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 6 

Abstract 7 

By definition no model is perfect, and this also holds for biology and health sciences. In medicine, 8 

murine models are, and will be indispensable for long, thanks to their reasonable cost and huge 9 

choice of transgenic strains and molecular tools. On the other side, non-human primates remain the 10 

best animal models although their use is limited because of financial and obvious ethical reasons. In 11 

the field of respiratory diseases, specific clinical models such as sheep and cotton rat for 12 

bronchiolitis, or ferret and Syrian hamster for influenza and Covid-19, have been successfully 13 

developed, however, in these species, the toolbox for biological analysis remains scarce. In this view 14 

the porcine medical model is appearing as the third, intermediate, choice, between murine and 15 

primate. Herein we would like to present the pros and cons of pig as a model for acquired respiratory 16 

conditions, through an immunological point of view. Indeed, important progresses have been made 17 

in pig immunology during the last decade that allowed the precise description of immune molecules 18 

and cell phenotypes and functions. These progresses might allow the use of pig as clinical model of 19 

human respiratory diseases but also as a species of interest to perform basic research explorations. 20 

 21 

Generalities 22 

In its ‘Global Impact of Respiratory Disease’, the World Health Organization (WHO) identifies 23 

‘the big five’ respiratory diseases as chronical obstructive pulmonary disease (COPD), asthma, acute 24 

lower respiratory tract infections, tuberculosis and lung cancer. Moreover, according to Eurostat 25 

report, diseases of the respiratory system accounted for 7.5 % of all deaths in the European Union in 26 

2016 (Eurostat, 2020), and these statistics do not take into account the current SARS-CoV-2 27 

pandemic which will probably become the infectious disease associated to the highest number of 28 

fatalities in 2020. In the pathophysiology of all these diseases, the immune system has definitely a 29 

central role and we need to better understand how it operates in order to prevent and treat the 30 

respiratory diseases. 31 

Current Food and Drug Administration (FDA) guidelines require testing of new 32 

pharmaceutical agents in both small and large animal models when proving a therapeutic concept 33 

(FDA, 2015). We advocate herein to consider pig as a model of choice when investigating the 34 

immunological side of respiratory diseases. 35 

The Suidae family (swine, wild boar, red river hog, and warthog to cite the best known) is 36 

evolutionary more distant from the Hominidae family (including human being and all the great apes) 37 

than the Muridae family (mouse, rat, hamster and naked mole rat). Indeed, men and mice belong to 38 

the same Euarchontoglires superorder whereas pigs belong to the Laurasiatheria superorder. Despite 39 

this, and probably as a consequence of the faster genetic evolutionary rate of mouse, the pig genome 40 

has remained more similar to the human one both in terms of DNA sequences than in term of genes’ 41 

synteny (Humphray et al., 2007; Wernersson et al., 2005). Because of this genetic proximity and for 42 

other reasons listed below, the pig has been largely used as a biomedical model and notably as a 43 

model for the study of human infectious diseases and for vaccine development (Gerdts et al., 2015; 44 

Käser et al., 2018; Lunney, 2007; Meurens et al., 2012). In this review we focused especially on the 45 

pig as a model to study acquired respiratory diseases except cancer, at the light of the accumulating 46 

knowledge concerning the swine respiratory immune system. 47 
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 48 

Porcine Respiratory System Structure 49 

The size and the weight of the pig is age-, sex- and breed-dependent. Some minipig breeds 50 

like the Yucatan or the Göttingen present adult pigs with size and weight similar to human adults 51 

making the breeds attractive in biomedical research (Meurens et al., 2012; Swindle et al., 2012). 52 

Overall, the porcine anatomy and physiology are quite similar to human anatomy and physiology, 53 

both species are all-eating for instance (Käser et al., 2018; Meurens et al., 2012; Swindle et al., 2012). 54 

Moreover, pigs are widely available with usually manageable size allowing for smooth handling and 55 

easy experimental interventions.  56 

Regarding specifically the porcine respiratory tract, the pig has been extensively 57 

characterized and compared with the human one (Judge et al., 2014; Krejci et al., 2013) as well as in 58 

exhaustive reviews that were assessing its potential as a model for cystic fibrosis (Rogers et al., 2008) 59 

and asthma (Kirschvink and Reinhold, 2008). The respiratory tract can be divided into the upper and 60 

lower respiratory tracts. The upper respiratory tract is including the nasal cavities, the sinuses, the 61 

nasopharynx, the larynx and the trachea while the lower respiratory tract includes overall the lung 62 

with the bronchi, the bronchioles, the terminal and respiratory bronchioles, and alveoli. Air enters 63 

the porcine respiratory tract through round nostrils and a pair of nasal cavities situated in the snout 64 

(rostrum). In the nasal cavities, the epithelium is typically pseudostratified with ciliated columnar 65 

cells. The epithelium contains loose lymphocytes, lympho-reticular tissue aggregates and tubo-66 

alveolar glands. Regarding submucosal glands in nasal turbinates and trachea, some differences have 67 

been shown between pigs and humans using the porcine cystic fibrosis model (Cho et al., 2011). 68 

Similarly, to humans, pigs have ethmoid and maxillary sinuses at birth and develop frontal and 69 

sphenoid sinuses (Sisson et al., 1975). Then, after its circulation in the nasal cavities, the air moves 70 

through the nasopharyngeal tube into the pharynx with the possibility to gain access to the 71 

esophagus. The respiratory part of the pharynx, called nasopharynx, also presents a pseudostratified 72 

ciliated columnar epithelium with goblet cells. In the upper respiratory tract, its nasal-associated 73 

lymphoid tissue (NALT) resembles the human’s Waldeyer ring and pigs, like humans, possess several 74 

tonsils (veli palatine, pharyngea, tubaria, paraepiglotica and lingualis) (Horter et al., 2003; Liebler-75 

Tenorio and Pabst, 2006; Swindle et al., 2012). This lymphoid tissue is comprised of the Lamina 76 

propria mucosae as well as fine glandules. Then, the larynx links the nasopharynx and the lower 77 

respiratory tract, including epiglotis and vocal cords. In the larynx the mucosa showed again a 78 

pseudostratified columnar epithelium with isolated goblet cells. In the submucosa of epiglottis, plicae 79 

aryepiglotticae and vestibulum larynges, an accumulation of lymphoid tissue is observed. The trachea 80 

consists of 32-36 C-shaped rings of hyaline cartilage with strong fibro-elastic membranes observed 81 

between the rings. The trachea shows a ciliated pseudostratified columnar epithelium and isolated 82 

goblet cells. Below, in the mucosa, small islets of lympho-reticular tissue and combined tubo-alveolar 83 

glands are observed. Regarding the gross anatomy of the porcine lung, two lobes on the left sides 84 

and four on the right have been described (Rogers et al., 2008; Swindle et al., 2012). On the left side, 85 

the lobes are designated as left cranial and caudal and on the right as right cranial, right middle, right 86 

caudal and right accessory. Interestingly, the right cranial lobe is directly linked to the trachea. 87 

