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Abstract
• Key message  The increase in climate variability is likely to generate an increased occurrence of both frost-induced 
and drought-induced damages on perennial plants. We examined how these stress factors can potentially interact and 
would subsequently affect the vulnerability to each other. Furthermore, we discussed how this vulnerability could be 
modulated by shifts in the annual phenological cycle.
Context  The edges of plant distribution are strongly affected by abiotic constraints: heat waves and drought at low latitude 
and elevation, cold and frost at high latitude and elevation. The increase in climate variability will enhance the probability 
of extreme events and thus the potential interaction of stress factors. The initial exposure to a first constraint may affect the 
vulnerability to a subsequent one.
Aims  Although three integrative physiological processes, namely water balance, carbon metabolism and the timing of phe-
nological stages, have largely been studied in the response of trees to a single constraint, their interaction has rarely been 
investigated. How would the interaction of frost and drought constraints modulate the vulnerability to a subsequent constraint 
and how vulnerability to a given constraint and phenology interact?
Conclusion  We suggest that the interaction between frost and drought constraints should in the short-term influence water 
balance and, in the longer term, carbon metabolism, both consequently affecting further vulnerability. However, this vul-
nerability can be modulated by shifts in the annual phenological cycle. Significant gaps of knowledge are reported in a 
mechanistic framework. This framework can help to improve the current process-based models integrating the life history 
of the individual plant.

Keywords  Abiotic stress · Acclimation · Carbon availability · Drought · Frost · Phenology · Risk assessment · Tree 
ecophysiology

1  Introduction

Abiotic (e.g., temperature, water, light, nutrients) and 
biotic factors (e.g., intra and interspecific competition, 
predation, parasitism) are the major drivers of plant dis-
tribution and evolutionary change (Erwin 2009; Klanderud 
et  al. 2015). Although biotic factors drive population 
dynamics in the entire range, abiotic factors can be highly 
relevant at the rear and leading edges of the distribution 
(Hampe and Petit 2005). Within the boreal, alpine, tem-
perate, and Mediterranean areas, plants are likely to be 
exposed to both drought and frost stress, although it may 
not happen every year. At the rear edge, drought stress 
is one of the critical abiotic factors (e.g., at low latitude 
and elevation in Europe; Loehle 1998; Lines et al. 2010; 
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Ruiz-Benito et al. 2013). At the leading edge (high lati-
tude and elevation), cold and freezing temperatures usually 
limit plant distribution (Gusta et al. 1983; Koerner 1998; 
Larcher 2005; Charrier et al. 2013a). Along a latitudinal 
gradient within the niche of a species, drought and frost 
constraints are often separated; i.e., episodes of mild or 
severe drought are observed on the rear edge mostly during 
the summer, and frost stress on the leading edge during the 
autumn (early frosts), winter, or spring (late frosts). This 
has led to define the autoecological approach to predict 
the distribution of plant species within frost-exposed areas 
(boreal, alpine, temperate, and Mediterranean areas), con-
sidering individual limitations, such as minimum tempera-
ture at the leading edge or water deficit at the rear edge 
(Guisan and Thuiller 2005; Cheaib et al. 2012). However, 
drought and frost can co-occur at high elevation when, late 
in the winter, air temperature increases while soil is still 
frozen, inducing the so-called winter drought (Tranquillini  
1979; Mayr and Charra-Vaskou 2007; Charrier et  al. 
2017). Drought and frost may also take place successively 
at the same location, affecting plant health and resistance 
to following stress factor (Kreyling et al. 2012). An alter-
native approach is thus required for taking the different 
involved processes into account, and, more importantly, 
for addressing their interaction to improve the actual spe-
cies distribution models.

This is even more crucial since dramatic changes in 
climate are likely to increase exposure to abiotic con-
straints over all biomes (IPCC 2012). Mean surface tem- 
perature increased at a rate of 0.2 °C per decade over 
the last decades, leading to species migration at higher 
latitudes and elevation (Parmesan and Yohe 2003; 
Lenoir et al. 2008). Ecosystem functioning is likely to 
be affected by these changes, however, through contra-
dictory effects. On the one hand, increased productivity 
is expected in relation to longer growing season (early 
f lushing dates and delayed senescence; Schaber and 
Badeck 2005; Menzel et al. 2006; Fu et al. 2014; Keenan 
and Richardson 2015). On the other hand, a substan-
tial deterioration in various physiological processes is 
expected to be induced by an insufficient winter chilling 
that would alter plant development (Chuine et al. 2016; 
Delpierre et al. 2016), or increased climatic hazards such 
as drought (Porporato et  al. 2004; Allen et  al. 2010; 
Carnicer et al. 2012) or late frost events (Leinonen and 
Hänninen 2002; Augspurger 2013).

The extreme climatic events (e.g., drought, frost, heat 
spell, and storm) play a major role in the distribution, sur-
vival, and, therefore, adaptation of plants (Chapin et al. 

