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Abstract

Fungal pathogens can secrete hundreds of effectors, some of
which are known to promote host susceptibility. This biological
complexity, together with the lack of genetic tools in some
fungi, presents a substantial challenge to develop a broad
picture of the mechanisms these pathogens use for host
manipulation. Nevertheless, recent advances in understanding
individual effector functions are beginning to flesh out our view
of fungal pathogenesis. This review discusses some of the
latest findings that illustrate how effectors from diverse species
use similar strategies to modulate plant physiology to their
advantage. We also summarize recent breakthroughs in the
identification of effectors from challenging systems, like obli-
gate biotrophs, and emerging concepts such as the ‘iceberg
model’ to explain how the activation of plant immunity can be
turned off by effectors with suppressive activity.
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Abbreviations

Auvr, avirulence; bZIP, basic leucine zipper; DON, deoxynivalenol; EAR,
ethylene-responsive element binding factor—associated amphiphilic
repression; EBE, effector binding element; ER, endoplasmic reticulum;
ERF, ethylene response factor; ETI, effector-triggered immunity; HMA,
heavy metal associated; HR, hypersensitive response; ID, integrated
domain; JA/ET, jasmonate/ethylene; MAPK, mitogen-activated protein
kinase; MAX, Magnaporthe Avrs and ToxB-like effectors; NIS1, ne-
crosis-inducing secreted protein 1; NLR, nucleotide-binding site

leucine-rich repeat receptor; PAMP, pathogen-associated molecular
pattern; PM, plasma membrane; PRR, pattern recognition receptor;
PTI, PAMP-triggered immunity; R, resistance; RLP, receptor-like pro-
tein; ROS, reactive oxygen species; SA, salicylic acid; SCF, Skpl-
Cullin—F-box; SnRK1, SNF1-related kinase; TPL/TPR, TOPLESS/
TOPLESS related.

Introduction

Pathogens secrete effector proteins to subvert plant
immune responses and colonize the hosi][ The role of
these molecules in plard microbial compatibility has
been demonstrated in diverse pathosystems (biotrophic,
necrotrophic, and hemibiotrophic), including those
responsible for serious fungal crop diseas@s3]. Path-
ogen effectors were initially recognized as being the
targets of recognition in plant immunity, but the beld of
effector biology has since provided many important in-
sights into the broad range of mechanisms that plants
use to resist disease and how pathogens overcome plant
defense. One layer of plant immunity, pathogen-associ-
ated molecular pattern (PAMP)-triggered immunity,
involves pathogen recognition by plasma membrane
associated proteins known as pattern recognition
receptors and is a common target of effectors to suppress
host defense [,4,5]. However, effector recognition
occurs via intracellular nucleotide-binding site leucine-
rich repeat immunoreceptors (NLRs) or plasma mem-
branee localized receptors (similar to pattern recogni-
tion receptors), which is the basis of effector-triggered
immunity as a second layer of plant immunityg,7].

Bacterial effectors have been studied for decades, and
much detail is known about their biological functions
[8,9]. Work on oomycete effectors has expanded greatly
in recent years and has been thoroughly reviewed pre-
viously [10e 12]. However, our understanding of fungal
effector repertoires, particularly from obligate biotrophs,
is less extensive. Here, we review recent bPndings on
subcellular localization of intracellular proteinaceous
fungal effectors and their modes of action to manipulate
host machinery. We highlight parallels and contrasts
with bacterial effectors, emerging concepts in the beld,
as well as recent breakthroughs in the identibcation of
effectors from obligate biotrophic fungi, which has been
a signibcant research bottleneck. In acknowledgement
of exceptions to the standard effector-triggered immu-
nity/PAMP-triggered immunity dichotomy [,7,13], di-
agrams included in this review adopt the Ospatial
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Table 1

Summary of fugal effectors mentioned in this review to illustrate their diverse subcellular localization and function if applicable.