Looking at subgross anatomy, pig like human lung, and in contrast to murine lung shows extensive 88 

intralobular and interlobular connective tissue. This tissue joins the bronchi and the main blood 89 

vessels to the pleural surface (Tyler, 1983). However, the interlobular collagenous network is 90 

incomplete in humans whereas in the pig the interlobular septa are “complete” blocking the 91 

collateral ventilation (Rogers et al., 2008; Woolcock and Macklem, 1971). The porcine pleura like its 92 

human counterpart is relatively thick and collagenous and has a vascular supply originating from the 93 

bronchial arteries (McLaughlin et al., 1961; Tyler, 1983). Regarding the lymph nodes (LN) in the 94 

thoracic cavity, they are concentrated into four lymphoid centres, two parietal (thoracicum dorsal 95 
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and ventral) and two visceral (mediastional and bronchale). Moreover, there are the LN adjacent to 96 

the bronchi (tracheobronchales dextri, sinistri and medii). While the vascular circulation of the pig 97 

follows a common pattern of organization and development with human vascular circulation there is 98 

an inverted structure of swine LN compared to their human and murine counterparts. Indeed, in 99 

most of the mammalians, including mouse and man, afferent lymph percolates in a centripetal 100 

manner from the periphery to the center (hilum) of the node. In swine, the afferent lymph diffuses 101 

from the center to the periphery in a centrifugal manner (Mcfarlin et al., 1973). In addition, in pig, 102 

lymphocytes exit the LN through the high-endothelial venules whereas in mouse and man they exit 103 

through the efferent lymphatics (Sasaki et al., 1994). The functional implications of these oddities 104 

have not been explored yet. Overall, even if similar to human airways, the porcine airways show 105 

small differences (Haworth and Hislop, 1981; McLaughlin et al., 1961; Rendas et al., 1978): i) the 106 

cartilage around porcine airways is more developed than in humans; ii) a lower number of bronchi 107 

generations, after the last cartilage plate, has been reported in pigs compared to what is reported in 108 

humans; and iii) longer terminal bronchioles and overall less-defined respiratory bronchioles are 109 

described. At the microscopic level, porcine lungs show similar cell lineages to human lungs (Haworth 110 

and Hislop, 1981; Jones et al., 1975; Mills et al., 1986; Rogers et al., 2008; Winkler and Cheville, 111 

1984).  112 

 113 

General systemic immunology 114 

Before addressing specifically the porcine lung immunology, a brief overview of the systemic 115 

porcine immune system is needed. Comparably to the whole genome comparisons, the immunome 116 

analysis demonstrated a greater similarity between human and pig than between human and mouse. 117 

However, a peculiarity of swine immune system that can be highlighted is the expansion of the type I 118 

IFN gene families, especially the IFNδ and the IFNω (Dawson et al., 2013). IFNδ clearly distinguishes 119 

pig from human and mouse since pig has 11 functional IFNδ genes and mouse and man have none. 120 

IFNδ bind to the same type 1 receptor as IFNα, it has high antiviral and anti-proliferative activities on 121 

porcine cells, but not on human cells (Lefèvre et al., 1998). Conversely IFNω separates mouse from 122 

the two other species since mouse has no functional IFNω gene, man 1, and pig 7. IFNω presented 123 

highly cross-species antiviral (but little anti-proliferative) activity (Jennings and Sang, 2019; Shields et 124 

al., 2019). A recent review summarized the different porcine cytokines, chemokines and growth 125 

factors, and described the tools available to study them (Dawson et al., 2020). 126 

Looking more precisely at the different immune cell types, three relatively recent reviews 127 

have been published on the porcine innate immune response (Mair et al., 2014), mononuclear 128 

phagocytes (Fairbairn et al., 2011) and the B and T lymphocytes development (Sinkora and Butler, 129 

2016). However, we would like here to recall some important swine specific features: 130 

Myeloid cells: Neutrophil serine proteases (NSP) have critical roles in neutrophil-associated tissue-131 

destructive diseases. Human and mouse NSP present different peptide substrate specificities 132 

(Kalupov et al., 2009) whereas porcine NSP, present on the surface of triggered neutrophils and 133 

neutrophil extracellular traps (NETs) are efficiently inhibited by human NSP inhibitors (Bréa et al., 134 

2012). In addition to neutrophils, porcine basophils and eosinophils can be identified by flow 135 

cytometry (Blanc et al., 2020; Haverson et al., 1994). 136 

Peripheral blood monocytes present in pig a similar division in CCR2+/CX3CR1-/CD14+/CD163-137 

/MHC-II- and CX3CR1+ CCR2-/CD14-/CD163+/MHC-II+ monocytes (Moreno et al., 2010). When 138 

human, mouse and porcine monocytes were compared by a transcriptomic study, porcine CD14+ and 139 

CD14- blood monocytes resembled more to their human counterparts than mouse monocytes 140 

(Fairbairn et al., 2013). 141 
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Dendritic cells (DC) subpopulations corresponding to cDC1, cDC2, pDC and moDC (Guilliams et al., 142 

2014) can be readily identified in blood (Auray et al., 2016), skin (Marquet et al., 2014), spleen 143 

(Soledevila, personal communication), tonsils (Soldevila et al., 2018), tracheal epithelium and lung 144 

(Maisonnasse et al., 2016), with minimal species-specific features. The main swine DC peculiarity is 145 

the differential expression of TLR3, which is almost exclusively expressed on pDC in swine (Auray et 146 

al., 2016; Soldevila et al., 2018) but on cDC1 in human (Poulin et al., 2010) and mouse (Desch et al., 147 

2011). Despite this difference, the calculation of a similarity score between swine, human and mouse 148 

cDC1, cDC2 and pDC transcriptomic signatures highlighted that the three human’s blood DC 149 

populations resembled more to their porcine than to their murine counterparts, especially cDC2, 150 

which appears to be the most similar between pig and man (Auray et al., 2016). 151 

Lymphoid cells: It has long been thought that porcine B cells were generated in ileal Peyer’s patches, 152 

however it is now clear that porcine B lymphopoïesis is located in the bone marrow as for other 153 

mammals (Sinkora and Sinkorova, 2014). To note, the porcine B cell development studies are still 154 

impaired because of the absence of antibodies recognizing pan-B cells markers such as CD19 and 155 

CD20 (Dawson and Lunney, 2018) and the absence of antibodies discriminating porcine IgG isotypes. 156 

Despite these difficulties, the porcine peripheral B lymphocyte differentiation steps have been 157 

described: IgM+CD2+CD21+ B cells are composed of naive B cells, IgM+CD2-CD21+ are activated or 158 

primed B cells and CD79α+CD2+CD21- or CD2-CD21- represent antibody producing B cells (Sinkora et 159 

al., 2013), memory and effector antibody-forming B cells remaining CD79α+CD2+CD21- while 160 

CD79α+CD2-CD21- B cells are probably composed of resting plasma cells. In a recent paper (Bordet 161 

et al., 2019), we investigated the structure of the trachea-bronchial inverted porcine LN and, thanks 162 

to the conservation of the B cell affinity maturation master-genes expressions (BCL6, Pax5, IRF4, 163 

XBP1 and Blimp1), we were able to distinguish the centroblasts, centrocytes, plasmablasts and 164 

plasma cells in their respective follicular and extrafollicular LN sublocalisations, as observed in mouse 165 

and human (for review see (Klein and Dalla-Favera, 2008)). Interestingly, we also identified a specific 166 

feature of swine inverted LN which is a centroblasts-like B cell type decorated with surface CD169 167 

proteins (Bordet et al., 2019), that interact probably with perifollicular macrophages in order to 168 

capture antigens and transport them to follicular DC (fDC). This feature might be a consequence of 169 

LN inversion in pig. In the regular murine LN, naïve B cells have been shown to play this antigen-170 

transporting role (Phan et al., 2009). Follicular DC have not been described so far in pig, however 171 

they have been identified in an evolutionary close species, the sheep, and their phenotype appeared 172 

similar to murine and human fDC (Melzi et al., 2016). 173 

Development of thymic αβT cells follows mice and humans T-cell maturation model (Sinkora 174 

et al., 2013). However, it is important to note that swine possess extrathymic CD4+/CD8α+ T cells, 175 

that appear to be regular memory/activated peripheral CD4 T cells (Gerner et al., 2009). The 176 

peripheral blood re-expression of CD8α has been endowed with no specific role. Indeed, so far the 177 

same CD4 T cell subtypes have been described in pig, namely Th1, Th2, Th17, Treg expressing the 178 

same transcription factors (respectively T-bet, GATA-3, RORγT and FoxP3) than human and murine 179 