1993; van Peer et al. 2004), as well as in the productivity 
and the composition of communities (Knapp et al. 2002). 
The expected increase in climate variability will inevi-
tably lead to an increase in the frequency, intensity, and 
duration of extreme events (IPCC 2012; Rummukainen 
2012; Seneviratne et al. 2012). If the return period of two  
extreme events is divided by two (e.g., a 100-year epi- 
sode occurring twice more often), the return period of 
the interaction between these two constraints should hap-
pen four times more often. How these extreme events will 
affect ecosystem functions is a key issue for climatologists,  
ecologists, and modelers (IPCC 2014; Ummenhofer and 
Meehl 2017). In this regard, perennial plants, and espe-
cially trees, which are keystones structuring many eco-
systems, sheltering biodiversity, and being an important 
carbon stock, are the most likely to be affected by an 
increased exposure to abiotic constraints, even though 
they may not reach the lethal threshold at once (Chuste 
et al. 2019). An accurate assessment of the emerging risks 
and their impacts on the physiology of trees is therefore 
urgently needed to predict dynamics of forest ecosystems 
and ultimately their influence on the water and carbon 
cycles at the global scale.

The risk of developing significant damages is only 
achieved at the crossing between climatic hazards (e.g., 
drought or frost constraint), stress exposure (e.g., low water  
potential or organ temperature), and tree vulnerability (e.g.,  
low resistance to embolism or insufficient frost hardiness; 
Bréda and Peiffer 2014). The prediction of emerging risks 
therefore needs accurate assessments of (i) the exposure 
to a given abiotic constraint (type, intensity, duration, and  
frequency) and (ii) the spatio-temporal patterns of vulner- 
ability and subsequent damages (e.g., perennial tissues fac- 
ing early and winter frosts vs. flowers and flushing buds 
facing late frosts). The timing of critical phenological 
stages (e.g., bud burst date and leaf full expansion date 
with respect to frost and drought, respectively) would thus 
modulate risk and subsequent damages. How the exposure  
to a given abiotic constraint at a given time instant would 
influence the vulnerability to the same or a different con-
straint in the future is a critical issue that has been only 
rarely investigated (Miao et al. 2009; Anderegg et al. 2013;  
Batllori et al. 2017; Hossain et al. 2019).

The vulnerability to abiotic constraints (which is the 
susceptibility to develop damages facing a given stress 
intensity) has been studied for decades via three different  
focuses, namely phenology (Fig. 1 Frame C; Hänninen and  
Tanino 2011), water use (Fig. 1 Frame D, Choat et al. 2012;  
Anderegg et al. 2015), and carbon availability (Fig. 1 Frame  
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B, Sala et al. 2012; Hartmann and Trumbore 2016). The 
individual responses of each tree ecophysiological process  
have been integrated into process-based models such as  
PHENOFIT (Morin and Chuine 2005), SUREAU (Martin- 
StPaul et al. 2017), or CASTANEA (Dufrêne et al. 2005), 
for phenology, water use, and carbon availability, respec-
tively. Facing constraints, the response of each process may  
not be linear. Therefore, the response to simultaneous or 
successive constraints may generate complex behavior. 
Integrating the physiological response to abiotic constraints  
is therefore needed to predict various forms of emergent  
behavior under new conditions imposed by climate change  
(Bartholomeus et al. 2011).

This paper summarizes the state-of-the-art of tree 
responses to drought and frost constraints and subsequent  
damages from the cellular to the individual scale with the  
aim of emphasizing the undervalued role of their interac- 

tions at the short-term scale (i.e., from day to year). In 
fact, so far, the different scientific communities have only  
focused in one of these processes at a time (e.g., hydrau-
lic in response to drought, frost hardiness and damages, 
phenological cycles). The influence of previous stress fac- 
tors on plant vulnerability is mainly relevant on peren-
nial plants and will be mainly explored at the annual level 
through two main questions: (i) How would the interaction  
of drought and frost constraints modulate the vulnerabil-
ity to a subsequent constraint? (ii) How do vulnerability 
to a given constraint and phenology interact? Address-
ing these questions will provide novel information about 
the interaction between climate and trees from a wider, 
multifactorial, and temporal perspective. This framework 
will be crucial to understand and predict local mortality 
dynamics and ultimately to improve current species dis-
tribution models.
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Fig. 1   Involved processes affected by water (mainly during the sum-
mer period) and frost stress (mainly during the winter period). Posi-
tive (solid) and negative (dashed) effects of stresses are expected on 
three functional components, namely carbon metabolism (B), phe-
nological processes (C), and hydraulic safety (D). Positive relations 
between timing events (phenological stages such as leaf fall and bud-
burst) and other processes indicate that earlier event induces higher 
level, and vice versa. All represented processes are interrelated either 
directly and indirectly. Both winter and summer stresses affect the 

same processes either synergistically or antagonistically. Main effects 
are reported, although non-linear and thresholds could make the 
response more complex. The numbers refer to studies that document 
these effects (1. Morin et al. 2007; 2. O’Brien et al. 2014; 3. Améglio 
et  al. 2004; 4. McDowell et al. 2008; 5. Bréda et  al. 2006; 6. Tyree 
et al. 1993; 7. Schuster et al. 2014; 8. Xie et al. 2015; 9. Rinne et al. 
1997; 10. Chaves et al. 2002; 11. Charrier et al. 2011; 12. Ghesquière 
et  al. 2014; 13. Hänninen 1991; 14. Sperry et  al. 1998; 15. Charra-
Vaskou et al. 2016; 16. Charrier et al. 2014)
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2 � How would the interaction of drought 
and frost constraints modulate 
the vulnerability to a subsequent 
constraint?

