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Abstract

While several studies in a diverse set of species have shed light on the genes underly-
ing adaptation, our knowledge on the selective pressures that explain the observed
patterns lags behind. Drosophila melanogaster is a valuable organism to study environ-
mental adaptation because this species originated in Southern Africa and has recently
expanded worldwide, and also because it has a functionally well-annotated genome.
In this study, we aimed to decipher which environmental variables are relevant for
adaptation of D. melanogaster natural populations in Europe and North America. We
analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations
collected in 20 European and 11 North American locations. We used the BayPass
software to identify single nucleotide polymorphisms (SNPs) and transposable ele-
ments (TEs) showing signature of adaptive differentiation across populations, as well
as significant associations with 59 environmental variables related to temperature,
rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found
that in addition to temperature and rainfall, wind related variables are also relevant for
D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that
showed significant associations with environmental variables were not found overly
differentiated across populations. In addition to SNPs, we also identified 10 reference
transposable element insertions associated with environmental variables. Our results
showed that genome-environment association analysis can identify adaptive genetic
variants that are undetected by population differentiation analysis while also allowing

the identification of candidate environmental drivers of adaptation.
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1 | INTRODUCTION

Understanding how organisms adapt to different environments is a
major goal in evolutionary biology (Hoban et al., 2016; Nelson et al.,
2019). The genetic basis of adaptative traits has been studied in sev-
eral organisms, such as lactase persistence (Tishkoff et al., 2007) and
skin colour in humans (Norton et al., 2007), and dark colour in the
peppered moth Biston Betularia (Van't Hof et al., 2016) among many
others. Genome-wide studies aimed at elucidating the genetic basis
of environmental adaptation have also been conducted in several
species such as plants (Flood & Hancock, 2017), bacteria (Gorter
et al., 2016) and Drosophila (Rech et al., 2019). However, knowledge
on the specific environmental variables driving these adaptations
lags behind.

In the past few years, the availability of whole genome sequences
as well as the development of different analytical tools, have facil-
itated the performance of genome-environment association (GEA)
analyses. GEA analyses are useful approaches to identify the genetic
variants and the environmental factors that are involved in the adap-
tive processes. Combining outcomes from GEA analysis with classi-
cal population genome-wide selection scans, such as those based on
differentiation statistics, may help to link the genetic variants under-
lying local adaptation with their environmental drivers (Ahrens et al.,
2018; Hoban et al., 2016). These analyses have already been applied
to several species including Plant, Chordata, and to a lesser extent
Arthropoda, Mollusca, Cnidaria, Echinodermata, and Nematoda
(Ahrens et al., 2018). However, there are still important limitations
behind GEA analyses. One of the main drawbacks is the difficulty
in distinguishing the patterns associated with demographic pro-
cesses from those that are the consequence of selection (reviewed
in Rellstab et al., 2015). A second limitation is related to the choice
of environmental variables to include in the analysis. Prior selection
of the most relevant variables for any particular GEA analysis is
complicated since some previous knowledge about which variables
may be relevant in the adaptation process is needed. Indeed, most
environmental variables used in GEA studies are related to tempera-
ture and precipitation, while other variables such as solar radiation,
daylight hours, evaporation, and wind, that could also play a role in
adaptation are not widely used. Solar radiation, and more specifi-
cally UV-B radiation, could be relevant as DNA damage responses
are known to play a role in adaptation of several species such as
birds, insects or fungi (Kérner, 2007; Svetec et al., 2016; Wu et al.,
2019; Zhou et al., 2020). Daylight hours is related to the circadian
rhythm, which for example is known to play a role in Drosophila be-
havioural adaptation to high latitudes (Helfrich-Férster et al., 2020).
Evaporation is involved in organism thermoregulation and response
to desiccation stress (Ferveur et al., 2018; Rajpurohit et al., 2018;
Smit et al., 2018). Finally, wind direction is involved in plant adap-
tation by modifying pollen flow and therefore changing the spatial
genetic structure (Balkenhol et al., 2017; Gardiner et al., 2016; Wang
et al., 2016) and in the case of insects, antennae and specifically the
Johnston's organ, are directly involved in neuron response to wind
(Fuller et al., 2014; Patella & Wilson, 2018).

