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Abstract

Fungal pathogens can secrete hundreds of effectors, some of
which are known to promote host susceptibility. This biological
complexity, together with the lack of genetic tools in some
fungi, presents a substantial challenge to develop a broad
picture of the mechanisms these pathogens use for host
manipulation. Nevertheless, recent advances in understanding
individual effector functions are beginning to flesh out our view
of fungal pathogenesis. This review discusses some of the
latest findings that illustrate how effectors from diverse species
use similar strategies to modulate plant physiology to their
advantage. We also summarize recent breakthroughs in the
identification of effectors from challenging systems, like obli-
gate biotrophs, and emerging concepts such as the ‘iceberg
model’ to explain how the activation of plant immunity can be
turned off by effectors with suppressive activity.
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Introduction
Pathogens secrete effector proteins to subvert pla
immune responses and colonize the host [1]. The role of
these molecules in plante microbial compatibility has
been demonstrated in diverse pathosystems (biotroph
necrotrophic, and hemibiotrophic), including those
responsible for serious fungal crop diseases [2,3]. Path-
ogen effectors were initially recognized as being th
targets of recognition in plant immunity, but the Þeld o
effector biology has since provided many important i
sights into the broad range of mechanisms that plan
use to resist disease and how pathogens overcome p
defense. One layer of plant immunity, pathogen-asso
ated molecular pattern (PAMP)-triggered immunity
involves pathogen recognition by plasma membrane
associated proteins known as pattern recognitio
receptors and is a common target of effectors to suppre
host defense [1,4,5]. However, effector recognition
occurs via intracellular nucleotide-binding site leucine
rich repeat immunoreceptors (NLRs) or plasma mem
branee localized receptors (similar to pattern recogn
tion receptors), which is the basis of effector-triggere
immunity as a second layer of plant immunity [6,7].

Bacterial effectors have been studied for decades, a
much detail is known about their biological function
[8,9]. Work on oomycete effectors has expanded grea
in recent years and has been thoroughly reviewed p
viously [10e 12]. However, our understanding of funga
effector repertoires, particularly from obligate biotrophs
is less extensive. Here, we review recent Þndings
subcellular localization of intracellular proteinaceou
fungal effectors and their modes of action to manipula
host machinery. We highlight parallels and contras
with bacterial effectors, emerging concepts in the Þel
as well as recent breakthroughs in the identiÞcation
effectors from obligate biotrophic fungi, which has bee
a signiÞcant research bottleneck. In acknowledgeme
of exceptions to the standard effector-triggered immu
nity/PAMP-triggered immunity dichotomy [6,7,13], di-
agrams included in this review adopt the Ôspa
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Table 1

Summary of fugal effectors mentioned in this review to illustrate their diverse subcellular localization and function if applicable.

Effector Function In planta subcellular
localization

Species Lifestyle Disease name Host Reference

Avra7, Avra9,
Avra10, and
Avra22

Unknown Unknown Blumeria graminis f. sp.
hordei

Biotroph Powdery mildew Barley [79]

CSEP0064/
BEC1054

RNase-like protein that binds to
nucleic acids and prevents
degradation of host ribosomal
RNA induced by ribosome-
inactivating proteins

Cytoplasm and nucleus B. graminis f. sp. hordei Biotroph Powdery mildew Barley [69]

SvrPm3al/f1 Suppresses recognition of
AvrPm3a2/f2 mediated by the
Pm3 wheat resistant gene

Unknown B. graminis f. sp. tritici Biotroph Powdery mildew Wheat [33,45]

ChEC89 Unknown Peroxisome Colletotrichum
higginsianum

Hemibiotroph Anthracnose Cruciferous plants [19]

ChEC21 Unknown Golgi apparatus C. higginsianum Hemibiotroph Anthracnose Cruciferous plants [19]
NIS1 Disrupts basal immunity by binding

to BAK1 and BIK1
Cytosol Colletotrichum

orbiculare
C. higginsianum
Magnaporthe oryzae

Hemibiotroph Anthracnose and rice
blast

Cucumber, cruciferous
plants, rice, and so on

[72CC ]