Over the last decades, ecophysiological studies have led to a 
comprehensive understanding on the direct relation between 
abiotic constraints and physiological processes (Frames #1 and 
#2; Fig. 1). From a physical perspective, both drought and frost 
constraints are related to a limited liquid water availability. Sim-
ilar damages are generated at both the cellular (i.e., plasmolysis 
and cell lysis; Levitt 1980; Siminovitch and Cloutier 1983) and 
vascular levels (i.e., cavitation and embolism when a critical 
level of water potential is reached; Sperry and Sullivan 1992; 
Charrier et al. 2014). A critical factor in the response to both 
stresses is the accumulation of solutes to maintain a solvation 
layer around macromolecules. Plants have thus developed simi-
lar molecular responses to drought and frost constraints (Beck 
et al. 2007), under the control of abscisic acid (ABA; Chandler  
and Robertson 1994), inducing, for instance, the synthesis 
of dehydrins (Welling et al. 2002). Interestingly, the molecu-
lar response to both constraints involves the same regulatory 
mechanisms (e.g., dehydration responsive elements containing 
cold binding factors; Stockinger et al. 1997; Baker et al. 1994). 
The same pathways are thus activated in both cold and drought 
responses (Yamaguchi-Shinozaki and Shinozaki 1994).

Frame 1 Mechanisms leading to drought-induced 
damages

Water stress results from an imbalance between inwards (root water 
absorption) and outwards water fluxes (transpiration and evapora-
tion). Trees have developed resistance mechanisms to avoid water 
stress (maintaining high water potential; Fig. 1) by a tight control 
of both inwards (e.g., deep rooting) and outward water fluxes (e.g., 
stomatal closure, leaf shedding, low cuticular transpiration; Choat 
et al. 2018; Martin-StPaul et al. 2017). Maintaining xylem hydrau-
lic function under high tension is also a critical trait to avoid 
dehydration, and ultimately desiccation, of living tissues (Fig. 1 
#14; Sperry et al. 1998, Brodribb and Cochard 2009). However, 
ontogenic changes in xylem vulnerability to embolism may 
modulate tree resistance across seasons (Charrier et al. 2018b).
In some species, leaves are more drought-sensitive than perennial 
organs (i.e., hydraulic vulnerability segmentation) and usually fall 
after the exposure to drought (Fig. 1 #6 Tyree et al. 1993). Such a 
deciduous behavior can be too sudden to allow recycling nutrients 
(Fig. 1 #5 Bréda et al. 2006) but not in all cases (Marchin et al. 
2010). Following leaf fall, the reestablishment of a new cohort 
of leaves would mobilize non-structural carbohydrate reserves, 
which may not be restored before the winter. Long-term drought 
induces stomatal closure to maintain the functionality of the 
hydraulic system. As respiration is maintained and even increased 
during warm spells, while carbon assimilation is reduced, carbon 
reserves steadily deplete (Fig. 2; McDowell et al. 2008). Finally, 
two pools, namely solutes, including carbohydrates, and water, 
interact to maintain a turgor and a solvation layer around biomol-
ecules avoiding critical denaturation and related cellular death 
(Bowman and Roberts 1985; Martinez-Vilalta et al. 2019).

Frame 2 Mechanisms leading to frost-induced damages

Low temperature drives tree species distribution through dif-
ferent processes: including resistance to freezing temperature 
and to frost-induced embolism (Charrier et al. 2013a), the time 
to complete the annual cycle, and seedling survival (Koerner 
et al. 2016). In fully hydrated organs, ice formation can induce 
mechanical strains and frost cracks (Kubler 1983; Cinotti 1991). 
In moderately dehydrated organs, ice nucleation and propagation 
redistribute water towards nucleation sites (Ball et al. 2006; Mayr 
and Charra-Vaskou 2007) and likely provoke air seeding within 
pits (Charrier et al. 2014). However, frost-induced embolism in 
the distal parts would insulate the trunk from further dehydration 
(Fig. 1 #15; Lemoine et al. 1999; Charrier et al. 2017). Critical 
thresholds can be reached when the root water absorption cannot 
compensate the evaporative demand during periods of sunny days 
alternating with freezing nights (i.e., winter drought; Tranquillini 
1979; Charrier et al. 2017). At the cellular level, the low chemi-
cal potential of ice pulls water molecules from the cells towards 
extracellular ice lattice, causing pronounced cell dehydration and 
shrinkage (Dowgert and Steponkus 1984; Charra-Vaskou et al. 
2016). To cope with seasonal frost stress, trees transiently increase 
their frost resistance in frost-exposed organs through the synthesis 
of cryoprotective solutes (Charrier et al. 2013b). Cryoprotective 
solutes (e.g., carbohydrates, amino acids, or organic acids) can 
protect macromolecules by maintaining a solvation layer around 
them. Being the main substrate and energetic source, non-struc-
tural carbohydrate content in the autumn is thus tightly related 
to maximum frost resistance reached during the winter (Fig. 1 
#1; Palonen and Buszard 1997; Morin et al. 2007; Charrier et al. 
2013a; 2018c). As non-structural carbohydrate content usually 
increases with elevation through temperature-limited growth 
rather than by carbon availability (Hoch et al. 2002; Shi et al. 
2008; Koerner 2015), the increase in NSC at higher elevation 
would help plants to reach sufficient level of frost resistance in the 
winter.