CD4 T cells (for review see (Gerner et al., 2015)). To note, in swine some clues are in agreement with 180 

a B cell activation/Th2 pathways relying more on IL13 than on IL4 (Murtaugh et al., 2009). Finally 181 

peripheral CD8 T cells expressing Eomesodermin (Eomes), a transcription factor involved in the 182 

differentiation and long-term survival of CD8 memory T cells have been described in pig like in mouse 183 

and human blood, although these cells are less numerous in swine than in human (Rodríguez-Gómez 184 

et al., 2016). Finally, by using CD27 staining, Talker et al were able to distinguish bona fide effector 185 

memory cells (CD27neg) from naïve and early activated lymphocytes (Reutner et al., 2013). 186 

As in other Laurasiatheria, pigs present a high proportion of γδ T cells (Binns et al., 1992), 187 

paralleled with more D-segments in the TCR delta gene than in human and mouse (Dawson et al., 188 

2013). Thus porcine γδ TCR have a strong diversity potential, with no tissue-specificity (Holtmeier et 189 
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al., 2004) or subset restrictions (Stepanova and Sinkora, 2013) unlike in humans and mice. Moreover, 190 

conversely to murine and human ones, a consistent proportion of porcine γδ T cells retained a strong 191 

expression of GATA3 (Rodríguez-Gómez et al., 2019).  192 

Invariant NK T cells expressed a semi-invariant TCR which recognizes glycolipids presented on the 193 

non-polymorphic CD1d molecules and corresponding either to stress-related self-ligand or to 194 

microorganism surface-antigens. Interestingly, iNKT cells frequency (Artiaga et al., 2014) as well as 195 

specific CD1d/TCR molecular interactions (Yang et al., 2019) are closer between swine and human 196 

than with mouse.  197 

Conversely to the majority of mammals, swine possess an NK cell subset that does not 198 

express NKp46 (Mair et al., 2012). This might be relevant here since NKp46 recognizes 199 

hemagglutinins (HA) of influenza, parainfluenza, and Sendai virus and that its ligation leads to lysis of 200 

infected cells (Arnon et al., 2004). In swine, NKP46 expression has also been observed on CD3+ cells 201 

expressing αβ or γδ TCR but presenting the main functions of NK cells (Mair et al., 2016). Cells with a 202 

similar phenotype have been described in mice (Arnon et al., 2004) humans (Arnon et al., 2004) and 203 

cattle (Connelley et al., 2014). 204 

 205 

Specific Lung immunology 206 

Macrophages 207 

In all mammalian species, lung macrophages are prominently composed of alveolar 208 

macrophages (AM). AM main roles are the phagocytosis of inhaled particles and the clearance of 209 

surfactant (for review see (Hussell and Bell, 2014)). AM have been shown in mouse to originate from 210 

embryonic monocytes that settled before birth in the alveoli and self-renew independently of 211 

peripheral blood adult monocytes (Guilliams et al., 2013). This scheme can be modified upon events 212 

that trigger both strong inflammation and partial or complete AM depletion. In this case, as 213 

documented in mice, recruited inflammatory monocytes will differentiate in pro-inflammatory 214 

monocyte-derived macrophages (moMθ) before entering AM ‘niche’ (for review see (Guilliams and 215 

Scott, 2017)) and differentiating finally in ‘true’ AM, undistinguishable from the original AM 216 

population (Aegerter et al., 2020). Although not yet formally demonstrated, the belonging of human 217 

AM to the local-self-renewable macrophage type is also postulated. By analyzing AM from lung 218 

grafted patients, several teams tried to clarify the importance of AM self-renewal versus blood 219 

monocytes replacement in human, leading to contradictory conclusions (Bittmann et al., 2001; 220 

Eguíluz-Gracia et al., 2016; Nayak et al., 2016). However a recent work using up to date single cell 221 

technology (Byrne et al., 2020) arbitrated toward a strong contribution of blood monocytes for long 222 

term AM maintenance, the authors arguing that human beings, conversely to lab’s mice, are 223 

constantly challenged by inflammatory stimuli, in a much longer time frame, and that in human 224 

everyday life, the AM pool might be replaced by moMθ within a year. In porcine lung, we observed 225 

that AM did not express blood-related genes such as cKit, CSF1R CCR2 or CX3CR1 but did expressed 226 

HDAC10, PU.1 (Bordet et al., 2018; Maisonnasse et al., 2016) whose expressions are related to 227 

embryonically-derived macrophage precursors in mouse (Guilliams et al., 2013; Schulz et al., 2012), 228 

in agreement with a similar local-self-renewable capacity of porcine and mouse AM. However, 229 

according to the ‘niche theory’, these local-self-renewable AM could well be former moMθ that 230 

transdifferentiated in true AM upon AM-niche occupancy as postulated in human.  231 

To note, similarly to mouse and man (Keller et al., 2015), porcine AM expressed the 232 

immunoproteasome subunits LMP2, LMP7, and MECL-1 upon respiratory viral infection (Liu et al., 233 

2018, 2017). 234 

One intriguing feature of pulmonary macrophage network in swine, and the majority of the 235 

Laurasiatheria, is the presence of pulmonary intravascular macrophages (PIM, for review 236 

(Schneberger et al., 2012)) that are not present, at least at steady state, in mouse, rat and human 237 
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(Brain et al., 1999). PIM are resident lung intravascular macrophages intimately tight with endothelial 238 

cells, what differentiates them from marginated blood monocytes (for review see (Kuebler and 239 

Goetz, 2002)). We recently isolated porcine PIM and demonstrated that they were very similar to AM 240 

(Bordet et al., 2018; Crisci et al., 2020), indeed PIM and AM overexpressed genes such as PU.1 and 241 

HDAC10, leading us to suggest than PIM were, like AM, self-renewable embryonically derived 242 

macrophages, and/or that PIM may directly originate from AM (Bordet et al., 2018). PIM have been 243 

involved in acute lung inflammation in Laurasiatheria species (Cantu et al., 2007; Singh et al., 2004). 244 

Interestingly PIM can be induced in rat model of systemic induced inflammation triggered by biliary 245 

duct ligature (Gill et al., 2008) and some clues of PIM induction in humans suffering of liver 246 

dysfunctions (Klingensmith et al., 1978, 1976) have been reported. In a recent report using mice 247 

grafted with human bone-marrow (‘humanized’ mice), the authors detected PIM which were, in this 248 

model, monocyte-derived human macrophages in tight contact with murine endothelial cells (Evren 249 

et al., 2021). 250 

 251 

Interstitial macrophages  252 

Interstitial lung moMθ identities and functions have been recently revisited in mouse and 253 

man by the identification of two distinct populations (Chakarov et al., 2019), one Lyve1low/MHC-254 

IIhigh/CD163low, and the other Lyve1high/MHC-IIlow/CD163high respectively residing adjacent to nerve 255 

bundles and to blood vessels. The later Lyve1high/MHC-IIlow moMθ secreted a high basal level of IL10, 256 

supported blood vessel integrity, and decreased inflammatory cells infiltrations upon pulmonary 257 

inflammation in mice. This degree of precision has not been reached in pig, although we identified an 258 

MHC-IIhigh/CD163low/CD169high moMθ population (Maisonnasse et al., 2016) as well as an MHC-259 