Avr1(Six4) Suppression of I-2–and I-
3–mediated disease resistance

Unknown Fusarium oxysporum Hemibiotroph Fusarium wilt, foot, root,
or bulb rot

Tomato, cotton, banana,
melon

[44]

Osp24 Induction of proteasome-mediated
degradation of its host target

Cytosol F. graminearum Hemibiotroph Fusarium head blight Wheat and barley [32CC ]

HvEC-016 Unknown Unknown Hemileia vastatrix Biotroph Coffee leaf rust Coffee [82]
AvrLm1 Alterations to MAPK signaling Cytosol Leptosphaeria maculans Hemibiotroph Black leg Canola [38]
MoCDIP4 Disruption of mitochondrial

dynamics
Endoplasmic reticulum M. oryzae Hemibiotroph Rice blast Rice [30CC ]

MoHTR1 and
MoHTR2

Transcriptional reprogramming of
genes related to plant immunity

Nucleus M. oryzae Hemibiotroph Rice blast Rice [40CC ]

AvrPiz-t Inhibition of RING E3 ubiquitin
ligases APIP6 and APIP10,
modulation of a K+ channel,
targeting of Nup08 (the homolog
of APIP12) and preventing
accumulation of PR transcripts,
and suppression of activity of the
bZIP-type transcription factor
APIP5

Cytosol M. oryzae Hemibiotroph Rice blast Rice [51–54]

AVR-Pia Unknown Cytosol M. oryzae Hemibiotroph Rice blast Rice [60,62]
CTP1 Unknown Chloroplast,

mitochondria
Melampsora larici-

populina
Biotroph Poplar leaf rust Poplar [28]

CTP2, CTP3 Unknown Chloroplast, M. larici-populina Biotroph Poplar leaf rust Poplar [28]
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invasion modelÕ to portray plant immunity as a proc
controlled by cell surface and intracellular immuno
eceptors [14,15].
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Subcellular targeting of intracellular
proteinaceous fungal effectors
Intracellular proteinaceous effectors exert their function
in the cytosol or travel to other subcellular compar
ments. Many pathogenic fungi secrete hundreds of e
fectors [16], which have evolved to target key hos
survival processes and diverse plant cell compartme
like those in bacterial systems. A signiÞcant advance
the Þeld is the use of prediction tools for protein
secretion and subcellular localization such as Effecto
and LOCALIZER [17,18], which can guide experi-
mental analyses (e.g. ßuorescence microscopy, hete
ogous expression systems). Results from this work sh
the numerous cellular compartments (i.e. nucleus, th
Golgi apparatus, chloroplasts, mitochondria, etc.) th
effectors target [12,19,20] ( Table 1, Figure 1). Never-
theless, linking effector localization and function is
challenging task because of the genetic intractability
some fungi or the subtlety, or even absence, of phen
types in effector mutants resulting from functiona
redundancy or minor effects [21].

Chloroplasts and mitochondria play important roles
plant immunity and stress responses through the ac
vation of key defense signals such as nitric oxide, re
tive oxygen species, and salicylic acid [22e 24]. Early
studies in Pyrenophora tritici-repentisdemonstrated the
chloroplast as a fungal effector target [25e 27]. Since
then, effector localization screens have shown chlo
plasts and mitochondria are common target sites. Pe
et al. [28] determined that the three secreted proteins
(CTP1, CTP2, and CTP3) from the poplar rust fungus
(Melampsora larici-populina) accumulate in the chloro-
plast by exploiting cellular sorting processes. The
trafÞcking depends on the in planta cleavage of an
terminal signal sequence which mimics plant chloro
plast targeting sequences. Similarly, targeting-sequen
mimicry has been found inPuccinia graminisf. sp. tritici
(wheat stem rust) effectors that show chloroplas
localization [17]. Further evidence comes fromPuccinia
striiformisf. sp. tritici (wheat stripe rust fungus); the
effector protein Pst_12806 contains a chloroplast tran
peptide and localizes to the chloroplast, where
perturbs photosynthesis and basal immunity [29]. In
some cases, effector localization and phenotype chan
occur in different organelles. Xu et al. [30� ] demon-
strated that Magnaporthe oryzaecan disrupt mitochon-
drial Þssion and fusion cycles, which are required for c
homeostasis and plant immunity. The dynamin-relate
proteins which mediate mitochondrial Þssion an
fusion cycles are impacted indirectly. First, theM. oryzae
effector protein MoCDIP4 binds to the DnaJ chaperon
protein OsDjA9, which normally promotes degradatio
Current Opinion in Plant Biology 2021, 62:102054
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of the dynamin-related protein OsDRP1E. The
competition between MoCDIP4 and OsDRP1E in-
terferes with OsDRP1E degradation, resulting in a
overaccumulation of OsDRP1E in rice cells. Ultimately
this causes aberrant mitochondrial Þssion and s
reduction, which increases susceptibility toM. oryzae
Interestingly, these interactions occur in the endo
plasmic reticulum, but the phenotype is exerted in the
mitochondria. Further investigation of how fungal ef
fectors interfere with organelle function is likely to be a
fruitful area of research.
en
st