The onset of drought-induced damages is triggered by 
hydraulic failure and involves the interaction between water  
balance and carbon metabolism (Frame 1 and reviews  
from Choat et al. 2018; Martinez-Vilalta et al. 2019, for 
extensive description of drought stress syndromes), as for  
frost-induced damages (Charrier et al. 2013b; 2015). At  
the vascular level, species more vulnerable to winter embo-
lism seem to be also more vulnerable to summer embolism 
(Charrier et al. 2014). This may be related to the ability 
of air to propagate within xylem under high frost-related 
or drought-related tension through bordered pits (Cochard 
et al. 1992). Despite current controversies on the ability 
of plant to restore its hydraulic conductivity under tension  
(e.g., Zwieniecki and Holbrook 2009; Brodersen et al. 2010;  
Lamarque et al. 2018), many tree species are able to restore  
their hydraulic conductivity under positive pressure, for 
instance to supply growth in the spring (Hacke and Sauter 
1996; Cochard et al. 2001). In angiosperms, one refilling 
mechanism involves osmoregulation via solute compounds 
generating low osmotic potential in the lumen of the vessels  
during the winter (Ewers et al. 2001; Améglio et al. 2002), 
and eventually the summer (Nardini et al. 2011). A refilling  
mechanism has not yet been identified for conifers, but there  
is evidence that refilling likely occurs within several species  
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(Sperry and Sullivan 1992; Sperry et al. 1994; Mayr et al. 
2003; 2014). Positive sap pressure has also been measured at  
the whole plant scale from the pressurization of the root sys- 
tem, notably in woody lianas (Priestley 1920; Sperry et al. 
1987; Charrier et al. 2016) and herbs (Gleason et al. 2017).

Embolism arising from the freezing of xylem sap and 
high tension arising from drought may interact. Such 
repeated freeze–thaw and drought events may lead to 
reduced embolism resistance (Mayr et al. 2003; 2007). This 
is because the initial exposure to freezing temperatures may 
result in the deformation of the ultrastructure of bordered pit 
membranes, which are critical for preventing the spread of 
gas from one conduit into another (Christensen-Dalsgaard 
and Tyree 2014). However, despite high xylem embolism 
has been suggested to cause plant death (Brodribb and 
Cochard 2009), higher embolism than 50%, and even 90%, 
is frequently observed and recovered in over-wintering trees 
without impairing their survival, which suggests that it does 
not constitute a lethal threshold by itself (Sperry et al. 1994; 
Mayr et al. 2003; 2006; 2019; Charrier et al. 2013a). High 
xylem embolism may be an empirical correlate with plant 
death, rather than a physiological cause (Mayr et al. 2019).

Although drought and frost stresses affect many physi-
ological processes in the same way, it is not clear how the 
response to a repeated exposure could affect vulnerability to 
a given stress. As a first approximation, one would expect 
that a stress affecting the carbon balance may make the tree 
more vulnerable to subsequent stresses; e.g., defoliated 
oaks would decline within 2 years (Wargo 1981), or car-
bon-deprived spruces would die more rapidly from drought 
(Hartmann et al. 2013). This hypothesis fed into the so-
called boxer theory, suggesting the successive stresses may 
cause trees to decline (Wargo 1996; Bréda and Peiffer 2014). 
Wood growth has been used as an integrative marker follow-
ing frost and drought stress (Vanoni et al. 2016; d’Andrea 
et al. 2020). However, due to the difficulty of conducting 
long-term studies through the development of project-based 
funding, few studies have been able to accurately character-
ize the affected ecophysiological processes.

Two alternative processes, although not mutually exclu-
sive, may help to predict the interaction between stress 
factors. Legacy is considered a passive change of physi-
ological status in response to previous stress exposure. We 
suggest that the modulation of either carbon or water pools 
may result in the modulation of vulnerability (McDowell 
et al. 2008). Altered water balance and carbon metabolism 
would generate potential feedback physiological loops and 
trade-offs during successive abiotic stress exposures (legacy 
effect). Memory (also known as priming) relates to a defen-
sive plant response to either biotic or abiotic stress (Savvides 
et al. 2016), and is considered an active process that shifts 
or enhances the basal resistance at the cost of reducing pri-
mary metabolism such as growth (Bruce et al. 2007; Walter 

et al. 2013; Martinez-Medina et al. 2016). Memory requires 
pre-exposure to the stress factor that will modulate the rate 
of plant response through the accumulation of regulatory 
proteins, transcription factors, or histone methylation. In 
contrast, acclimation occurs in response to a change in envi-
ronmental conditions prior to stress exposure or after stress 
exposure. In long-living organisms such as trees, the concept 
of memory is uncommon because most of the studies dealing 
with memory have focused on short-term memory in annual 
plants. Some studies have evaluated how the vulnerability 
to a given constrain, i.e. frost or drought, is affected by a 
repeated exposure of trees to it (Mayr et al. 2003; Tomasella 
et al. 2019; Zweifel et al. 2020). However, studies evaluating 
the feedback between constraints and vulnerability (i.e., the 
effect of drought on vulnerability to frost and vice versa) 
are very few (e.g., Kreyling, et al. 2014; Feichtinger et al. 
2015; Sierra-Almeida et al. 2016). We attempted to draw a 
generic picture as both constraints affect the same physi-
ological processes (Fig. 1).