In addition, climate variables such as temperature and precipi-
tation can be highly correlated (Lotterhos et al., 2018). Relationship
between explanatory variables, i.e., multicollinearity, compro-
mises the results of multivariate regression analysis (Kim, 2019).
Multicollinearity could yield unreliable regression parameter estima-
tion, magnitude and sign of regression, which impedes the assess-
ment of the relative importance of the explanatory variables (Sokal
& Rohlf, 2013). This problem may be overcome by using synthetic
variables obtained via principal component analysis (PCA) of the
environmental variables of interest. However, using PCs based on
climate variables may lead to a limited interpretation of the environ-
ment drivers of selection. The PCs will represent the environmental
variables that covary the most, but this may not coincide with the
combination of variables that drive divergent selection and local ad-
aptation (Houle et al., 2002; Lotterhos et al., 2018).

Recently developed software such as the BayPass package
(Gautier, 2015), have overcome some of the limitations of the GEA
analyses mentioned above. On one hand, this software identifies
those genetic variants with statistically different allele frequencies
between populations and those associated with environmental vari-
ables, while taking into account the covariance between population
allele frequencies due to, for instance, the joint demographic his-
tory of the samples analysed (Gautier, 2015). On the other hand,
this software includes different modules based on different models:
a single-covariate regression model where the association is esti-
mated for each covariate, and a multiple-covariate regression model
where the association is estimated for several covariates assumed to
be orthogonal (Gautier, 2015).

Drosophila melanogaster is a valuable model organism to study
environmental adaptation. This species originated from Southern
Africa and has recently expanded worldwide colonizing a wide range
of environmental conditions (12,000-19,000 years ago; Arguello
et al., 2019; Pool et al., 2012; Sprengelmeyer et al., 2020). In addi-
tion, this species offers many key advantages as it has a small and
well-annotated genome which facilitates the identification of puta-
tively adaptive loci (Mohr et al., 2014), as well as a short lifecycle
implying many generations in short periods of time (15 generations
per year in nature; Pool, 2015). Past studies carried out with North
American and Australian D. melanogaster populations have already
shown clinal and seasonal genetic patterns suggesting that this
species could be a good model to study environmental adaptation
(Bergland et al., 2014, 2016; Fabian et al., 2012; Hoffmann & Weeks,
2007; Kolaczkowski et al., 2011; Machado et al., 2019). Indeed, this
species has already been studied in other continents such as Europe,
where clinal patterns and correlations between genetic variants
and environmental variables have also been identified (Kapun et al.,
2020; Lerat et al., 2019).

In this study, we combined genome scans for adaptive differ-
entiation and whole-genome GEA analysis using pool-seq data
available for 36 samples of D. melanogaster, representative of the
genetic diversity across the European continent (n = 20 locations)
and across a latitudinal cline in eastern North America (n = 11 loca-
tions). We focused on these two continents because they have an
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approximately similar range of climatic conditions (mostly temperate
climates) and they were both recently colonized, which allow us to
focus on short-term evolutionary events. Our threefold aims were
to characterize: (i) to which extent environmental variables contrib-
uted to adaptive differentiation in D. melanogaster; (ii) which climatic
variables, namely temperature, rainfall, evaporation, solar radiation,
wind, daylight hours and soil type, may be contributing to this en-
vironmental adaptation; and (iii) to which extent the observed sig-
nals were parallel across two different geographic areas: Europe and

North America.

2 | MATERIALS AND METHODS

2.1 | Datasets

European pool-sequencing samples were obtained from the 2014
DrosEU data set (Kapun et al., 2020). We discarded 18 out of the 48
samples available, for which Tajima's D was very low (Tajima's D <
-0.2; Kapun et al., 2020). For some locations, samples were collected
several times across 2014. When several samples were available for
the same season, summer or fall, we only included the earliest col-
lected sample in the analysis. Thus, overall, we analysed 25 samples
from 20 different locations (Figure 1). To perform the analysis, we
created three data sets including only one sample per location (Table

S1): Europe (20 samples), Europe Summer (14 samples), and Europe
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o
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N

B

Fall (10 samples). Note that for the Europe data set, when samples of
both seasons were available for the same location, we only included
the summer sample. Average sequencing coverage among samples
ranged from 25 to 190X (Table S1). VCFs are available at http://hdl.
handle.net/10261/180630.