IIlow/CD163high/CD169low (unpublished data), whose differential roles and locations remain to be 260 

explored.  261 

 262 

Dendritic cells 263 

Swine DC have been identified in tonsils (Soldevila et al., 2018), tracheal epithelium and 264 

pulmonary parenchyma (Maisonnasse et al., 2016). They can be divided in cDC1, cDC2 and moDC 265 

whose RNAseq signatures cluster with their mouse spleen and/or lung counterparts (Crisci et al., 266 

2020). Plasmacytoid DC have also been identified in swine tonsil, they are E2.2 and IRF7 positive as 267 

observed in mouse and man. The porcine lung cDC and moDC populations present the functional 268 

characteristics of bona fide DC, migrating toward LN chemokine upon maturation, whereas only cDC, 269 

but not moDC significantly trigger naïve CD8 and CD4 T cells proliferation. Conventional DC2 are 270 

better in activating CD4 T cells than cDC1, and this in lung as well as in tonsil (Maisonnasse et al., 271 

2016; Soldevila et al., 2018), as previously described in mouse and human (Schlitzer and Ginhoux, 272 

2014). Again consistent in tonsil and in lung, both porcine cDC1 and cDC2 activate CD8 T cells, 273 

conversely to what is observed in mouse (Ng et al., 2018). Interestingly, in humanized mice, human 274 

cDC1 and cDC2 expend similarly influenza specific CD8 T cells, however only cDC2 induced mucosal 275 

effector CD8 T cells (Yu et al., 2013). This property of cDC2 has not been explored yet in swine lung. 276 

Another intriguing transpecies feature of DC is the expression of Langerin on cDC2 in pig 277 

(Maisonnasse et al., 2016) and human (Bigley et al., 2015) but on cDC1 in mouse (Sung et al., 2006). 278 

It has been shown in human that Langerin is rapidly induced in blood cDC2 upon TGFβ exposure 279 

(Bigley et al., 2015). Interestingly, this might be interpreted in conjunction with the expression of 280 

CD103 (αEβ7 integrin) on lung porcine cDC2, as well as with the sub-epithelial location of cDC2 in 281 

man (Yu et al., 2013) and pig (Maisonnasse et al., 2016). Indeed, TGFβ is largely produced by 282 

respiratory epithelial cells and Langerin, like CD103, is induced upon TGFβ exposure (Parker et al., 283 

1992; Picarda et al., 2016). The sub-epithelial location of cDC2 in humans and pigs might explain both 284 

the Langerin and CD103 expression phenotype and the higher involvement of cDC2 in the activation 285 
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of CD8 response compared with their mouse counterparts (Yu et al., 2013). FcεRIα is expressed in pig 286 

(Maisonnasse et al., 2016) and human (Greer et al., 2014) but not in mouse cDC2. Indeed in mouse 287 

inflammatory moDC expressed the FcεRIα (for review see (Lambrecht and Hammad, 2012)). This 288 

difference might be of great importance in the feedback of allergic response since IgE/FcεRIα 289 

signaling in human cDC2 trigger an inhibition of the inflammatory response (Platzer et al., 2015) 290 

whereas it is thought that FcεRIα expression on mouse moDC would allow an IgE-mediated allergen 291 

presentation in a positive amplification loop. Interestingly, a recent work in mice complicated the 292 

cDC1/cDC2/moDC picture by demonstrating that upon inflammation lung cDC2 can arbor cDC1 and 293 

moDC features such as IRF8, CD64 and FcεRIα expressions (Bosteels et al., 2020). It would be 294 

interesting to investigate if these modifications stand true for human and porcine cDC2. Finally, in 295 

pig, monocyte-derived DC have been identified upon influenza infection and their phenotype and 296 

functions are compatible with inflammatory DC, harboring low migratory capacities and strong 297 

production of IL1β and IL8 upon stimulation (Maisonnasse et al., 2016). 298 

 299 

Innate lymphocytes 300 

NK cells were shown to decrease in peripheral blood and to preferentially localize close to 301 

infected area in porcine influenza infected lung (Forberg et al., 2014), in agreement with an 302 

important role in the control of influenza infection as observed in mice (Gazit et al., 2006). The 303 

CD3+NKp46+ lymphocyte population described by Mair et al. (Mair et al., 2016) was minimally 304 

detected in spleen, blood and mediastinal LN (< 2%) but presented a higher frequency, associated to 305 

a large variability according to the animal, in lung (1% to 10%), what may suggest a role of this 306 

population in lung immune surveillance in swine. Invariant NKT (iNKT) cells binding human CD1d 307 

tetramers loaded with an α-GalCer analog have been described in the porcine lung. They are CD3 and 308 

CD44 positive but do not express Nkp46 and CD11b, and can be subdivided in three main populations 309 

expressing no, low or high levels of CD8α (Yang et al., 2017a). Interestingly, it has been shown 310 

recently that porcine iNKT cells were able to respond to influenza-exposed myeloid cells in vitro 311 

(Schäfer et al., 2019). 312 

To our knowledge, an interesting observation has been done only in pig lung, which is the 313 

demonstration that γδ T cells were the main alveolar population able to migrate to bronchial LN 314 

(Pabst and Binns, 1995). 315 

 316 

T Lymphocytes  317 

As expected from mouse and man data, it has been observed in pig that parasitic Ascaris 318 

suum infection bias the lung immune response toward a Th2 response (GATA3, IL4, IL5 upregulation 319 

in the whole lung tissue) (Steenhard et al., 2009) and that Actinobacillus pleuropneumoniae bacterial 320 

infection triggered a Th17 immune response, as validated by the presence of antigen-specific IL17A 321 

secreting CD4 T cells (Sassu et al., 2017). Intranasal influenza vaccination triggered resident memory 322 

T cells (Holzer et al., 2018). Moreover, proliferating poly-functional Th1 (IFNγ, TNFα and IL2- 323 

secreting) and CD8 (IFNγ, TNFα-secreting) lymphocytes can be detected in the trachea-bronchial LN 324 

and the lung of influenza infected animals, from 6 to 44 days post-infection (Talker et al., 2016). 325 

Interestingly flu-specific IFNγ-secreting CD8 T cells expressed perforine and were 30 times 326 

overrepresented in the lung than in the peripheral blood. Cytokine production was dominated by T 327 

cells with an early effector phenotype or central memory phenotype (CD27pos) as observed in mice 328 

(Ballesteros-Tato et al., 2010) in agreement with the existence in porcine lung of tissue-resident 329 

memory T cells.  330 

 331 

B lymphocytes 332 
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To our knowledge the B cell response in the porcine respiratory tract has only been 333 

addressed through nasal swabs and broncho-alveolar lavages antibody monitoring (among others 334 

(Bernelin-Cottet et al., 2019; Heinen et al., 2000)).  335 

 336 

In conclusion, considering the respiratory immune system, mice and swine present both similarities 337 

and differences compared with human beings (Table 1), which must be consciously considered 338 

before choosing one species as an animal model for the pathogen of interest. 339 

 340 

Model 341 

We will consider here the porcine models developed to tackle the main respiratory diseases 342 

identified by the WHO, at the exception of lung cancer. Id est, respiratory infections and vaccination, 343 

allergy and asthma, acute and chronic inflammations, to which we will add two short chapters on 344 

microbiota and lung graft (Table 2).  345 

Respiratory infections  346 

Swine has been frequently used to study human respiratory pathogens naturally infecting the 347 

pigs, including, amongst others , Mycobacterium sp (Bolin et al., 1997; Ramos et al., 2017), 348 

Pseudomonas aeruginosa (Dehring et al., 1983; Luna et al., 2009), Staphylococcus aureus (Martínez-349 