3 � Effect of drought on vulnerability to frost

After a drought episode, an increase in solute concentra-
tion (i.e., lower osmotic potential) will decrease the freezing 
point (− 1.86 °C mol−1 kg−1; Hansen and Beck 1988) in 
both living cells (Charrier et al. 2013b) and the apoplasm 
(Lintunen et al. 2018). Soil water deficit can indeed initiate 
the early stages of frost hardiness in Douglas fir (Timmis and 
Tanaka 1976). This effect is likely to be canceled during the 
transition from drought-exposed to frost-exposed period in 
case of a wet autumn period, as often observed in temperate 
and montane area. However, changes in the water regime, as 
predicted by future climate predictions, could cause this dry 
summer and autumn conjunction to occur more regularly.

Lower frost vulnerability of trees pre-exposed to drought 
is thus expected through two potential side-effects: (i) lower 
probability of ice formation under similar sub-zero temper-
atures and (ii) higher probability of ice nucleation within 
the apoplasm, pulling symplasmic water towards extracel-
lular ice lattice. However, this effect may be balanced by a 
decrease in non-structural carbohydrates due to photosyn-
thesis limitation by stomatal closure, leading to similar or 
even lower solute concentration in drought-exposed trees. 
In fact, both effects have been observed in winter frost dam-
ages following summer drought. Increasing frost hardi-
ness is thus expected for relatively moderate dehydration 
(Fig. 3 as observed in Benzioni et al. 1992; Kreyling et al. 
2012; Sierra-Almeida et al. 2016). It should also be noted 
that growth-related processes are more sensitive to water 
stress than photosynthesis (Fig. 2a), and mild water stress 
is expected to promote transient increase in non-structural 
carbohydrates for moderate level of stress (McDowell 2011; 
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Granda and Camarero 2017). However, would this transient 
increase result in higher reserves (potentially enhancing 
frost acclimation) or be allocated to other processes such 
as belowground growth? Finally, lower frost hardiness may 
be observed since higher drought stress level will result in 
lower carbon reserves and consequently reduced solutes 
(Fig. 3 right Wong et al. 2009; Galvez et al. 2013; Fig. 3).

From the xylem/hydraulic point of view, the resulting 
vulnerability to frost-induced embolism is only generated 
when sap is under moderate tension (Mayr et al. 2007). 
Freeze–thaw cycles will thus exacerbate the pre-existing 
tension promoting air seeding from vessel to vessel in dehy-
drated trees (Fig. 2b; Tyree and Sperry 1989; Mayr et al. 
2007; Kasuga et al. 2015). Drought episodes during the 

growing season may lead to the reduction in vessel diameter 
(Lovisolo and Schubert 1998; Beikircher and Mayr 2009) 
that would result in higher resistance to freeze–thaw-induced 
embolism. However, a reduced level of non-structural car-
bohydrates after severe drought stress will limit the abil-
ity of the tree to refill embolized vessels during the winter 
via active mechanisms (e.g., stem pressure; Améglio et al. 
2001). The main positive effect (i.e., decreasing the vulner-
ability to frost-induced embolism) therefore may lie in the 
higher ability of sap to supercool and therefore avoid the 
phase shift from liquid to ice and the resulting formation of 
air bubbles (Lintunen et al. 2018).
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the NSC pool initially increases (McDowell 2011). After photosyn-
thesis declines, NSCs decline, whereas leaf mortality, embolism, and 
plant mortality increase (Charrier et  al. 2018b). B Potential effect 
generated by drought stress on frost hardiness of living cell (through 
the non-linear relation between NSC and water content) and vulner-
ability to freeze–thaw (FT)-induced embolism
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Fig. 3   Alternative pathways that would explain why contrasted frost 
vulnerabilities are observed after previous drought exposure. Osmo-
larity of intracellular sap, controlled notably by the ratio between sol-
uble carbohydrates and water content, could be considered the main 
driver. On the right path, intense and/or late drought is expected to 
concentrate cell sap, increasing the probability of extracellular ice 
nucleation. The low chemical potential of ice would pull water, fur-
ther increasing cell osmolarity. On the left path, long and/or early 
drought prevents timely increase in solutes, through reduction in car-
bon reserves. Intracellular freezing is expected to happen more often 
and at higher freezing temperature, inducing cellular damages
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4 � Effect of frost on vulnerability to drought

Major gaps of knowledge remain with respect to frost 
exposure onto drought vulnerability, although assump-
tions can be made. Overall, frost damages before 
drought exposure may mainly have negative effects for 
the trees through limited hydraulic conductivity and/
or biomass destruction, although the affected organs 
as well as the consequences for the tree can be vari-
ous. However, we are not aware of a single study that 
specifically explored the physiological consequences 
of frost damages during the following growing season 
and after, although Charrier et al. (2018a) highlighted a 
significant negative correlation between autumnal frost 
damages and fruit yield the following summer in the 
walnut Juglans regia L.