Effector Function In planta subcellular Species Lifestyle Disease name Host Reference
localization
Avra7, Avra9, Unknown Unknown Blumeria graminis f. sp. Biotroph Powdery mildew Barley [79]
AvraloO, and hordei
Avra22
CSEP0064/ RNase-like protein that binds to Cytoplasm and nucleus B. graminis f. sp. hordei Biotroph Powdery mildew Barley 69]
BEC1054 nucleic acids and prevents
degradation of host ribosomal
RNA induced by ribosome-
inactivating proteins
SvrPm3al/fl Suppresses recognition of Unknown B. graminis f. sp. tritici  Biotroph Powdery mildew Wheat [33,45]
AvrPm3a2/f2 mediated by the
Pm3 wheat resistant gene
ChEC89 Unknown Peroxisome Colletotrichum Hemibiotroph Anthracnose Cruciferous plants [L9]
higginsianum
ChEC21 Unknown Golgi apparatus C. higginsianum Hemibiotroph Anthracnose Cruciferous plants [L9]
NIS1 Disrupts basal immunity by binding Cytosol Colletotrichum Hemibiotroph Anthracnose and rice Cucumber, cruciferous [72CC ]
to BAK1 and BIK1 orbiculare blast plants, rice, and so on
C. higginsianum
Magnaporthe oryzae
Avrl(Six4) Suppression of I-2—and I- Unknown Fusarium oxysporum Hemibiotroph Fusarium wilt, foot, root, Tomato, cotton, banana, [44]
3—mediated disease resistance or bulb rot melon
Osp24 Induction of proteasome-mediated Cytosol F. graminearum Hemibiotroph Fusarium head blight Wheat and barley B2CcC ]
degradation of its host target
HVEC-016 Unknown Unknown Hemileia vastatrix Biotroph Coffee leaf rust Coffee B2]
AvrLm1 Alterations to MAPK signaling Cytosol Leptosphaeria maculans Hemibiotroph Black leg Canola [38]
MoCDIP4 Disruption of mitochondrial Endoplasmic reticulum M. oryzae Hemibiotroph Rice blast Rice [BOCC ]
dynamics
MoHTR1 and Transcriptional reprogramming of  Nucleus M. oryzae Hemibiotroph Rice blast Rice BoccC ]
MoHTR2 genes related to plant immunity
AvrPiz-t Inhibition of RING E3 ubiquitin Cytosol M. oryzae Hemibiotroph Rice blast Rice B1-54]
ligases APIP6 and APIP10,
modulation of a K+ channel,
targeting of Nup08 (the homolog
of APIP12) and preventing
accumulation of PR transcripts,
and suppression of activity of the
bZIP-type transcription factor
APIP5
AVR-Pia Unknown Cytosol M. oryzae Hemibiotroph Rice blast Rice [60,62]
CTP1 Unknown Chloroplast, Melampsora larici- Biotroph Poplar leaf rust Poplar 8]
mitochondria populina
CTP2, CTP3 Unknown Chloroplast, M. larici-populina Biotroph Poplar leaf rust Poplar 28]
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transport factor 2—like protein

superfamily
Host-selective toxin, induces

necrosis
Host-selective toxin, induces

Unknown, member of nuclear

MLP124017
PtrToxA
PtrToxB

chlorosis
Suppression of cell death in

B4ccC ]

Wheat, barley

Biotroph Stem rust

Puccinia graminis f. sp.

Cytosol

AvrSr50

tritici

Endoplasmic reticulum  P. graminis f. sp. tritici

Unknown
Unknown

Nicotiana benthamiana

Unknown

[75CC ]

Wheat

Stem rust

Biotroph
Biotroph
Biotroph

AvrSr35
AvrSr27

Jsil

[76CC ]

Wheat

Stem rust

P. graminis f. sp. tritici

Ustilago maydis

Unknown

B5CC ]

Maize

Corn smut

Transcriptional reprogramming of

genes involved in JA/ET

signaling
Interference with transcription

[39]

Cotton, tomato, pepper,

Hemibiotroph Verticillium wilt

Verticillium dahliae

Nucleus

VdSCP41

cabbage, and so on

factors which are regulators of

immunity

JA/ET, jasmonate/ethylene.

Intracellular effectors from plant pathogenic fungi

Figueroaetal. 3

invasion modelO to portray plant immunity as a process
controlled by cell surface and intracellular immunor-
eceptors [L4,15].

Subcellular targeting of intracellular

proteinaceous fungal effectors

Intracellular proteinaceous effectors exert their function
in the cytosol or travel to other subcellular compart-
ments. Many pathogenic fungi secrete hundreds of ef-
fectors [16], which have evolved to target key host
survival processes and diverse plant cell compartments
like those in bacterial systems. A signibcant advance in
the Peld is the use of prediction tools for protein
secretion and subcellular localization such as EffectorP
and LOCALIZER [17,18], which can guide experi-
mental analyses (e.g. Buorescence microscopy, heterol-
ogous expression systems). Results from this work show
the numerous cellular compartments (i.e. nucleus, the
Golgi apparatus, chloroplasts, mitochondria, etc.) that
effectors target [L2,19,20] ( Table 1, Figure 1). Never-
theless, linking effector localization and function is a
challenging task because of the genetic intractability of
some fungi or the subtlety, or even absence, of pheno-
types in effector mutants resulting from functional
redundancy or minor effects71].