Olondris et al., 2010) and Alphainfluenzavirus (Rajao and Vincent, 2015). Alternatively, pigs can be 350 

susceptible to experimental infections of otherwise strictly human pathogens such as Bordetella 351 

pertussis (Foreman-Wykert and Miller, 2005). One of the main gap of naturally occurring respiratory 352 

infections in swine is the absence of a porcine equivalent of the human respiratory syncytial virus 353 

(RSV), a very significant pathogen in human, although an orthopneumovirus close to RSV has been 354 

recently detected in pigs (Hause et al., 2016) and might be present in France too (Richard et al., 355 

2018). In this chapter we will expose the interest of the pig model for P. aeruginosa, influenza A and 356 

coronavirus infections.  357 

-The bacterium P. aeruginosa rarely infects human lungs unless the host immune system has been 358 

impaired because of cystic fibrosis (CF), chronic obstructive disease (COPD) or ventilator-associated 359 

pneumonia. An infectious model has been developed in pig that recapitulates all the main features of 360 

this human infection, including bronchial contraction, transient increase in pro-inflammatory 361 

cytokines (IL8, IL6 and TNFα), neutrophilia, neutrophil extracellular trap (NET)osis, and the secretion 362 

of massive amounts of neutrophil serine proteases leading to lung damages (Chevaleyre et al., 2016). 363 

-Orthomyxoviridae and more specifically Alphainfluenzavirus (IAV) are pathogens of major 364 

importance in animal and human medicines. As recently reviewed, pig is more and more considered 365 

as an alternative model to consider with ferret and mouse, for the study of human influenza infection 366 

(Starbæk et al., 2018). Pigs are natural hosts of different strains of IAV (Kuntz-Simon and Madec, 367 

2009), presenting frequent interspecies transmissions from pig to man and the reverse (Chastagner 368 

et al., 2019a, 2019b), what underlines the proximity of swine and human IAV as well as the similarity 369 

of the respiratory systems in both species. The most frequently encountered subtypes in pigs, H1N1, 370 

H1N2 and H3N2, are the same than in humans. Besides that, the interest for the pig model is 371 

strengthened by the fact that pig is considered as a mixing vessel of human, porcine and avian 372 

influenza virus for the generation of new influenza virus reassortants (Ma et al., 2009). The 373 

susceptibility of pigs to infections with both avian and mammalian influenza virus was recently 374 

explained to some extent in a study showing that the porcine host factor ANP32A, contrary to 375 

porcine ANP32B and other mammalian ANP32, had stronger supporting activity to the avian viral 376 

RNA polymerase (Zhang et al., 2020). In pigs, IAV are responsible of mild diseases (for review (Crisci 377 

et al., 2013)) with low fever (40.5°C versus 39.5°C for normal body temperature), low inflammatory 378 

signs of the upper respiratory tract (nasal/ ocular discharge and conjunctivitis), dyspnea and 379 
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coughing (Talker et al., 2016) very similar to human common, mild influenza infections. In mice, 380 

which are not the natural hosts for IAV, adapted strains trigger whole lung infection and 381 

inflammation, leading to death, more similar to highly pathogenic avian influenza infections in 382 

human (Gao et al., 2013). Ferrets are recognized among the best model for testing pathogenicity and 383 

transmission of human respiratory viruses including IAV (Enkirch and von Messling, 2015), although 384 

the evolutionary reasons for this convergence are still a mystery. Interestingly, a recent comparison 385 

of influenza heterosubtypic vaccination in pigs and ferrets, showed different outcome between 386 

species and underlined the interest of using different preclinical models to assess new vaccines 387 

against flu (Holzer et al., 2018). Which animal model, the pig or the ferret, reflects best the situation 388 

in human remains however to be determined. 389 

By keeping the immune response under control, AM are recognized as the ‘peace-keepers’ of 390 

the lung (Schneider et al., 2014). In mouse (Schneider et al., 2014) like in pig (Kim et al., 2008), AM 391 

depletion aggravate the IAV-mediated disease. In pigs, similarly to humans, disease severity has been 392 

associated with increased local pro-inflammatory cytokines (Barbé et al., 2011; Khatri et al., 2010). 393 

This cytokine storm has been associated in mice to the arrival of inflammatory moDC in the lung, 394 

indeed, pharmacological or genetic downregulation of moDC trafficking moderates the early 395 

inflammation, reduces morbidity and mortality without impacting the mounting of the adaptive 396 

immune response (Aldridge et al., 2009). This model might also stand for IAV infection in swine, since 397 

we observed the arrival of similar pro-inflammatory moDC in the porcine lung as soon as 2 days post-398 

IAV inoculation (Maisonnasse et al., 2016). As in mouse (Westerhof et al., 2019) and human 399 

(Bonduelle et al., 2014), influenza virus infections in pigs trigger multifunctional blood (Talker et al., 400 

2015) and lung (Talker et al., 2016) antigen-specific CD8 and CD4 T cells. Interestingly a strain of 401 

inbred animals, the Babrahama pigs, allowed the use of swine major histocompatibility class I (MHC-402 

I) tetramers to analyze the anti-NP CD8 T cells raised upon influenza intranasal vaccination (Tungatt 403 

et al., 2018), and influenza infection (Edmans et al., 2021). This last study also detected a strong 404 

influx of γδ T cells in the alveolar space during influenza infection. Similarly, and in agreement with a 405 

role in respiratory immunity, the CD3+NKp46+ lymphocyte population described in swine by Mair et 406 

al. (Mair et al., 2016) presented a strong increase in the lung of influenza infected animal, most 407 

probably due to local proliferation. SCID human beings and pigs presenting an autologous deficiency 408 

in Artemis gene (DCLRE1C) (Moshous et al., 2001) do not develop adaptive immune T and B 409 

lymphocytes but harbor functional NK cells (Powell et al., 2016). Human affected by this mutation 410 

present recurrent respiratory infections but not recorded influenza infections (Volk et al., 2015), and 411 

survived early childhood thanks to intravenous Ig therapy. Interestingly SCID/Artemis pigs presented 412 

higher virus excretion and delay in virus clearance, but milder lung lesions and clinical signs 413 

compared with their heterologous counterparts (Rajao et al., 2017), in agreement with a role of the 414 

adaptive immune response both in the control of the viremia and in the inflammatory pathology. In 415 

short, pigs can be an interesting model of human influenza infection using endemic porcine or 416 

human influenza viruses. The height of the influenza porcine model being to use pig-originated 417 

pdmH1N1 (Mena et al., 2016) human pandemic virus in porcine infectious assay as a model of the 418 

human infection (Schwaiger et al., 2019). 419 

-Coronavirus: With the recent COVID-19 crisis there is new need for the development of relevant 420 

animal models to study coronavirus infections. In pig, the only respiratory coronavirus (Porcine 421 

Respiratory Coronavirus, PrCoV) is an Alphacoronavirus which is a variant of the Transmissible 422 

Gastroenteritis Virus (TGEV) (Wang et al., 2019). Indeed, a large 5’ deletion in the Spike gene of TGEV 423 

altered the tropism and the virulence of PrCoV. PrCoV receptor is the aminopeptidase N (APN also 424 

named CD13), mainly expressed on respiratory and intestinal epithelial cells, whereas human SARS-425 

CoV and SARS-CoV-2 bind to ACE2, a protein similarly expressed on respiratory and intestinal 426 
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epithelial cells but also on endothelial cells, which may have strong implication in virus pathogeny 427 

(Saponaro et al., 2020). Indeed, engineering transgenic mice expressing the human ACE2 suffice to 428 

trigger the full clinical picture of SARS-CoV-2 in mice (Bao et al., 2020; Israelow et al., 2020; Sun et al., 429 

2020). Regarding the first SARS-CoV, the pig has been demonstrated to be susceptible (Chen et al., 430 