Eleven North American pool-sequencing samples collected
from 2003 to 2014 were obtained from Machado et al., (2019) sam-
pled in eleven different locations in the North American East coast
(Figure 1; Table S1). We focused in these samples because clinality
has been detected in previous studies (Bergland et al., 2014; Fabian
et al., 2012; Figure 1; Table S1). VCFs are available at https://datad
ryad.org/stash/share/rHMqJSiXuGX12eBYyPvKE_Nglb-FMTrL
LnmegosbQ74.

In addition to SNPs, we also included in our analysis transposable
element (TE) insertions. We estimated population frequencies for
1,630 euchromatic reference TE insertions (Rech et al., 2019) using
T-lex3 (Bogaerts-Marquez et al., 2019). For each data set, we only
analysed those insertions that were polymorphic in at least one of
the populations (403 TE insertions; Table S2).

2.2 | Environmental variables

We downloaded environmental data from four different sources:
WorldClim (Fick & Hijmans, 2017), Copernicus (Hersbach et al.,
2020), the US Naval Observatory (https://www.usno.navy.mil/
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FIGURE 1 Drosophila melanogaster samples used in this study. Samples were collected across Europe and North America east coast (see
Table S1) in four main climate zones and seven subclimate zones (depending on precipitation and level of heat), according to the Képpen-
Geiger climate distribution (Kottek et al., 2006) [Colour figure can be viewed at wileyonlinelibrary.com]
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USNO/astronomical-applications/data-services/data-services)
and The Astronomical Data Portal UK Hydrographic Office
(http://astro.ukho.gov.uk/). From WorldClim, we used the 19
Bioclimatic variables, which are derived from the monthly tem-
perature and rainfall values from the 1970-2000 time range. We
used the R package raster (v.2.6-7) for downloading this data. In
addition, we also used year-specific environmental variables from
the year previous to the collection date of each sample. For the
year-specific variables, we used ERA5 "hourly data on single levels
from 1979 to present" database from Copernicus, to obtain data
on temperature (2 m temperature), rainfall (Total precipitation),
evaporation (Evaporation), solar radiation (Clear-sky direct solar
radiation at surface), wind (10 m u-component of wind and 10 m
v-component of wind), and soil type. This data was downloaded
as GRIB files and parsed using ecCodes package (v.2.8.2). Finally,
daylight hours were obtained from the US Naval Observatory for
the European data sets, and from The Astronomical Data Portal
UK Hydrographic Office for the North American data set. For the
year-specific variables, similar variables as the ones in WorldClim
were constructed with the data from the year previous to the col-
lection date using different python scripts (v.2.7.12). In total, we
analysed 59 environmental variables related to temperature (11),
rainfall (8), evaporation (11), solar radiation (7), wind (14), daylight
hours (7) and soil type (1) (Table S3). We tested whether those
variables that are common between WorldClim and Copernicus
(i.e., temperature and rainfall) but that were obtained from differ-
ent time ranges (average data from 1970 to 2000 and year-specific
data from the year before the collection date) were significantly
correlated using a Spearman correlation test (p > 0.8) (Table S3A).
Most of the eight rainfall related variables were not correlated (six
in Europe, six in Europe Summer, five in Europe Fall, and eight in
North America), while most of the 11 variables related to tempera-
ture in Europe and NA data sets were correlated (seven in Europe,
eight in Europe Summer, nine in Europe Fall, and seven in NA;
Tables S3A-B). For variables that were not correlated, we included
the two values of the same environmental variable in the analysis.
When the correlation was significant, we performed the analysis
using the variable corresponding to the WorldClim database.

In order to study the correlation among environmental variables,
we performed Spearman rank correlation test for each pair of vari-
ables in each data set using the R function cor.test() and R package
corrplot (v.0.84) (Table S3C). We considered and reported as strong
correlations those with Spearman's p > 0.8. We found that solar radi-
ation and daylight hours in Europe and in North America were highly
correlated. In North America, but not in the European data sets, we
also found that temperature, solar radiation, and daylight hours vari-
ables were highly correlated (Figure S1A-D). We also performed a
PCA of the environmental variables for each of the four data sets
analysed using stats (v.3.5.2) and plotnScree function in nFactors
(v.2.4.1) R packages (Table S3D1-4). We found that temperature and
solar radiation explained most of the variation of the PC1 both in
Europe and Europe Summer data sets. In the Europe Fall data set
solar radiation and daylight hours explain most of the PC1 variation

while temperature and rainfall explain most of the PC1 variation in
North America (Table S3D1-4).

