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DNA methylation can be part of epigenetic mechanisms, leading to cellular
subpopulations with heterogeneous phenotypes. While prokaryotic phenotypic
heterogeneity is of critical importance for a successful infection by several major
pathogens, the exact mechanisms involved in this phenomenon remain unknown in
many cases. Powerful sequencing tools have been developed to allow the detection of
the DNA methylated bases at the genome level, and they have recently been extensively
applied on numerous bacterial species. Some of these tools are increasingly used for
metagenomics analysis but only a limited amount of the available methylomic data is
currently being exploited. Because newly developed tools now allow the detection of
subpopulations differing in their genome methylation patterns, it is time to emphasize
future strategies based on a more extensive use of methylomic data. This will ultimately
help to discover new epigenetic gene regulations involved in bacterial phenotypic
heterogeneity, including during host-pathogen interactions.
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INTRODUCTION

Epigenetic regulations have been studied mainly in eukaryotes where they are involved in cell
differentiation or disease occurrence, through diverse mechanisms such as histone modifications
or DNA methylation. However, evidences for the existence of epigenetic regulation in prokaryotes
are increasingly reported (Sánchez-Romero and Casadesús, 2020). Such gene regulations can
occur by feedback loops (positive or negative) but most examples involve DNA methylation
(Adhikari and Curtis, 2016). DNA methylation is a base modification system that acts by
the addition of a methyl group from an S-adenosyl-methionine molecule to an Adenine or
a Cytosine in the DNA. In the growing cell, this process usually occurs shortly after the
DNA replication on the newly synthesized strand. Enzymes responsible for DNA methylation
are called DNA-methyltransferases (MTases) and catalyze three types of DNA methylation
modifications: N6-methyl-adenine (m6A), C5-methyl-cytosine (m5C) and N4-methyl-cytosine
(m4C). While all three types are described in archaea and bacteria, m4C modification is not
reported in eukaryotes. Genes encoding putative MTases are found in almost all bacterial
species, and most bacterial genomes analyzed so far display a DNA methylation pattern
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that is species or strain-specific (Blow et al., 2016). Many
bacterial MTases belong to restriction-modification systems, as
they are genetically and functionally associated to a restriction
endonuclease (REase) that protects the bacterial cell from
exogenous DNA (Marinus and Løbner-Olesen, 2014; Roberts
et al., 2015). In addition, “solitary” or “orphan” MTases are
frequently found in the genomes of bacteria (Blow et al., 2016)
and some of them carry key roles in genome maintenance
(Løbner-Olesen et al., 2005). DNA methylation can also affect
the interaction of DNA-binding proteins with their cognate sites,
either directly (e.g., steric hindrance) or by changes in DNA
topology (Casadesús, 2016), resulting in epigenetic regulations
(Casadesús and Low, 2013). This mechanism, among others, is
responsible for prokaryotic phenotypic heterogeneity (Sánchez-
Romero et al., 2020), a phenomenon of critical importance for
successful infection by several major pathogens (Balaban et al.,
2004; Weigel and Dersch, 2018).

Thanks to recent advances in long-read sequencing
technologies, data of the methylated bases over the complete
genome (methylome) of bacteria is progressively reported
(Rand et al., 2017; Beaulaurier et al., 2019; García-Pastor

et al., 2019). However, most of these technologies are
exclusively used to generate new genomics data, while
the methylomic data are often set aside. Thus, there is a
gap between the scarce reports of bacterial gene regulation
associated to DNA methylation and the increasing availability
of unexploited methylomic data. Given the pervasiveness of
DNA methylation in prokaryotes, we believe that a deeper
analysis of methylomic data could lead to identifying new
candidates of epigenetically regulated genes. This review
illustrates the importance of DNA methylation associated
to epigenetic regulations in bacteria and aims to raise
awareness on the available yet underused tools, in the field
of bacterial epigenetic.