2005). With the SARS-CoV-2, the situation is less clear and contradictory results have been reported 431 

(Meekins et al., 2020; Pickering et al., 2020; Sclottau et al., 2020; Shi et al., 2020). In 3 out of 4 of 432 

these reports (Meekins et al., 2020; Sclottau et al., 2020; Shi et al., 2020), pigs inoculated using nasal 433 

or oral routes did not develop any lesions nor clinical signs. Moreover, authors did not detect any 434 

viral excretion. However in one of these 3 studies (Meekins et al., 2020) SARS-CoV-2 replicated in 435 

porcine epithelial cell lines. In the fourth study (Pickering et al., 2020), mild clinical signs were 436 

observed in some inoculated pigs and viral RNA was detected in nasal lavage and oral fluid. 437 

Furthermore, infectious virus was isolated from submandibular LN in one pig 13 days post-438 

inoculation and a serological response was evidenced in two animals 11 days post-inoculation 439 

(Meekins et al., 2020). Thus, at this early stage, it is very difficult to definitely conclude about the 440 

relevance of the pig model for the study of SARS-CoV-2. 441 

The SARS-Cov-2 emergence revealed the lack of knowledge on seasonal human coronavirus. 442 

The prototype viruses from the two main HCoV lineages are 229E (Alphacoronavirus, like the porcine 443 

PrCOV) and OC43 (Betacoronavirus). They cause 15–29% of all common colds, and are the best 444 

characterized HCoV, although 2 other human coronavirus are also considered as endemic (NL63 and 445 

HKU1) (Su et al., 2016). In addition, HCOV-229E uses the same receptor as PrCOV. Thus swine might 446 

be a good model of seasonal coronavirus infections allowing, in addition, the investigation of 447 

coronavirus and IAV co-infections. 448 

Regarding respiratory infections, it is worth to report here that pig lungs are suitable for the 449 

generation of precision cut lung slices (PCLS) permitting the analysis, using multiple in vitro 450 

conditions, of monoinfections (Delgado-Ortega et al., 2014) as well as of coinfecting viruses’ complex 451 

interactions on primary tissue-samples (Dobrescu et al., 2014; Saade et al., 2020). 452 

 453 

Vaccination 454 

Reviews arguing for the use of large animal models, including swine, have been published in 455 

2015 that inventoried pig usage for vaccination and challenge tests against Bordetella pertussis, 456 

Chlamydia trachomatis, human norovirus, rotavirus and IAV (Gerdts et al., 2015; Rajao and Vincent, 457 

2015). In addition to allow the evaluation of vaccines directly through protection against an 458 

infectious challenge, animal models can permit to evaluate vaccines indirectly through immune 459 

responses measurement without the final step of the infectious challenge. In this case, the animal 460 

model is not anymore needed to be susceptible to the pathogen. For instance, swine are commonly 461 

used to assess the potency of delivery devices and adjuvants. 462 

-Delivery: The place and mode of delivery determine the localization of memory and effector cells 463 

upon challenge. For instance it has been shown in mice that epicutaneous (EP) vaccination allows 464 

mucosal immune response in mice (Belyakov et al., 2004). Pig skin is recognized as a good model of 465 

human skin because of structure (hairiness, epidermis and dermis thickness, subcutaneous fat) and 466 

lipid composition (Hammond et al., 2000) similarities, which makes pig skin permeability similar to 467 

the human one, as well as because of dendritic cells and macrophages resemblance (Marquet et al., 468 

2014; Summerfield et al., 2015). Thus pig is a model of choice to test EP, transcutaneous (TC) and 469 

intradermic (ID) vaccination protocols for the induction of respiratory immune protection. Direct 470 

intramuscular (IM) DNA vaccination presented early encouraging success in mouse (Ulmer et al., 471 

1993) that were not reproduced in large animals including humans and pigs. Although not further 472 

investigated, this discrepancy might rely on tissue stiffness differences according to the animal size. 473 

Vaccination against respiratory diseases can also favor a pulmonary localized immune response by 474 



11 
 

directly exposing the target tissue to the antigens using aerosol (AS), intranasal (IN) or intratracheal 475 

(IT) deliveries. For that purpose, the size of swine upper respiratory tract, more similar to the human 476 

ones than small animals such as mouse or ferret, might guarantee a better compliance with clinical 477 

situations (Kirschvink and Reinhold, 2008; Rogers et al., 2008). As an illustration, herein some 478 

technics used in vaccination (mainly against influenza) in swine: prime-boost DNA/whole virus 479 

vaccine delivered ID/IM (Hewitt et al., 2019), single ID Aujeszky’s Disease Virus glycoproteins vaccine 480 

(Le Luduec et al., 2016), influenza-proteins, DC-targeted ID or IM vaccination (Bernelin-Cottet et al., 481 

2016), protein, epicutaneous anti-RSV vaccination (Hervé et al., 2016), single-cycle influenza virus 482 

delivered AS (Holzer et al., 2018), influenza virus-derived-replicon delivered IM (Ricklin et al., 2017), 483 

nanoparticules whole influenza virus encapsulation delivered IN (Dhakal et al., 2017) and aerosol 484 

intranasal delivery (Martini et al., 2020). 485 

- Adjuvant: In addition to antigen and delivery, an essential part of a vaccine is the adjuvant used to 486 

increase the immunogenicity of dead vaccines. One of the main developing arm of adjuvant is the 487 

use of TLR-ligands, that trigger inflammation and antigen presenting cells activation. In that instance, 488 

swine present a restrictive expression of TLR3 on pDC (Auray et al., 2016; Soldevila et al., 2018) 489 

compared to the TLR3 expression on cDC1 in human (Poulin et al., 2010) and mouse (Desch et al., 490 

2011). Conversely, pig and human, but not mouse, expressed an active TLR8 receptor that can detect 491 

RNA specifically from live bacteria (Ugolini et al., 2018), leading to a better activation of follicular DC 492 

and the differentiation of high affinity antibodies. Finally, it has been proposed to use αGalSer as an 493 

adjuvant in human vaccination that would harness iNKT cells (Speir et al., 2017) and help for CD8 T 494 

cells activation.  This strategy has been prospected in pig (for review (Yang et al., 2017b)). A first 495 

assay using αGalSer as immunostimulant before IAV infection did not allow protection (Gu et al., 496 

2021), although this result does not preclude the use of αGalSer as true vaccine adjuvant. 497 

 498 

Microbiota 499 

In the last years the importance of the microbiota and especially the gut microbiota in the 500 

preservation of homeostasis and health has been extensively studied. The gut microbiota can 501 

influence the lung health and the susceptibility of porcine host to respiratory infections (Bassaganya-502 

Riera et al., 2003; Niederwerder, 2017). It is also known that all the mucosa in the body have some 503 

connections forming the common mucosal immune system in man (Dang and Marsland, 2019) as in 504 

pig (Wilson and Obradovic, 2020). Because of the use of pigs in biomedical research, some 505 

comparisons between human and pig gut microbiota have been carried out. By deep metagenome 506 

sequencing of faecal DNA from 287 pigs, Xiao and collaborators showed that among functional 507 

pathways found in humans, 96% were present in pigs (Xiao et al., 2016). However, in other studies 508 

comparing gut microbiota (Xiao et al., 2016) and fecal microbiota (Kobayashi et al., 2020) in different 509 

species, it was shown that pig was less close to humans than marmosets and three shrews. Moreover 510 

the pig, even if omnivorous like humans, had fecal microbiota showing some common features with 511 

herbivores as the presence of Fibrobacter, a cellulolytic bacterium (Kobayashi et al., 2020). Recently a 512 

further demonstration of the gut lung axis has been demonstrated in swine with an impact of a 513 

porcine herpesvirus (Aujeszky’s Disease Virus) on microbial community and immune status in the 514 

ileum and colon of piglets (Zhang et al., 2019). Finally, the last decade firmly established the 515 

existence and precisely described a symbiotic, stable respiratory microbiota in mouse and man (for 516 

review see (Man et al., 2017). These investigations remain to be done in pig. 517 

