extinction coefficient
and FIPAR models analyzed in this study (Manceau et al.,
2020) and integrated it in the wheat CGM SiriusQuality
(Martre et al., 2006). In SiriusQuality, biomass production is
modeled using the LUE approach (Monteith, 1977). LUE
(and biomass production) is calculated for each leaf cohort
(Martre and Dambreville, 2018) and is modified by the spe-
cific leaf N mass of the leaf cohort (Sinclair and Horie, 1989),
canopy temperature (Wang et al., 2017), soil water deficit
(Jamieson et al., 1998), atmospheric CO2 concentration
(Jamieson et al., 2000), and the fraction of diffuse radiation.
However, LUE was assumed as constant, except for special
simulations to assess whether the LUE response to the frac-
tion of diffuse radiation considered in some CGMs that use
a constant K and the LUE approach to model biomass pro-
duction can account for the higher FIPAR by the canopy on
a cloudy day (see Supplemental Methods S3).

SiriusQuality was executed for a large range of illumination
conditions at five sites spanning the latitudes at which
wheat is grown (Supplemental Table S4): Wad Medani, The
Sudan (14� 240 N), Ventas Huelma, Spain (37� 90 N),
Grignon, France (48�510 N), Schleswig, Germany (54� 310 N),
and Jokioinen, Finland (60� 480 N). At all sites but Grignon,
simulations were set up using the observed local mean sow-
ing dates, initial soil N and water contents, crop manage-
ment, daily weather data, soil characteristics, and cultivars
reported by Asseng et al. (2019). In Grignon, simulations
were set up using similar information provided in (Jeuffroy
and Bouchard, 1999) and (Jeuffroy and Recous, 1999), and
daily weather data from the local INRAE weather station.
The fraction of diffuse PAR (f ) was calculated with the ap-
proach proposed by Spitters et al. (1986) used in
SiriusQuality.

Simulations were done with each of the seven light extinc-
tion coefficients and FIPAR models for 30 consecutive years
(1981–2010), with initial conditions reset each year and us-
ing the same parameters and inputs at each site for all the
light extinction models. Cultivar parameters were previously
calibrated against the observed anthesis and maturity dates
by considering information on vernalization requirements
and photoperiod sensitivity (Supplemental Table S4). For
the ellipsoidal models, h values were from the five cultivars
for the single row spacing treatment at Grignon. As above,
we assumed that h was constant between crop emergence
and GS31 and then increased linearly between GS31 and

GS39, and that the clumping factor did not change between
crop emergence and maturity. Using the KC

ell model as a ref-
erence, the relative difference from the other six models was
calculated for cumulative IPAR, total above ground biomass,
and grain yield.

Statistical analyses
The distributions of the tilt angle of all the triangles from
the digitalized canopies were compartmented with an ellip-
soidal or spherical distribution using two-sample
Kolmogorov–Smirnov tests. Differences in h and CGAI due
to the growth stage and row spacing were analyzed using
two-way analysis of variance after verifying that the treat-
ment effects were normally distributed with equal variance.

The accuracy of FIPARdir and FIPARdif calculated using the
different approaches reviewed above was assessed with the
RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

yi � ŷið Þ2
s

(26)

where yi and ŷi are the predicted values and the measured
values, respectively.

Code availability
All K and FIPAR models presented here were coded in
Matlab and we also developed an independent executable
component in the BioMA software framework (http://www.
biomamodelling.org), which can easily be extended and cou-
pled with CGMs. The source code and the standalone exe-
cutable of the BioMA component are freely available at
https://zenodo.org/record/3820386. The SiriusQuality model
can be downloaded from https://github.com/SiriusQuality.

Supplemental data
The following supplemental materials are available.

Supplemental Method S1. Sensitivity analysis of PROSAIL
model.

Supplemental Method S2. Measurements of effective
GAI.

Supplemental Method S3. Modeling the response of LUE
to the fraction of diffuse light.

Supplemental Results Validity of the FIPAR
approximation.

Supplemental Figure S1. Relationship between sampled
average inclination angle of green elements in the canopy
(h) and GAI.

Supplemental Figure S2. Comparison between FIPAR and
FAPAR for different leaf chlorophyll concentrations (Cab)
and soil reflectance (rsl).

Supplemental Figure S3. Distributions of inclination an-
gle of canopies’ green elements.

Supplemental Figure S4. Differences between among
light extinction models.

Supplemental Table S1. Parameters sampling to build
the dataset for FIPAR and FAPAR comparison using the
PROSAIL model.

Plant Physiology, 2021 Vol. 0, No. 0 PLANT PHYSIOLOGY 2021: Page 17 of 21 | 17

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab113/6169006 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 02 June 2021

https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
http://www.biomamodelling.org
http://www.biomamodelling.org
https://zenodo.org/record/3820386
https://github.com/SiriusQuality
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab113#supplementary-data


Supplemental Table S2. Average inclination angle of
green leaf and stem elements measured in the canopy at
the beginning of stem extension (GS 31) and flag leaf ligule
(GS 39) for five winter wheat cultivars grown in the field
with standard (17.5 cm, SS) and double (35 cm, DS) row
spacing.

Supplemental Table S3. Two-way analysis of variance
(ANOVA) for average inclination angle at canopy scale at
the beginning of stem extension (GS 31) and flag leaf ligule
(GS 39).

Supplemental Table S4. Location, cultivar, and phenology
information at the five sites used to simulate wheat crop
growth and grain yield with the wheat crop model
SiriusQuality.
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