BACTERIAL TRANSCRIPTIONAL
FACTORS INVOLVED IN EPIGENETIC
REGULATION

While DNA methylation occurs on motifs located anywhere on
the DNA, typical bacterial epigenetic regulations are located in

FIGURE 1 | Transcription can depend on the DNA-methylation pattern. (A) The bacterial genome is usually broadly methylated. It is transiently hemimethylated after
DNA-replication. (B) DNA-Methyltransferases methylate DNA on particular motifs. Here an Adenine in GATC motif is being methylated by Dam (left), unless a
transcriptional regulator (R) hinders its access to the motif (right). After a second replication step, the DNA can become unmethylated. (C) Transcription is initiated by
the RNA-polymerase (left) unless a transcriptional regulator is bound in the promoter region (right). (D) Examples (detailed in the text) of transcriptional regulators
sensitive to DNA methylation.
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promoter regions (Figure 1). The main examples are linked
to m6A modifications and either involve (i) CcrM, an MTase
found in several α-proteobacteria, where it plays a critical
role in controlling the cell cycle (Mouammine and Collier,
2018); or (ii) Dam, an MTase conserved in Enterobacteriaceae,
which is associated to the formation of subpopulations with
distinct phenotypes (van der Woude and Baumler, 2004; Marinus
and Løbner-Olesen, 2014; Adhikari and Curtis, 2016; Sánchez-
Romero and Casadesús, 2020).

The affinity of some DNA-binding proteins, including
transcriptional regulators, can be affected by the DNA
methylation state within or in the vicinity of their binding
sites. After DNA replication (Figure 1A), the future methylation
state of the locus will depend on whether the regulator or
the MTase binds the newly synthesized (unmethylated) DNA
strand first (Figure 1B). Gene expression will subsequently
differ based on if (or where) the regulator is bound in
these promoter regions. Thereby, this mechanism can
therefore give rise to two bacterial subpopulations with
distinct transcription patterns and consequently distinct
phenotypes (Figure 1C).

Examples of epigenetic regulations associated to Dam
often involve genes playing critical roles during bacterial-host
interaction. Several transcriptional regulators were shown to
be sensitive to the methylation state of the promoter region
they control (for a recent review, see Sánchez-Romero and
Casadesús, 2020). A canonic example is the regulation of
the pilus-encoding pap operon by Lrp, extensively reviewed
elsewhere (van der Woude et al., 1992, 1996; Peterson and Reich,
2008). Nevertheless, other examples of epigenetic gene regulation
involving important transcriptional regulators deserve to be
mentioned here (Figure 1D). A competition between the OxyR
transcriptional regulator and Dam has been described for several
promoter regions, as agn43 (encoding an outer membrane
protein) in E. coli or gtr or opvAB (encoding proteins involved in
LPS modification) in Salmonella (Waldron et al., 2002; Wallecha
et al., 2002; Cota et al., 2016; Sánchez-Romero et al., 2020). Such
epigenetic regulations direct the formation of subpopulations
that have a distinct fitness depending on the environment. For
instance in Salmonella, control of the opvAB operon by OxyR
produces one subpopulation that is resistant to infection by
many bacteriophages but avirulent, and another that is phage
sensitive but able to infect animal hosts (Cota et al., 2015).
HdfR is a transcriptional regulator involved in the epigenetic
regulation of the std fimbrial operon (García-Pastor et al.,
2019). Here, the regulation mechanism is complexified by a
positive feedback loop involving two additional regulators (StdE
and StdF) encoded by the std operon. The Fur transcriptional
regulator is critical for the iron stress response (Escolar et al.,
1999) and is also involved in the epigenetic regulation of the
sci1 operon, encoding a Type VI Secretion System (T6SS)
in E. coli (Brunet et al., 2011; Brunet et al., 2020). In this
case, an intraspecific bacterial competition occurs between the
two subpopulations dependent on the active expression of the
T6SS. In addition to these few selected examples, a list of
other regulators sensitive to DNA methylation can be found
elsewhere (Sánchez-Romero and Casadesús, 2020). Altogether,

they illustrate that the DNA methylation pattern is important for
several bacterial phenotypes.