 518 

Respiratory Allergy and Asthma 519 

Respiratory allergy corresponds to the improper activation of a Th2 response, leading to the 520 

establishment of an IgE mediated anamnestic immune response that will trigger eosinophils 521 
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degranulation and asthma. Although food allergy is well-established in swine (for review see (Rupa et 522 

al., 2009)), allergic asthma does not occur spontaneously in the animal world, albeit guinea pigs, 523 

ferrets and pigs can be artificially sensitized. The establishment of a stable chronic porcine asthma 524 

model appears to be difficult because the sensitivity to the antigen declines after repeated allergen 525 

exposure (Szelenyi, 2000). However, upon Ascaris suum antigen sensitization consisting of an A. 526 

suum extract in Al(OH)3 followed by two booster doses and a challenge with nebulized allergen, pigs 527 

developed airway inflammation associated with eosinophils and neutrophils infiltration (Fornhem et 528 

al., 1996). On the induction side, cDC2 have been demonstrated to be the main trigger of the Th2 529 

bias involved in the allergic response. As specified in the dendritic cells chapter above, porcine cDC2 530 

resemble more to human than to mice cDC2 on several aspects in blood (Auray et al., 2016) as well 531 

as in the respiratory tract (Crisci et al., 2020). For instance, the two main features important to recall 532 

here are the expression by cDC2 of the FcεRIα, a receptor of IgE, and  the intra-epithelial and sub-533 

epithelial cDC2 location in the trachea and the bronchia respectively (Maisonnasse et al., 2016; Yu et 534 

al., 2013). Invariant NKT cells have been strongly involved in the Th2 bias of allergic responses (for 535 

review see (Matangkasombut et al., 2009)), interestingly Renukaradhya et al. demonstrated that 536 

intra-tracheal instillation of α-GalCer analog in pigs triggered iNKT cells activation and acute airway 537 

hyperactivity associated with a Th2 cytokine profile (Renukaradhya et al., 2011). On the effector side, 538 

dendrograms indicate that porcine IgE is more similar to IgE of carnivores, horses and humans than 539 

to other artiodactyls IgE (Butler et al., 2009). In swine as in human, mast cell tryptase inhibitor 540 

administrated prior to allergen challenge prevented acute bronchoconstrictive response and 541 

decreased histamine release (Ploeg et al., 2002), while corticoid administration decreased airways 542 

inflammatory cells infiltration (Fornhem et al., 1996). Still on the clinical side, porcine lung smooth 543 

muscles reactions to inflammatory stimuli are a current model of asthma-muscle contraction (Ram-544 

Mohan et al., 2020; Sieck et al., 2019). Interestingly, airway contractions upon in vivo acid treatment 545 

in piglets (Reznikov et al., 2019) recapitulated the airway hyper-responsiveness (AHR) gender bias 546 

observed in infants (Van Merode et al., 2007).  547 

Several intravenously administered compound such as nanomedicines, radiologic contrast agents 548 

and other pharmaceutical products may trigger in human rare events of pseudoallergic infusion 549 

reactions which are hypersensitivity reactions.  Thanks to their high sensitivity, pigs have been used 550 

for decades to detect such reactions, using the “complement activation-related pseudoallergy” 551 

(CARPA) model (for review (Szebeni and Bawa, 2020)). Interestingly, pig high sensitivity seems 552 

strongly related to the presence of constitutive PIM (Csukás et al., 2015), what might be a clue of the 553 

presence of induced PIM in humans susceptible to such reactions.  554 

 555 

Acute and Chronic inflammations 556 

Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are 557 

responsible for more than 10% of intensive care unit admissions. ARDS conditions can be artificially 558 

reproduced in swine by using lung repeated lavages, and oleic acid or endotoxin instillations (for 559 

review see (Ballard-Croft et al., 2012)). Porcine models more related to human medical conditions 560 

have been developed recently such as hemorrhagic shock (Morris et al., 2020), hyperoxia (Katalan et 561 

al., 2017) or ricin induced-ARDS (Katalan et al., 2017). To our knowledge, no porcine model of ARDS 562 

triggered upon infection-induced pneumonia has been reported. The early ARDS stage is 563 

characterized by an acute inflammatory response that includes release of IL1, TNF, IL8 and 564 

subsequent neutrophil recruitment (for review see (Ware, 2006)), that can be mimicked in pig 565 

(Morris et al., 2020). 566 

In developed countries, chronic obstructive disease (COPD) is mostly provoked by smoking 567 

and result in the remodeling and narrowing of small airway associated with pulmonary emphysema, 568 
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likely due to chronic inflammation leading to increased numbers of neutrophils, macrophages, DC, T 569 

and B lymphocytes. Chronic inflammation is maintained by macrophages and neutrophils infiltration 570 

although autoimmunity related to autoantibodies and activated CD8 is suspected (for review see 571 

(Caramori et al., 2016)). The emphysema appears to be linked to metalloproteinases (MMP) catalytic 572 

activity. A mutated-pig phenotype has been described presenting emphysema associated with MMP9 573 

and 12 hyper-expression which might be the first step toward the development of a COPD porcine 574 

model (Bruun et al., 2013). To note, pigs are already used as model for cigarette smoke short (Gilman 575 

et al., 1981) and middle (Gilman et al., 1981) term effects.  The development of pig as a COPD model 576 

would allow to explore an interesting hypothesis linking COPD and non-alcoholic fatty liver diseases 577 

(Lonardo et al., 2017) that we would like to bring together with the potential pro-inflammatory PIM 578 

induction in humans suffering of liver dysfunctions (Klingensmith et al., 1978, 1976). Whether the 579 

constitutional presence of PIM in swine might favor or impaired this model remains to be 580 

established.  581 

 582 

Lung graft  583 

Herein we will not tackle the field of xenotransplantation, that is beyond the scope of this 584 

review and has been reviewed recently elsewhere (Burdorf et al., 2018). Regular lung transplantation 585 

is the final treatment option for patients presenting end-stage lung diseases. The 1-year survival has 586 

greatly improved in the last 40 years, reaching now 84% (Chambers et al., 2017). Pig is used as a 587 

model of lung transplantation (Mariscal et al., 2018) to study primary graft dysfunctions and test new 588 

preventive interventions to reduce or avoid these conditions (Iskender et al., 2016; Martins et al., 589 

2004). Interestingly, pig lungs are currently used to improve and further develop the promising ex 590 

vivo lung perfusion (EVLP) method (for review (Tane et al., 2017)) leading to the reconditioning of 591 

lung graft rejected in first instances because of not reaching the graft quality criteria. Porcine model 592 

allowed to validate methods that decreased the expression of acute lung injury related genes 593 

(Dromparis et al., 2019) or that increased the extracorporeal surviving time (Hozain et al., 2020). 594 

Moreover, EVLP development give accessibility and time for intervention on the lung graft before 595 

grafting. The pig model allows to test extracorporeal intervention such as IL10 gene-therapy in order 596 

to act specifically on the immune tolerability of the transplant (MacHuca et al., 2017).  597 

 598 

Conclusions and perspectives: 599 

In conclusion, we think that the development of pig as a respiratory model of medical 600 

conditions might be encouraged following three main research fields: 601 

Because of the resemblances between porcine and human cutaneous, respiratory and 602 

intestinal systems, associated to the immunological similarities of these species, pig appears to be a 603 

model of choice to study the interactions between the different mucosae. In this perspective, a 604 

better knowledge of porcine skin, lung and intestinal microbiota will be needed. 605 