Chloroplasts and mitochondria play important roles in
plant immunity and stress responses through the acti-
vation of key defense signals such as nitric oxide, reac-
tive oxygen species, and salicylic aci@Ze 24]. Early
studies in Pyrenophora tritici-reperdamonstrated the
chloroplast as a fungal effector targetpe 27]. Since
then, effector localization screens have shown chloro-
plasts and mitochondria are common target sites. Petre
et al. [28] determined that the three secreted proteins
(CTP1, CTP2, and CTP3) from the poplar rust fungus
(Melampsora larici-popujireccumulate in the chloro-
plast by exploiting cellular sorting processes. Their
trafbcking depends on the in planta cleavage of an N-
terminal signal sequence which mimics plant chloro-
plast targeting sequences. Similarly, targeting-sequence
mimicry has been found inPuccinia gramirfissp. tritici
(wheat stem rust) effectors that show chloroplast
localization [L7]. Further evidence comes fronPuccinia
striiformisf. sp. tritici (wheat stripe rust fungus); the
effector protein Pst_12806 contains a chloroplast transit
peptide and localizes to the chloroplast, where it
perturbs photosynthesis and basal immunity2§]. In
some cases, effector localization and phenotype changes
occur in different organelles. Xu et al. 30 ] demon-
strated that Magnaporthe oryzean disrupt mitochon-
drial Pssion and fusion cycles, which are required for cell
homeostasis and plant immunity. The dynamin-related
proteins which mediate mitochondrial bssion and
fusion cycles are impacted indirectly. First, th#. oryzae
effector protein MoCDIP4 binds to the DnaJ chaperone
protein OsDjA9, which normally promotes degradation
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of the dynamin-related protein OsDRP1E. The intrinsic enzymatic activity, as commonly observed for
competition between MoCDIP4 and OsDRPI1E in- bacterial effectors B,31]. For instance, Jiang et al.
terferes with OsDRP1E degradation, resulting in an [32 ] showed that the effector protein Osp24 from
overaccumulation of OsDRP1E in rice cells. Ultimately, Fusarium graminearpimysically associates with TaSnR-
this causes aberrant mitochondrial Pssion and sizeKla, a wheat homolog of thé\rabidopsis thaliaG&F1-
reduction, which increases susceptibility td1. oryzae. related kinase (SnRK1). SnRK1 plays a pivotal regula-
Interestingly, these interactions occur in the endo- tory role in plant metabolism, growth, and immunity and
plasmic reticulum, but the phenotype is exerted in the is regulated by a Skpd Culline F-box ubiquitin ligase
mitochondria. Further investigation of how fungal ef- complex and 26S proteasome3§,34]. In wheat,
fectors interfere with organelle function is likely to be a TaSnRK2 contributes to resistance td~ graminearuby

fruitful area of research. an unknown mechanism and Osp24 promotes protea-
somal degradation of TaSnRklduring fungal infection

Manipulation through subversion of host [32 ]. Inan interegting case c_)f arms-race evoluti_on,

machinery another wheat protein TaFROG is induced by detection

Fungal effectors, as well as those from oomycetes, often®f the Fusariuntoxin deoxynivalenol and competes with

subvert host machinery/processes by binding to host ©SP24 for binding to TaSnRKa to prevent its degra-
targets [L7], rather than modifying the target via an dation and maintain resistance.

Figure 1
APOPLAST Ha, :
(intracellular
hyphae)
Ubiquitin E3
PtrToxB ligases *
AvrLm1
Chloroplast C()D T
o \ : \{ /MoHTR2
© . "
=
s PRy
£
‘_:-u MLP124017
= = XS
B CYTOSOL {rOSDRPIE
£
X
1}
Necrotrophic pathogens Biotrophic pathogens
Pyrenophora tritici-repentis O Melampsora larici-populina
Hemibiotrophic pathogens ‘):(' Puccinia graminis f. sp. tritici
3 Fusarium graminearum G Hemileia vastatrix
(A Colletotrichum higginsianum <> Ustilago maydis
© Magnaporthe oryzae
a Leptosphaeria maculans O Plant interacting proteins
Current Opinion in Plant Biology
Examples of subcellular localization of fungal effector proteins . During infection, fungi deliver effector proteins into the apoplast and/or host cell. This