n,
n
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Manipulation through subversion of host
machinery
Fungal effectors, as well as those from oomycetes, oft
subvert host machinery/processes by binding to ho
targets [12], rather than modifying the target via an
Figure 1

Examples of subcellular localization of fungal effector proteins . During inf
figure illustrates examples of fungal effectors that are translocated to the intrac
Golgi apparatus, chloroplast, mitochondrion, peroxisome, and nucleus) and t
repentis shares a similar structure to the intracellular effector AvrPiz-t fromM
Table 1.

Current Opinion in Plant Biology 2021, 62:102054
intrinsic enzymatic activity, as commonly observed f
bacterial effectors [8,31]. For instance, Jiang et al
[32�� ] showed that the effector protein Osp24 from
Fusarium graminearumphysically associates with TaSnR
K1a, a wheat homolog of theArabidopsis thalianaSNF1-
related kinase (SnRK1). SnRK1 plays a pivotal regu
tory role in plant metabolism, growth, and immunity an
is regulated by a Skp1e Culline F-box ubiquitin ligase
complex and 26S proteasome [33,34]. In wheat,
TaSnRK1a contributes to resistance toF. graminearumby
an unknown mechanism and Osp24 promotes prote
somal degradation of TaSnRK1a during fungal infection
[32�� ]. In an interesting case of arms-race evolutio
another wheat protein TaFROG is induced by detectio
of the Fusariumtoxin deoxynivalenol and competes wit
Osp24 for binding to TaSnRK1a to prevent its degra-
dation and maintain resistance.
ection, fungi deliver effector proteins into the apoplast and/or host cell. This
ellular space and localize to diverse subcellular compartments(i.e. cytosol,
heir host targets. The apoplastic effector PtrToxB fromPyrenophora tritici-
agnaporthe oryzae. Additional information and examples are presented in
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Phytohormone signaling processes are also manipula
by fungal effectors. TheUstilago maydiseffector Jsi1
targets jasmonate/ethylene signaling by interaction wi
members of the TOPLESS/TOPLESS-
related corepressor family. This activates jasmona
ethylene signaling by transcriptional reprogramming
genes related to the ethylene response factor bran
[35�� ]. In another case of molecular mimicry, Jsi1 con
tains a DLNxxP type EAR motif, similar to those
conserved in plant ethylene response factor transcri
tion factors that naturally activate this pathway [36].
Similarly, the candidate effector MLP124017 from
M. larici-populinainteracts with the TOPLESS-related
protein 4 (PopTPR4) from poplar and Nicotiana
benthamiana[28,37]; however, the functional conse
quence of this interaction has not been determined.

Fungi also target host plant signaling cascades,
evidenced by AvrLm1 fromLeptosphaeria maculans, which
like some bacterial and oomycete effectors, targets th
mitogen-activated protein kinase (MAPK) signalin
cascade to modulate plant immunity [38]. AvrLm1 in-
teracts with the Brassica napusMAPK 9, which leads to
accumulation and phosphorylation of MAPK9. This re
sults in cell death induction which may support the
pathogenÕs transition from a biotrophic to necrotroph
phase. Another example of subversion of host machin
is given by the effector VdSCP41 fromVerticillium dahlia,
which interferes with the function of the Arabidopsi
transcription factors CBP60g and SARD1 and cotto
GhCBP60b, which serve as regulators of immunity [39].