The second important point would be to develop pig as a model of respiratory allergies 606 

according to the high similarity of cDC2 in pig and man, as well as to the good knowledge of porcine 607 

neutrophils and iNKT cells. The main immunological hurdle for this development remains the lack of 608 

reagents to follow the B cell response (B cells markers, such as CD19 and CD20 and tools to 609 

discriminate the different IgG isotypes). 610 

Finally, according to the large knowledge accumulated on the pig blood monocytes and 611 

respiratory macrophages, as well as to the relative long life span of pigs, the long term consequences 612 

of immune system alterations triggered by immunostimulants or primary infections, leading to 613 

trained immunity (Angulo et al., 2020; Guillon et al., 2020; Stylianou et al., 2019; Yao et al., 2018) or 614 

tolerance (Bouras et al., 2018; Didierlaurent et al., 2008) might be advantageously studied in this 615 

model. 616 
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To summarize, thanks to the knowledge and tools developed during the last years, pig 617 

appears now as the third medical model after mice and non-human primates, and might be seriously 618 

considered when looking for a respiratory experimental model, especially in the fields of mucosal 619 

interactions, allergies and trained immunity. 620 

 621 
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Table I: Immune-related respiratory tract remarkable features of mouse, human and pig 

 Mouse Human Pig Comments 
Airways -Muzzle  

 

 

 

-Small airways and 

lungs 

 

-Nose  

 

 

 

-Large airways and 

lungs 

 

-Snout 

 

 

 

-Large airways 

and lungs 

 

-hm ≠ pg ≠ ms  

≠ in higher respiratory 

tract size and structure 

-hm & pg ≠ ms  

≠ in lower respiratory 

tract accessibility 

Lymph nodes  -Centripetal 

circulation 

 

-Lymphocytes exit 

through efferent 

lymphatics 

-Centripetal 

circulation 

 

-Lymphocytes exit 

through efferent 

lymphatics 

-Centrifugal 

circulation 

 

-Lymphocytes 

exit through 

HEV 

-hm & ms ≠ pg  

no known consequences 

-hm & ms ≠ pg  

no known consequences 

Granulocytes -Neutrophil serine 

proteases not-

sensitive to human 

inhibitors  

-Neutrophil serine 

proteases sensitive 

to human 

inhibitors 

-Neutrophil 

serine proteases 

sensitive to 

human inhibitors 

-hm & pg ≠ ms 

≠ in tissue inflammation 

handling 

AM -Embryonic origin 

 

-Self-renew 

-Inflammation, 

replacement by 

moAM 

-Probably of 

embryonic origin 

-No data 

-Large part of 

moAM 

-Probably of 

embryonic origin 

-No data 

-No data 

-hm=ms=pg 

PIM -No information -Induced PIM 

upon liver 

conditions? 

-Constitutive 

inflammatory 

PIM 

-hm & ms ≠ pg  

high susceptibility of 

pigs to infused particles 

moMθ/ 

interstitial Mθ 

-2 populations: 

nerve-associated 

blood vessel 

associated 

-2 populations: 

nerve-associated 

blood vessel 

associated 

-2 populations: 

location not 

explored 

-hm=ms=pg 

DC -TLR3 expressed 

on cDC1 

-cDC1 mainly 

involved in T CD8 

activation 

-cDC2 FcεRIα-, 

Lang-, CD103-, 

interstitial location 

-TLR3 expressed 

on cDC1 

-cDC1 and cDC2 

involved in T CD8 

activation 

-cDC2 FcεRIα+, 

Lang+, CD103+, 

subepithelial 

location 

-TLR3 expressed 

on pDC 

-cDC1 and 

cDC2 involved 

in T CD8 

activation 

-cDC2 FcεRIα+, 

Lang+, CD103+, 

subepithelial 

location 

-hm & ms ≠ pg  

≠ dsRNA response? 

-hm & pg ≠ ms  

≠ T CD8 induction? 

 

-hm & pg ≠ ms  

≠ allergy induction? 

NK/NKT cells -NKp46 

specifically 

expressed on NK 

cells 

-NKp46 

specifically 

expressed on NK 

cells 

-NK subset 

NKP46-, T 

lymphocyte 

subset NKP46+ 

-hm & ms ≠ pg 

no known consequences 

T Lymphocytes -CD4 T cells 

devoid of CD8 

expression 

-Low proportion of 

γδ T cells  

-CD4 T cells 

devoid of CD8 

expression 

-Low proportion of 

γδ T cells 

-CD8α on 

memory CD4 T 

cells 

 

-High proportion 

of γδ T cells 

-hm & ms ≠ pg 

no known consequences 

-hm & ms ≠ pg 

≠ innate immune 

response? 

B Lymphocytes -Naïve B cells 

transporting 

antigens to fDC 

-Not described  -Centroblasts 

transporting 

antigens to fDC? 

-hm & ms ≠ pg 

no known consequences 

HEV: High-Endothelial Venules; AM: Alveolar Macrophage; PIM: Pulmonary Intravascular Macrophage; 

moAM: monocyte-derived AM; Mθ: Macrophages, moMθ: monocyte derived Macrophage; DC: Dendritic Cell; 

cDC: conventional Dendritic Cell; pDC: plasmacytoid Dendritic Cell; fDC: follicular Dendritic Cell; NK: 

Natural Killer; hm: human; ms: mouse; pg: pig. Bibliographic references are in the main text. 



Table 2: Non-transmissible respiratory diseases pro and con of the porcine model 

  PROS CONS 

RESPIRATORY 

INFECTIONS 

B. pertussis -naturally infected  

Mycobacterium sp -naturally infected  

S. aureus -naturally infected  

P. aeroginosa -naturally infected  

Influenzavirus -natural sensitivity to 

human and swine 

strains with mild 

clinical signs 

-no example of highly 

pathogenic infections 

Coronavirus -natural porcine 

αCoronavirus (PrCoV) 

similar to the human 

seasonal HCoV-229E 

-disputed sensitivity to 

SARS-CoV-2 

Orthopneumovirus -natural porcine 

Orthopneumovirus? 

-not sensitive to hRSV 

VACCINATION Delivery -skin structure  

-upper respiratory tract 

structure 

 

Adjuvant -functional TLR8  

-cDC1 interstitial and 

cDC2 intra-

subepithelial locations 

-αGalSer response 

-TLR3 expression on 

pDC not on cDC1 

MICROBIOTA  -omnivorous species -intestinal microbiota 

similar to herbivore  

- data paucity on 

porcine respiratory 

microbiota 

RESPIRATORY 

ALLERGY AND 

ASTHMA 

Induction -cDC2 location 

-cDC2 expressing IgE 

receptor (FcεRIα) 

-no stable chronic 

allergic asthma 

porcine model 

Clinical signs -IgE similar to human 

-lung smooth muscles 

porcine model 

-efficacy of tryptase 

inhibitors 

 

ACUTE AND 

CHRONIC 

INFLAMMATIONS 

 -model of early 

inflammatory ARDS 

responses 

-constitutive PIM 

-no infectious model 

of ARDS induction 

 

-constitutive PIM 

LUNG GRAFT  -size allowing similar 

surgical intervention  

-primary graft 

dysfunction model 

-ex vivo lung perfusion 

model 

 

 

SARS: Severe Acute Respiratory Syndrome; hRSV: human Respiratory Syncytial Virus; cDC: 

conventional Dendritic Cell; pDC: plasmacytoid Dendritic Cell; ARDS: Acute respiratory distress 

syndrome; PIM: Pulmonary Intravascular Lymphocyte. Bibliographic references are in the main text. 