BACTERIAL PHENOTYPES ASSOCIATED
TO CHANGES IN DNA-METHYLATION
PATTERN

The DNA methylation pattern can be significantly impacted
by environmental conditions, as observed in some α or γ-
proteobacteria (Hale et al., 1994; Ichida et al., 2007; Doberenz
et al., 2017). Yet, the methylome of several γ-proteobacteria
appeared very stable despite various growth conditions tested
(Cohen et al., 2016; Westphal et al., 2016; Payelleville et al., 2018).
In many examples, major phenotypic modifications are driven
by the modification of the DNA methylation pattern through
mutation or overexpression of an MTase gene. For instance, dam
mutation caused impaired virulence in Salmonella, Klebsiella,
Haemophilus, Yersinia, and Actinobacillus (García-Del Portillo
et al., 1999; Heithoff et al., 1999; Watson et al., 2004; Robinson
et al., 2005; Taylor et al., 2005; Wu et al., 2006; Mehling et al.,
2007). While dam deletion can sometimes be lethal for the
bacterium (as in V. cholerae or A. hydrophila) (Julio et al., 2001;
Erova et al., 2006) its overexpression often leads to a decreased
virulence phenotype (Heithoff et al., 1999; Julio et al., 2002; Chen
et al., 2003; Erova et al., 2012; Payelleville et al., 2017).

Other examples below illustrate the major phenotypes found
in association with DNA-methylation pattern deregulation,
whatever the type of methylated based involved. For most
of these examples, the underlying mechanisms responsible
for the modified phenotype has not been described yet. The
CamA orphan m6A MTase conserved among all C. difficile
is involved in sporulation and persistence and many genes
in the MTase mutant are shown to be differentially regulated
(Oliveira et al., 2020). Dcm, a broadly distributed m5C
MTase in Enterobacteriaceae, plays a role during the stationary
growth phase as its deletion leads to an increase in the
RpoS sigma factor expression (Kahramanoglou et al., 2012;
Militello et al., 2012, 2016, 2020) and it may also be linked
to antimicrobial compound resistance (Militello et al., 2014).
Furthermore, the deletion of m4C MTases encoding genes can
impair virulence and cause broad transcriptional changes as
shown in H. pylori (Kumar et al., 2012, 2018). In another
human pathogen, Leptospira interrogans, the impaired virulence
caused by the deletion of an MTase is associated to the
dysregulation of an extracytoplasmic function (ECF) sigma factor
(Gaultney et al., 2020).

The so-called “Phasevarion” (for phase-variable regulon)
allows broad changes in DNA-methylation patterns. It occurs
in bacteria that express MTases with phase variation character
(i.e., a reversible switch in expression leading to single-cell
phenotypic heterogeneity). This phenomenon provides a way
to modify the expression of numerous genes simultaneously
through epigenetic regulation by a single event of phase variation.
This way, phasevarions confer the ability for the bacterium to
adapt to broader environmental conditions. The phenomenon
has been described in several major pathogens [H. influenzae
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(De Bolle et al., 2000), H. pylori (de Vries et al., 2002;
Srikhanta et al., 2017b), Streptococcus suis (Atack et al., 2018b),
S. pneumoniae (Manso et al., 2014), Neisseria meningitidis (Jen
et al., 2014; Seib et al., 2015), N. gonorrheae (Srikhanta et al., 2009;
Seib et al., 2017), Moraxella catarrhalis (Blakeway et al., 2014;
Blakeway et al., 2019), Kingella kingae (Srikhanta et al., 2017a)]
and is reviewed elsewhere (Atack et al., 2018a; Seib et al.,
2020). Moreover, new bioinformatic tools allowing for the
detection of genetic signatures of those events have been
recently developed, giving hope for a further increase in
the description of the underlying mechanism (Atack et al.,
2020a,b). All the phasevarions described until now involve
MTases that are part of RM systems. Given the significant
proportion of type II solitary MTases in prokaryotes [more
than 50%, (Blow et al., 2016)], and considering that they
are involved in most described epigenetic regulations, we
can hypothesize that phasevarion involving solitary MTases
might be discovered in the future. Again, even though the
expression switch of the MTase is well described, the exact
epigenetic regulation mechanisms of the various regulon
members remain to be elucidated. Modern technologies enabling
the analysis of the cells’ methylome may help to answer
these questions.

SEQUENCING METHODS TO ANALYZE
BACTERIAL METHYLOMES

Three main methods are currently used for the base resolution
sequencing of DNA methylation (reviewed in Beaulaurier et al.,
2019). They all require powerful bioinformatic tools to have
an accurate and complete view of the modified bases in
the whole genome.