Some effectors directly bind to DNA and use the hos
transcriptional machinery to alter gene expression a
defense responses. Recently, Kim et al. [40� ] charac-
terized two M. oryzaeeffector proteins, MoHTR1 and
MoHTR2, which are translocated into the nucleus
where they bind to so-called effector binding
elements of genes related to plant immunity regulation
Changes in the transcriptional proÞle caused b
MoHTR1 and MoHTR2 impact how rice responds to
additional pathogens. Transgenic rice lines expressi
MoHTR1 or MoHTR2 display increased susceptibility
to hemibiotrophic pathogensM. oryzaeand Xanthomona
oryzaepv. oryzae, but show enhanced resistance t
Cochliobolus miyabeanus, a necrotrophic pathogen
(Figure 2). This highlights an interesting observation
that host manipulation by the effector repertoire of one
pathogen can modify the outcomes of other plante
microbe interactions.

Emerging concepts and unanswered
questions for intracellular fungal effectors
The genomic era has revealed not only that many fun
harbor hundreds of effector proteins, but also that plan
possess large sets of immunity receptors [2,41,42]. Yet,
it is intriguing that genetic studies attribute in-
compatibility between plants and adapted pathogens
www.sciencedirect.com
d

s

only a few receptors and corresponding Avr protei
(interaction units). The iceberg model proposed b
Thordal-Christensen [43] seeks to explain this obser
vation as resulting from one effector suppressing th
activation of plant immunity mediated by the recogni
tion of another effector (Figure 3). Such interference
leads to silent interaction units as the invisible base o
the iceberg, whereas we are only able to detect tho
units that lead to disease resistance at the tip of th
iceberg. Consistent with this model, the Avr1 effecto
from Fusarium oxysporumsuppresses resistance respons
induced by the NLR proteins I-2 and I-3, while acti-
vating resistance mediated by I and I-1 in tomato plan
[44]. Similarly, the SvrPm3a1/f1 effector protein from
Blumeria graminisf. sp. tritici has been shown to suppres
cell death triggered on recognition of AvrPm3a2/f2by the
resistance protein Pm3 inN. benthamianaand in wheat
[33,45�� ]. Cell death suppression activity may also b
part of the mechanism of action of effectors deployed b
rust fungi [34� ,46� ,47]. Functional redundancy of ef-
fectors [48e 50] can also explain why we only seem t
detect a few interaction units.

Individual fungal effectors may have more than on
function by targeting different host proteins. For
instance, AvrPiz-t fromM. oryzaetargets two ubiquitin
E3 ligases, a Kþ transporter, a basic leucine
zipper transcription factor, and a nucleoporin protei
Nup98 in rice [51e 55]. Conversely, multiple effectors
may display common host targets. Variants of AvrP
bind and stabilize rice proteins containing heavy metale
associated (HMA) domains, which act as susceptibili
factors to promote disease[56,57�� ,58]. The HMA
domain is also present as an integrated domain in so
NLRs, including Pik, where it allows immune recogni
tion of Avre Pik [59e 61]. Two other M. oryzaeeffectors,
AVRe Pia and AVR1e CO39, are also recognized by the
binding to integrated HMA domains in NLRs
[60,62,63]. This suggests that these effectors have a
evolved the ability to target host proteins containin
HMA domains and consequently driven evolution o
NLR receptors with HMA-like integrated domains.
These three effectors, as well as AvrPiz-t and th
apoplastic effector PtrToxB fromP. tritici repentis[64] are
all structurally related, being members of the MAX
(MagnaportheAvrs and ToxB-like effectors) effector
family [65]. This indicates that effectors with common
structural scaffolds can evolve to quite different func
tions, which complicates the application of structura
information to predict effector function. Likewise, many
powdery mildew effectors are predicted to share
common RNase-like fold [66-68,69� ], which may serve
as a structural scaffold to support multiple functions.