Low, but not necessarily below 0 °C, soil temperature 
limits root water uptake (Améglio et al. 2002). Thanks to 
thermal inertia, the combination of cold soil and warm and 
dry air can promote aboveground dehydration and hydrau-
lic failure. This phenomenon, called winter drought, is 
typical of late winter conditions at high altitudes (Mayr 
et al. 2006; Charrier et al. 2017; Earles et al. 2018). Win-
ter drought-induced and freeze/thaw-induced embolism 
increase the volume of gas within the xylem conduits, 
therefore facilitating the spreading of air through con-
duits (Lens et al. 2011). Furthermore, higher porosity of 
the pit membrane following freeze–thaw events has been 
observed for different species when evaluating defrosted 
wood samples (Li et al. 2016). Such changes in the pit 
membrane thickness are likely to increase drought vulner-
ability through air seeding (Charrier et al. 2014; Li et al. 
2016). Such an increased vulnerability would only remain 
if the embolism is not refilled.

When the winter precipitation regimes change from 
solid to liquid, the shorter snow cover duration is likely 
to expose soil to lower temperature, damaging the root 
system more frequently (Francon et al. 2020). This would 
alter the whole tree hydraulic architecture by decreasing 
water supply and decreasing the ability to recover, ulti-
mately increasing xylem embolism (Cox and Malcolm 
1997; Zhu et al. 2000). This syndrome has been identi-
fied as pre-disposing dieback for the yellow birch Betula 
alleghaniensis (Cox and Zhu 2003).

Lower hydraulic conductivity from winter embolism 
and limited spring refilling will limit hydraulic conduct-
ance of the whole plant. Under relatively high evaporative 
demand (high VPD), it would result in lower leaf water 
potential and stomatal conductance. As partially open 
stomata allow sufficient CO2 diffusion while limiting the 
amount of transpired water, it is likely that water use effi-
ciency would be increased. Soil water content would be 

depleted more slowly which would thus delay drought 
onset and intensity. The same dynamic is expected after 
late frost damages, as leaves would expand later in the sea-
son. However, at the stand scale, the competition for water 
resources from other tree individuals or other plant species 
(less vulnerable to winter embolism or frost damages) may 
eliminate this potential benefit (Bréda et al. 1995).

One important aspect to consider regarding frost dam-
ages is the temporality, since higher damages have been 
observed during the elongation period of new growth units 
in the spring (Chaar and Colin 1999). By destroying the 
developing organs, late frost damage (leaf, flowers, and 
new shoots) will immediately reduce the transpiration 
(water output) and the photosynthesis (carbon input). In 
addition, on a longer term, the remobilization of carbon 
reserves to reconstruct annual organs may result in a sig-
nificant carbon depletion (Wargo 1996). Although under 
non-stressing circumstances carbon reserves are quickly 
restored, under drought stress, we could expect a signifi-
cant limitation in the ability of the tree to maintain the sto-
mata open and positive net carbon assimilation (O’Brien 
et al. 2014). Furthermore, assuming an increase in resist-
ance to drought-induced embolism along the growing 
season, the newly formed xylem will be more vulnerable 
at the time when drought stress will be higher (Charrier 
et al. 2018b).

5 � Potential interaction 
between vulnerability to constraints 
and phenology

The annual phenological cycle consists of developmental 
events related to the alternation of growth and dormancy 
of the trees. Longer growing seasons, such as predicted by 
vegetation models due to climate change, are expected to 
increase the carbon uptake and the ecosystem net primary 
production (Angert et al. 2005; Delpierre et al. 2009; Wolf 
et al. 2016). However, this could be at the cost of longer 
periods of effective transpiration that would, ultimately, 
deplete soil water content and thus increase the exposure 
to drought stress. Although timing is a crucial parameter in 
the exposure to a seasonal abiotic constraint, models pre-
dicting tree seasonality developed so far mostly consider 
non-stressing conditions (see Lang et al. 1987; Delpierre 
et al. 2016). Notably, do key variables of phenological 
simulations, such as critical sums of temperature for chill-
ing and/or forcing stages, vary with stress intensity?