2.3 | Whole-genome scans for adaptive
differentiation

Whole genome-scans for adaptive differentiation were performed
using BayPass (v.2.1) (Gautier, 2015). The model underlying BayPass
accounts for the correlation structure among allele frequencies and
allows identifying putative genetic variants subjected to adaptive
differentiation based on the XtX statistic (Gunther & Coop, 2013).
This method, as demonstrated in Gautier (2015), has several critical
advantages: (i) it explicitly and efficiently accounts for the confound-
ing factors of the shared demographic history (via the covariance
matrix -Q); (i) it makes no simplifying assumptions about the under-
lying demographic model; and (iii) it can explicitly model pool-seq
data (via a binomial likelihood under the so-called poolsegmode) to
account for the extra-variance introduced when sequencing pools
of DNAs that are not individually identifiable (which basically pre-
vents from distinguishing reads that are identical because they were
obtained from the same sequence or from two distinct but identi-
cal sequences) (see Gautier, 2015 for a more detailed explanation).
The genotyping input files contain the read count data (reference
and alternative) per site and per sample. For SNPs, this information
was obtained from the VCF files, while for the transposable ele-
ments (TEs) the information was obtained using T-lex: the absent
read count information was used as the alternative read count, and
the present read count information as the reference read count
(Bogaerts-Marquez et al., 2019; Fiston-Lavier et al., 2015). To gener-
ate the input files for the North America samples, VCFs were parsed
using the poolfstat (v.1.1.1) R package (Hivert et al., 2018). For the
three European data sets, VCFs were parsed using python scripts,
and bash and awk command lines. TE frequencies were added to the
data using python scripts. Invariant and nonbiallelic positions were
removed from each data set. We ran BayPass for autosomes (2L,
2R, 3L and 3R) and X chromosome separately because the autosome
and X-linked variants have different haploid sample sizes as samples
were obtained from male flies, and more importantly autosomes and
X-chromosome have different demographic histories (e.g., Clemente
etal., 2018).

We ran BayPass under the core model for the computation of
the XtX genetic differentiation statistics for each data set sepa-
rately (Europe, North America, Europe Summer and Europe Fall).
As the number of SNPs in the autosomes in the four data sets was
large (Table 1), we used a subsampling strategy as in Gautier et al.
(2018), dividing each data set into 50 subdata sets containing only
one SNP every 50 SNPs. We run the 50 subdata sets in parallel,
thus all the SNPs available were used for the analysis. This strat-
egy allows a more efficient analysis as it requires less computa-
tional time because each of the 50 pseudo-independent files are
run in parallel. Note that the SNPs and TEs in each pseudo-inde-
pendent file have low level of background linkage disequilibrium
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TABLE 1 Summary of the four data sets used in this analysis: three European and one North American data set

Autosomes
Data set No of populations SNPs TEs
Europe 20 2,846,701 249
North America 11 2,147,276 280
Europe Fall 10 2,663,700 227
Europe Summer 14 2,725,176 222

(LD). Three independent runs (using the option -seed) were per-
formed for each data set. To check for consistency the results of
the three independent runs were evaluated using the Forstner
and Moonen Distance (FMD) (Férstner & Moonen, 2003) between
pairs of covariance matrices () with the R function fmd.dist()
(provided within the BayPass package). We compared the cova-
riance matrices among the 50 different subdata sets, and among
the three different seeds runs. We found that FMD was low for
all comparisons (Table S4A). Consistency was additionally tested
comparing the posterior means of the two parameters « and g of
the Beta distribution of the estimated population allele frequen-
cies (Table S4B).

Prior to further analysis, we removed SNPs and TEs with very
low allele frequency (MAF <0.01) based on the mean of the posterior
distribution of the frequency of the reference allele across popula-
tions for each site (included in column M_P of the BayPass output
summary_pi_xtx.out).