The existence of ÔcoreÕ effectors that are conse
across pathogens is an intriguing topic [48,70,71].
Although most effectors characterized to date a
pathogen speciÞc, it would be interesting to identify the
Current Opinion in Plant Biology 2021, 62:102054
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Figure 2

Manipulation of host physiology by effectors changes the outcome of additional plant –pathogen interactions . The fungus Magnaporthe oryzae
delivers hundreds of effector proteins into the plant cytoplasm during infection. The effectors MoHTR1 and MoHTR2 (forMagnaporthe oryzae host
transcription reprogramming 1 and 2) target the nucleus and reprogram the transcription of immunity-associated genes to promoteM. oryzae infection
(left panel) [40�� ]. Transcriptional reprograming induced by either MoHTR1 or MoHTR2 in transgenic rice plants modifies the response to two additional
pathogens, Xanthomonas oryzae and Cochliobolus miyabeanus, by increasing and decreasing susceptibility, respectively (right panel). This figure was
made using BioRender®.

Figure 3

Effectors can mask effector recognition by suppressing the activation of plant immunity . Pathogenic fungi secrete hundreds of effectors during
infection. Intracellular effectors can be recognized by NLRs through various mechanisms [1,59]. Effector recognition through the receptor ligand model is
commonly observed for obligate biotrophic systems in contrast to indirect recognition in bacterial systems. Effector proteins with suppressive activity can
interfere with either NLR effector monitoring or the disease resistance signaling pathways, which prevents activation of plant immunity.
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functions of more broadly conserved effectors, whic
may represent indispensable pathogenicity function
The fungal effector necrosis-inducing secreted protei
1, which is widely conserved in Þlamentous fungi, ta
gets BAK1 and BIK and interferes with signaling derive
from cell surface pathogen recognition [72�� ]. If core
effectors often target basal immunity like in the case o
necrosis-inducing secreted protein 1, these may a
alter outcomes of other plante microbial interactions.

The inability to culture and transform obligate bio-
trophic fungi, such as rusts and powdery mildews, h
limited the isolation and characterization of effectors i
these fungi. However, advances in genomic and gene
resources have led to the identiÞcation of several A
effector genes in wheat stem rust (P. graminisf. sp.tritici)
[34� ,73� ,74,75� ,76�� ,77,78] and wheat and barley
powdery mildews (B. graminisf. sp. tritici andB. graminis
f. sp. hordei, respectively) [33�� ,45,78�� ,79�� ]
(Table 1). Other exciting progress in obligate biotrophic
fungi includes the identiÞcation of Avr effector candi
dates in Puccinia coronataf. sp. avenae[80� ], Uromyce
appendiculatus[81], and Hemileia vastatrix[82]. These
breakthroughs open new research opportunities to u
derstand effector recognition and function in thes
systems. For instance, functional characterization of th
ribonuclease-like effector CSEP0064/BEC1054 fro
B. graminisf. sp. hordei[69�� ] has revealed inhibition of
ribosome-inactivating proteins as a mechanism to pr
vent cell death and promote susceptibility. An inter
esting observation is that resistance to obliga
biotrophic fungal pathogens generally relies on dire
effector recognition by NLRs (receptor ligand model)
rather than indirect recognition commonly seen in bac
terial resistance (Figure 3) [ 83,84]. The mechanisms
underlying translocation of fungal effectors into th
plant cell remain unknown [85]. The sequence diversity
of these molecules and lack of conserved motifs prese
challenges to address this question.
-
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Concluding statements
During the 2019 International Society Molecular Plante
Microbe Interactions conference, our scientiÞc com
munity selected ÒWhy do some pathogens need so m
effectors when others need a few?Ó as one of the top
unanswered questions in the Þeld [86]. This question is
particularly relevant to fungi, which often contain larg
effector repertoires compared with bacteria. The mor
complex lifestyle and evolutionary history of pathogen
fungi may mean that they need to target additional hos
processes to support successful infection. Their larg
genome size may also permit the evolution of an effect
repertoire with substantial redundancy to enhance th
robustness of pathogenicity mechanisms. The answer
this question may also require looking beyond the in
dividual functions of effectors to consider how thei
combinatorial effects enhance disease susceptibility.
www.sciencedirect.com
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