Photoperiod and temperature are key signals regulat-
ing plant phenology (Maurya and Bhalearao 2017). In the 
spring, ecodormancy release and growth (both primary 
and secondary) are accelerated by warm temperature, 
in some species in interaction with photoperiod (Laube 
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et al. 2014). At the end of the growing season, growth 
cessation, bud set, and endodormancy are controlled by 
photoperiod and temperature through two distinct but 
temporally connected processes: one photosensitive 
(short day) and one thermosensitive (low temperature) 
(Tanino et  al. 2010). Endodormancy is subsequently 
released by chilling temperature. Among these differ-
ent stages, we can distinguish two different processes: 
temperature-promoted processes (i.e., occurring at a rate 
proportional to temperature such as ecodormancy release, 
primary and secondary growth, and budset) and signal-
limited processes (i.e., occurring after a specific thresh-
old has been reached such as growth cessation, endodor-
mancy induction, leaf fall), which are indirectly affected 
by photoperiod and temperature. However, the effect of 
abiotic stress on the different phenological processes and, 
furthermore, how carry-over effects can modulate pluri-
annual dynamics have not been fully characterized yet 
(Eilmann et al. 2011). Thus, depending on the timing of 
the previous stage, the onset of the following ones will 
be affected, leading to unpredictable behavior (Hänninen 
and Tanino 2011). For instance, an increase in tempera-
ture may hasten or delay growth cessation depending on 
the diurnal dynamics of temperature (see Rohde et al. 
2011 and Kalcsits et al. 2009, respectively), affecting the 
subsequent stages (budset, endodormancy, and budburst; 
Fig. 4). Leaf senescence timing is positively correlated 
with budburst timing once removing the influence of 
(i) drought stress (Schuldt et al. 2020) and (ii) autumn 

temperature (Fu et al. 2014). The carry-over effect with 
respect to budburst is, however, of second order (Liu 
et al. 2019) and potentially hidden by the prominent role 
of environmental variables such as temperature and pho-
toperiod (Vitasse et al. 2009). Such an interacting pro-
cess has been incorporated in a leaf senescence model 
(Delpierre et al. 2009) by modulating the cold tempera-
ture sum leading to leaf senescence by the budburst date 
(Keenan and Richardson 2015).

Drought stress affects radial (i.e., secondary) growth 
but its effect on primary growth is relatively unexplored 
in trees. Drought exposure can significantly hasten the 
primary growth onset in Erica multiflora, although not 
in Globularia alypum (Bernal et al. 2011). However, also 
no effect on growth cessation has been reported (Bernal 
et al. 2011). One would expect that earlier growth onset 
would favor drought avoidance during springtime, but it 
could hasten soil water depletion and this may be at the cost 
of the alteration of the development of shoot, leaves, and 
buds (Misson et al. 2011). Autumnal drought is expected to 
induce earlier endodormancy, probably through the induc-
tion of ABA (Maurya and Bhalerao 2017; Tylewicz et al. 
2018). Furthermore, higher temperatures associated with 
drought events may induce deeper dormancy (Heide 2003; 
Tanino et al. 2010; Rohde et al. 2011). As this may result 
in later budburst the following year, these trees are likely 
to be more drought-exposed since they would expand their 
leaves during a period of more pronounced water deficit. 
Delayed dormancy and budburst are thus expected through 
synergistic combination between drought exposure and 
carry-over effects (Xie et al. 2015).

The impact of frost events on phenology has essentially 
been reported in the spring when it affects developing 
organs such as flushing buds, flowers, and new leaves. After 
a single damaging event, the resulting leaf area (i.e., post 
growth) can be reduced (up to more than 50%) and leaf full 
expansion delayed (16–34 days; Augspurger 2013). Delayed 
phenology will expose the tree to higher summer drought 
resulting in lower carbon reserves (Menzel et al. 2015; 
d’Andrea et al. 2019; 2020). During the late summer, after 
growth cessation and dormancy induction, frost exposure 
may promote the dormancy release andinduces leaf fall as 
cold temperature do (Rinne et al. 1997). So, depending on 
the timing, frost damages could delay or hasten the annual 
cycle (later leaf full expansion or earlier endodormancy 
release, after spring and autumn frost damage, respectively 
(Fig. 4)). In addition, frost events may induce both cellu-
lar and vascular damages in the distal organs, resulting in 
re-growth from more basal buds. After several years, the 
whole tree architecture may be affected resulting in smaller 
and denser canopy, which would be less frost exposed, but 
at the cost of canopy light transmittance and subsequent 
photosynthesis.

Winter frost

Late frost

Summer
drought

Early frost
Late drought

Early drought

Late drought

Fig. 4   Hastening (brown arrow) or delaying (green arrow) pheno-
logical stages in response to drought and frost events. At the center 
is presented the typical seasonal phenological stages in a deciduous 
tree in the Northern Hemisphere and outside the potential effects of 
drought and frost stress depending on their timing. It should be noted 
that stress factors can have a lagged effect onto phenology (e.g., late 
drought in the late summer delaying winter dormancy release). Early 
and late drought typically happen in May–June and September, respec-
tively. Early and late frost typically happen in September–October and 
April–May, respectively
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6 � A holistic modeling framework for tree 
stress physiology: a tentative outline

A living tree is a functionally holistic system including con-
stantly interacting growth units. Accordingly, the various 
physiological processes are linked to each other. Two differ-
ent physiological variables such as water potential and frost 
hardiness represent, at least partially, different manifesta-
tions of the same physiological phenomena (as described 
by the correlations between frost hardiness and water con-
tent (Charrier et al. 2013b) on one hand and water content 
and water potential on the other hand (Edwards and Jarvis 
1982)).