(I) The Whole Genome Bisulfite Sequencing (WGBS) has
been used for years, mostly in eukaryotes. In this approach,
unmethylated cytosines are converted into uracils by the
bisulfite treatment. After sequencing (usually short-read Illumina
sequencing) and alignment, m5C can then be identified (Carless,
2009). This tool which is specific to the detection of m5C has
found scarce application for the bacterial methylome analysis
so far (Kahramanoglou et al., 2012). (II) The possibility to use
the long-range method SMRT sequencing (for Single Molecule
Real Time) to detect DNA methylation at a genomic scale
was described in 2010 (Flusberg et al., 2010; Cloney, 2016).
This technology makes use of a DNA polymerase sensitive
to base modifications. Upon recognition of a modified base
on the ssDNA matrix, a delay in polymerization is generated
during the recording of the DNA sequence (InterPulse Duration
or IPD). While it can easily detect m4C and m6A, this
technology has strong limitations to detect m5C (requires a
substantial coverage rate). Therefore, performing both WGBS
and SMRT sequencing can allow to determine an exhaustive
methylome, something rarely done (Payelleville et al., 2018;
Vandenbussche et al., 2021). (III) More recently, another long-
range sequencing method, the Oxford Nanopore technology
(ONT), was shown to efficiently detect modified bases. While
ssDNA crosses nanopores embedded in a lipid membrane,

a voltage potential is applied. Analysis of the electrolytic
current signals, which are sensitive to base modifications, reveals
both the DNA sequence and the methylation state of the
DNA matrix (Rand et al., 2017; Simpson et al., 2017). The
earliest studies using ONT were focused on m5C detection
of CpG islands, found in some eukaryotes (Laszlo et al.,
2013), but various bioinformatic models have been developed
since to increase the accuracy of other DNA methylation
predictions. In certain DNA motifs, such models are now able
to detect m5C and m6A using a low read coverage (as low
as twofold) (Ni et al., 2019) with a significant precision on
E. coli data (Liu et al., 2019). Recently, the methylomes of
eight microbial reference species have been validated using
various methods, including ONT sequencing for m6A detection
(McIntyre et al., 2019).

The increasing number of bacterial metagenomic studies
which use such sequencing technologies (Petersen et al., 2019;
Tourancheau et al., 2021) is about to expand the set of data
that could be used in parallel for analyzing DNA methylation.
This, in turn, could stimulate bacterial epigenetic research.
In addition, because the DNA methylation pattern is often
strain-dependent, incorporation of methylomic information into
shotgun metagenomic analyses was proposed as a new tool for
distinguishing genomes of closely related strains, hence providing
a much more accurate clustering of metagenomic sequences
(Beaulaurier et al., 2018). If such strategy became widespread
in the future, it would reinforce the importance of exploiting
methylomic data.

COMBINING METHYLOME ANALYSIS
WITH OTHER APPROACHES TO
IDENTIFY PUTATIVE EPIGENETIC
REGULATION

Numerous examples, as illustrated above, have demonstrated
that the DNA methylation pattern at a given site can
impact gene expression (Sánchez-Romero and Casadesús,
2020). Therefore, in a bacterial genome, each subset of
unmethylated recognition motifs could be considered as a
putative epigenetic regulatory site (Figure 1). Such approach
was recently proved to be strikingly efficient in Salmonella
and led to the identification of several new genes displaying
expression heterogeneity controlled by Dam-methylation
(Sánchez-Romero et al., 2020). A broad conservation among
prokaryotes of unmethylated sites that are usually recognized
by conserved MTases (Dam in γ-proteobacteria, or CcrM in
α-proteobacteria) (Blow et al., 2016) strengthens the hypothesis
of a widespread occurrence of this regulatory mechanism
in bacteria.

Given the large amount of transcriptomic data released
in the databases, together with the increasing acquisition of
genomic data by the help of technologies that also allow
to identify the DNA methylation pattern (SMRT or ONT),
we propose the coupling of transcriptome analysis with
extensive methylome analysis. It may lead to the identification
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FIGURE 2 | Particular conditions can lead to bacterial subpopulations in an isogenic population. In condition 1, the bacterial population has an homogeneous
phenotype where individual cells display a similar transcription pattern and the same DNA-methylation pattern. In condition 2, two subpopulations are present (A and
B), each one displaying a particular transcription pattern and a particular DNA-methylation pattern. While classical tools (e.g., SMRT sequencing and RNA seq
analysis) allow the detection of differences between each condition, only the major subpopulation (A) is considered. To distinguish the two subpopulations, single cell
tools need to be applied (e.g., SMALR for DNA methylation and Record-seq or PETRI-seq for transcription).

of putative epigenetic regulation networks. This would be
particularly true if unmethylated motifs located in gene
regulatory regions (i.e., promoters) correlate with differential
regulation of the genes in an altered environmental condition (or
in a mutant strain, Figure 2).