figure illustrates examples of fungal effectors that are translocated to the intracellular space and localize to diverse subcellular compartmentgi.e. cytosol,
Golgi apparatus, chloroplast, mitochondrion, peroxisome, and nucleus) and their host targets. The apoplastic effector PtrToxB fronPyrenophora tritici-
repentis shares a similar structure to the intracellular effector AvrPiz-t fromMagnaporthe oryzae. Additional information and examples are presented in
Table 1.
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Phytohormone signaling processes are also manipulatednly a few receptors and corresponding Avr proteins

by fungal effectors. TheUstilago maydeffector Jsil

(interaction units). The iceberg model proposed by

targets jasmonate/ethylene signaling by interaction with Thordal-Christensen B3] seeks to explain this obser-

members of the TOPLESS/TOPLESS-

vation as resulting from one effector suppressing the

related corepressor family. This activates jasmonate/activation of plant immunity mediated by the recogni-
ethylene signaling by transcriptional reprogramming of tion of another effector fFigure 3. Such interference
genes related to the ethylene response factor branch leads to silent interaction units as the invisible base of

[35 ]. In another case of molecular mimicry, Jsil con-

tains a DLNxxP type EAR motif, similar to those

the iceberg, whereas we are only able to detect those
units that lead to disease resistance at the tip of the

conserved in plant ethylene response factor transcrip- iceberg. Consistent with this model, the Avrl effector

tion factors that naturally activate this pathwayJq].
Similarly, the candidate effector MLP124017 from
M. larici-populinanteracts with the TOPLESS-related
protein 4 (PopTPR4) from poplar and Nicotiana
benthamianf28,37]; however, the functional conse-
quence of this interaction has not been determined.

from Fusarium oxysporsappresses resistance responses
induced by the NLR proteins I-2 and 1-3, while acti-
vating resistance mediated by | and I-1 in tomato plants
[44]. Similarly, the SvrPm3'™ effector protein from
Blumeria gramirfissp. tritici has been shown to suppress
cell death triggered on recognition of AvrPni%" by the
resistance protein Pm3 irN. benthamiarznd in wheat

Fungi also target host plant signaling cascades, ag33,45 ]. Cell death suppression activity may also be

evidenced by AvrLm1 fronlLeptosphaeria maculatich

part of the mechanism of action of effectors deployed by

like some bacterial and oomycete effectors, targets the rust fungi [34 ,46 ,47]. Functional redundancy of ef-

mitogen-activated protein kinase (MAPK) signaling
cascade to modulate plant immunity38]. AvrLm1 in-
teracts with the Brassica napMAPK 9, which leads to

fectors [48e 50] can also explain why we only seem to
detect a few interaction units.

accumulation and phosphorylation of MAPK9. This re- Individual fungal effectors may have more than one

sults in cell death induction which may support the

function by targeting different host proteins. For

pathogenOs transition from a biotrophic to necrotrophicinstance, AvrPiz-t fromM. oryzadargets two ubiquitin

phase. Another example of subversion of host machineryE3

ligases, a K a basic leucine

transporter,

is given by the effector VdSCP41 fronderticillium dahliae zipper transcription factor, and a nucleoporin protein

which interferes with the function of the Arabidopsis

Nup98 in rice [51e 55]. Conversely, multiple effectors

transcription factors CBP60g and SARD1 and cotton may display common host targets. Variants of AvrPik

GhCBP60b, which serve as regulators of immunityd].

Some effectors directly bind to DNA and use the host

bind and stabilize rice proteins containing heavy metal
associated (HMA) domains, which act as susceptibility
factors to promote diseasg¢56,57 ,58]. The HMA

transcriptional machinery to alter gene expression and domain is also present as an integrated domain in some

defense responses. Recently, Kim et al4(§ ] charac-

terized two M. oryzaeeffector proteins, MOHTR1 and

MoHTR2, which are translocated into the nucleus,
where they bind to so-called effector binding
elements of genes related to plant immunity regulation.
Changes in the transcriptional
MoOHTR1 and MoHTR2 impact how rice responds to

NLRs, including Pik, where it allows immune recogni-
tion of Avre Pik [59 61]. Two other M. oryzaeffectors,
AVRe Pia and AVR& CO39, are also recognized by their
binding to integrated HMA domains in NLRs
[60,62,63]. This suggests that these effectors have all

proble caused by evolved the ability to target host proteins containing

HMA domains and consequently driven evolution of

additional pathogens. Transgenic rice lines expressingNLR receptors with HMA-like integrated domains.