Ecophysiological models have been developed separately 
for frost stress (Fuchigami et al. 1982; Leinonen 1996; Charrier  
et  al. 2018a) and drought stress (Sperry et  al. 1998;  
Zweifel et  al. 2005; Martin-StPaul et  al. 2017; Zweifel 
and Sterck 2018). By addressing the seasonal alternation 
of growth and dormancy, the annual phenological cycle 
also reflects major changes in the physiology of trees that 
could enhance or mitigate the vulnerability to stress fac- 
tors. Accordingly, the integrated models of frost hardiness 
simulate the environmental responses of changes in frost 
hardiness according to the phenological stage (Kellomäki 
et al. 1992; 1995; Leinonen 1996; Charrier et al. 2018a). 
Seasonality is indeed located at the core of any modeling 
framework related to seasonal frost or drought stress fac-
tors. We first propose that existing ecophysiological models 
explicitly integrate seasonality weighing relevant param- 
eters by the variables describing phenological processes  
(e.g., sum of growth degree days, sum of chilling units). 
Although not being mechanistic, these variables would unify 
the framework of the models, allowing further research into 
the deterministic relations between three highlighted pro-
cesses (phenology, carbon dynamics, and plant hydraulics). 
Such an integrated modeling approach should be used for  
the interaction between stress factors through the following 
steps:

	 (i)	 Quantitative description of the variable(s) of interest 
e.g. loss of hydraulic conductivity and cellular lysis.

	 (ii)	 Identification of the relevant physiological driv-
ers with special attention dedicated to the ones that 
interact with several variables of interest e.g. water 
or carbohydrate content.

	 (iii)	 Description of the relation between the drivers and 
the variable of interest e.g. relation between frost 
hardiness, tissue water content, carbohydrate, and 
temperature (Poirier et al. 2010).

	 (iv)	 Experimentally based description of the relation 
between physiological drivers and external climatic 
drivers to ensure realistic behavior.

	 (v)	 Mathematical description of the relationship between 
physiological drivers and external climatic drivers 
e.g. carbohydrate content depending on air tempera-
ture (Charrier et al. 2018c).

	 (vi)	 Coupling the models obtained at steps (ii) and (iv) 
and development of a model predicting the variable 
of interest with input data being dynamic climate 
variables, state variables (such as specific parame-
ters or initial values), and intermediate physiological 
drivers.

	(vii)	 Simulate the tree response and compare with stress-
related variable such as frost hardiness vs. daily mini-
mum temperature (Charrier et al. 2018a).

Finally, such approach will easily simulate both legacy 
and memory effects (as a function of previous level of dam-
ages, water, and carbon contents) and / variation in state 
variables for the different processes based on experimental 
data.

7 � Conclusion and perspectives

Exposures to drought and frost constraints exert potential 
feedbacks on the sensitivity to future constraints by affect-
ing physiological components such as non-structural car-
bohydrates and water balance (i.e., legacy Fig. 2). Pheno-
logical processes have been only studied in non-stressed 
plants, although physiological seasonality is altered by stress 
(Fig. 4). Major advances are needed in characterizing envi-
ronmental control of phenological processes in trees during 
or after stress, potentially explaining the residual variance 
in current phenological predictions.

Phenological processes are likely to exhibit legacy 
through carbon balance e.g. trophic limitation of meristem 
growth (Bonhomme et al. 2010) and disturbed glycan depo-
sition onto plasmodesmata (Rinne et al. 2001). However, 
previous exposure to stress factors may also alter the rate of 
the future ecophysiological response through memory effect 
via accumulation of regulatory proteins, transcription fac-
tors, or histone methylation (Bruce et al. 2007; Walter et al. 
2013). As already performed in annual plants, there is a clear 
need for multi-constrained and longer-term studies in woody 
plants, such as promoted by the SOERE or the long-term 
ecological research network (Yonker et al. 2007).

To specifically deal with the interaction between con-
straints, we need to (i) develop a systemic approach at 
the plant scale integrating ontogenic and histological dif-
ferences as well as carbon and water use coupled with the 
phenological dynamics; and (ii) develop a multi-collinearity 
approach aiming to evaluate the interactions between differ-
ent constraints in the tree survival capacity both at short and 
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long-time scale. Interesting insights have been brought by 
integrative studies, for instance, focusing on carbon avail-
ability and hydraulic failure facing drought (e.g., McDowell 
et al. 2008). It is especially relevant to develop this type of 
approaches on different species exhibiting contrasted com-
binations of drought and frost tolerance, including prove-
nances originating from the entire species’ distribution range 
(core and edges) to unravel local adaptations (Kreyling et al. 
2014). The effect of different successive and concomitant 
constraints at different periods of the year should help to 
develop deterministic relationships between different physi-
ological variables and processes in response to each of them. 
It would simulate the life history of the tree and modulate 
response through legacy and memory effects as a function of 
the previous level of damages, water, and carbon contents. 
Improving the descriptive range of these interrelations at the 
individual and population scales would subsequently allow 
quantitative and dynamic description of drought and frost 
resistance. This will improve existing mechanistic models 
simulating these interacting processes in order to predict 
accurately the effect of cumulative stress on tree physiology 
and survival.
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