Up to now, this combined methylome/transcriptome strategy
has been rarely employed and led to the identification of
only a limited number of candidate genes under a putative
epigenetic regulation, which still need to be confirmed by
additional mechanistic studies (Blow et al., 2016; Cohen et al.,
2016; Doberenz et al., 2017; Payelleville et al., 2018; Nye et al.,
2019). This low occurrence of candidates has to be balanced by
the fact that a complex gene regulation may require multiple
factors for a fine tuning of expression, as exemplified by the
epigenetic regulation of the Std fimbriae in Salmonella described
above (García-Pastor et al., 2019). Furthermore, the contribution
of nucleoid associated proteins, such as H-NS, in epigenetic
mechanisms involving DNA-methylation has also been reported
in various cases and therefore also contribute to the formation
of bacterial subpopulations (Nicholson and Low, 2000; Camacho
et al., 2005; Cota et al., 2016).

BACTERIAL PHENOTYPIC
HETEROGENEITY: METHYLOME AND
TRANSCRIPTOME ANALYSES OF
SUBPOPULATIONS

The methylome analysis methods described above determine
the DNA methylation to the nucleotide resolution at the
population level. However, distinct DNA methylation patterns
can drive the emergence of different subpopulations with
different expression profiles (Figure 2). In 2015, an improvement
in SMRT sequencing, SMALR for Single Molecule modification
Analysis of Long Reads, was proposed (Beaulaurier et al.,
2015). The enhancement resides on the ability of SMALR
to identify epigenetic heterogeneity, where a subpopulation
displays a distinct methylation pattern compared to the
rest of the population. Despite its potential to identify
subpopulations with different methylation patterns, currently
few studies reporting the use of SMALR can be found in
the literature (Modlin et al., 2020). This may be due to an
ongoing need for improved or analysis-specific tools based
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on modern sequencing technologies to decipher the mechanisms
that give rise to the formation of subpopulations in an isogenic
bacterial culture.

Importantly, two tools were recently designed to study
complete gene expression at the subpopulation level: (i) Record-
seq (Schmidt et al., 2018) can report a change in gene
expression during a bottleneck situation where the amount
of events is too low for a classic global transcriptomic
analysis (Schmidt et al., 2018; Tanna et al., 2020); (ii) PETRI-
seq (Blattman et al., 2020) allows to detect subpopulations
with a different transcriptomic profile where less mRNA is
needed, compared to classic transcriptional studies. Combining
the SMALR and one of those transcriptomic tools should
drastically improve the detection of candidate genes subject
to DNA methylation regulation and heterogeneously expressed
among a population.

In parallel, as prokaryotic phenotypic heterogeneity
is of critical importance for a successful infection by
various major pathogens, it is crucial that, in the near
future, evolution of methylome analysis (supported by both
improved sequencing coverage rates, and development of
appropriate computational tools) will be more sensitive to
allow for the distinction of differential DNA methylation
patterns among a single DNA sample. This will increase
the possibility to identify heterogeneity in epigenetic marks
between bacterial subpopulations, including in vivo during
bacterial infections.

CONCLUSION

It is now time to consider the large amount of available data
that could be thoroughly exploited in order to identify new

candidates of putative epigenetic regulation. Although it might
often be challenging to confirm such mechanisms of regulation,
the candidates detected would most likely unveil major roles
in the life cycle of the bacteria. This assumption is after all
exemplified by the mechanisms of epigenetic regulation which
have been deciphered up to now (van der Woude et al., 1996;
Wallecha et al., 2002; Camacho et al., 2005; van der Woude
and Henderson, 2008; Brunet et al., 2011; Cota et al., 2016;
García-Pastor et al., 2019).
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