MoHTR1 or MOHTR2 display increased susceptibility

These three effectors, as well as AvrPiz-t and the

to hemibiotrophic pathogendM. oryza@and Xanthomonas apoplastic effector PtrToxB fronP. tritici repenti$4] are
oryzaepv. oryzage but show enhanced resistance to all structurally related, being members of the MAX

Cochliobolus miyabeanas necrotrophic pathogen
(Figure 2. This highlights an interesting observation
that host manipulation by the effector repertoire of one
pathogen can modify the outcomes of other plaat
microbe interactions.

Emerging concepts and unanswered
guestions for intracellular fungal effectors

The genomic era has revealed not only that many fungi

(Magnaporthédvrs and ToxB-like effectors) effector
family [65]. This indicates that effectors with common
structural scaffolds can evolve to quite different func-
tions, which complicates the application of structural
information to predict effector function. Likewise, many
powdery mildew effectors are predicted to share a
common RNase-like fold $6-68,69], which may serve
as a structural scaffold to support multiple functions.

harbor hundreds of effector proteins, but also that plants The existence of OcoreQ effectors that are conserved

possess large sets of immunity receptorg41,42). Yet,
it is intriguing that genetic studies attribute in-

across pathogens is an intriguing topic4$,70,71].
Although most effectors characterized to date are

compatibility between plants and adapted pathogens to pathogen specibc, it would be interesting to identify the
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Figure 2

Manipulation of host physiology by effectors changes the outcome of additional plant —pathogen interactions . The fungus Magnaporthe oryzae
delivers hundreds of effector proteins into the plant cytoplasm during infection. The effectors MOHTR1 and MoHTR2 (foiMagnaporthe oryzae host
transcription reprogramming 1 and 2) target the nucleus and reprogram the transcription of immunity-associated genes to promoteM. oryzae infection
(left panel) [40 ]. Transcriptional reprograming induced by either MOHTR1 or MOHTR?2 in transgenic rice plants modifies the response to two additional
pathogens, Xanthomonas oryzae and Cochliobolus miyabeanus, by increasing and decreasing susceptibility, respectively (right panel). This figure was
made using BioRender®.

Figure 3

Effectors can mask effector recognition by suppressing the activation of plant immunity . Pathogenic fungi secrete hundreds of effectors during
infection. Intracellular effectors can be recognized by NLRs through various mechanisms [,59]. Effector recognition through the receptor ligand model is
commonly observed for obligate biotrophic systems in contrast to indirect recognition in bacterial systems. Effector proteins with suppressive ativity can
interfere with either NLR effector monitoring or the disease resistance signaling pathways, which prevents activation of plant immunity.
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functions of more broadly conserved effectors, which Declaration of competing interest
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from cell surface pathogen recognition7p ]. If core
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resources have led to the identibcation of several Avr
effector genes in wheat stem rust® graminit sp. tritici)
[34 ,73 ,74,75 ,76 ,77,78] and wheat and barley
powdery mildews B. gramini& sp. tritici and B. graminis
f. sp. hordei respectively) [33 ,4578 ,79 ]
(Table 1). Other exciting progress in obligate biotrophic
fungi includes the identibcation of Avr effector candi- 1.
dates in Puccinia coronatasp. avenag80 ], Uromyces
appendiculatfi§1], and Hemileia vastatrig82]. These
breakthroughs open new research opportunities to un- 2
derstand effector recognition and function in these
systems. For instance, functional characterization of the 5
ribonuclease-like effector CSEP0064/BEC1054 from
B. gramini§ sp. horde{69 ] has revealed inhibition of
ribosome-inactivating proteins as a mechanism to pre-
vent cell death and promote susceptibility. An inter-
esting observation is that resistance to obligate
biotrophic fungal pathogens generally relies on direct
effector recognition by NLRs (receptor ligand model),
rather than indirect recognition commonly seen in bac-
terial resistance Figure 3 [83,84]. The mechanisms
underlying translocation of fungal effectors into the 7.
plant cell remain unknown B5]. The sequence diversity

of these molecules and lack of conserved motifs presents.

challenges to address this question.
9.

Concluding statements
During the 2019 International Society Molecular Plaet

Microbe Interactions conference, our scientibc com- 10.

munity selected OWhy do some pathogens need so many
effectors when others need a few?0 as one of the top 1Q
unanswered questions in the bPeld[g]. This question is
particularly relevant to fungi, which often contain large

effector repertoires compared with bacteria. The more 12.

complex lifestyle and evolutionary history of pathogenic
fungi may mean that they need to target additional host
processes to support successful infection. Their larger
genome size may also permit the evolution of an effector
repertoire with substantial redundancy to enhance the
robustness of pathogenicity mechanisms. The answer to
this question may also require looking beyond the in-
dividual functions of effectors to consider how their
combinatorial effects enhance disease susceptibility.

14.
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