To obtain a calibrated estimator of the XtX statistic, we relied
on the XtX* estimator recently described in (Olazcuaga et al., 2020).
We further derived bilateral p-values assuming that XtX* follows a
Chi-square distribution with npop degrees of freedom under the null
hypothesis of neutral differentiation (Olazcuaga et al., 2020). To con-
trol for multiple testing, we estimated the associated g-value with
the R package gvalue (v 3.9) (Storey & Tibshirani, 2003). For further
analysis, we focused on the SNPs and TEs with the most highly sig-
nificant XtX* scores (top 0.05% and g-value <0.05).

2.4 | Genome-environment association analysis
The so-called BayPass STD model extends the previous analysis to
evaluate association of the genetic variant allele frequencies with
population-specific covariates. We ran this model with the environ-
mental variables previously described for each data set, and default
options except for the -scalecov option that was used to scale each
covariate. As we did with the previous model, we run the four data
sets independently, as well as autosomes and X chromosome sepa-
rately. For the autosome data sets, we also used the subsampling
strategy mentioned above. Three independent runs were performed
for each data set (using the option -seed).

The support for association between the genetic variants and

the environmental variables was assessed using a Bayes factor (BF)

X chromosome Total

SNPs TEs SNPs TEs
119,228 53 2,965,929 302
291,632 64 2,438,908 344
115,147 49 2,778,847 276
117,332 42 2,842,508 264

measured in deciban (dB) units and estimated with an importance
sampling algorithm from the MCMC samples (Coop et al., 2010;
Gautier, 2015). More specifically, we used as an estimate the me-
dian BF among the three independent MCMC runs. We discarded
SNPs and TEs present at very low allele frequency (MAF <0.01) in
both observed and simulated data (see below). We considered a BF
threshold of 20 dB (i.e., “decisive evidence” according to the Jeffreys’
rule [Jeffreys, 1961]) as evidence for association between an envi-
ronmental variable and a TE and an even more stringent threshold
of 30 dB for SNPs to limit the number of false positives (SNPs being
far more numerous than TEs). We evaluated the false positive rates
(FPR) associated with these thresholds based on the analysis of
pseudo-observed data sets (PODs) generated using the same pa-
rameters as for the observed data sets according to the approach
described in Gautier (2015). Briefly, the rationale of this approach
is to provide an empirical null distribution of the BF statistic, i.e.,
neutrally evolving SNPs are simulated under the generative model
parameterized with the matrix Q, which is estimated on the real data
to summarize the joint demographic history of the populations (and
to capture its effect on the neutral covariance structure on popu-
lation allele frequencies). The estimated FPR for the 20 BF and 30
BF thresholds ranged from 0% to 2.40% and 0% to 0.33%, respec-
tively for the association tests with the different covariates (Table
S5). When a SNP or a TE was significantly associated with more than
one environmental variable, we considered as the primary variable
the one with the relative highest BF compared to the 99.9% of the
POD distribution (Table S5), which usually coincides with the abso-
lute highest BF value.

2.5 | Analysis of candidate genes

We identified the genes where the significant SNPs were located
using bedtools intersect (v.2.27.1) and the D. melanogaster FlyBase
reference genome annotations v6.12 and v5.50 for the European
and the North American data sets, respectively (Thurmond et al.,
2019). We also identified significant SNPs located in gene regulatory
region (<1 kb upstream of genes) (Hoskins et al., 2011) using SnpEff
(v.4.3) (BDGP5.75 data base for North American and BDGP6.86 for
European data sets). For TEs, we also used FlyBase annotations to
check whether they were located <1 kb upstream or downstream of

a gene, inside a gene, or in intergenic regions.
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To test if there was a significant overlap of candidate genes
between Europe and North America (624,069 shared SNPs corre-
sponding to 15,944 genes), we use the SuperExactTest R package

We performed a gene ontology (GO) enrichment analysis of the
candidate genes using DAVID (v.6.8). A cluster was considered to be
significant when the enrichment score was higher than 1.3 (Huang
etal., 2009). (v.1.0.7).
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3.1 | Development and signalling underlie
population differentiation in Europe and North
America

To characterize the patterns of genetic differentiation in European
and in North American D. melanogaster natural populations, we ran
the BayPass core model in two data sets containing 20 and 11 popu-
lations, respectively (Figure 1, Table 1 and Table S1). Samples were
collected from seven climate types distributed in four climate zones
(Figure 1, Table S1; Kottek et al., 2006). For some European popula-
tions, we had samples collected in summer and fall. Thus, in addi-
tion to the whole European data set, we also analysed the summer
(Europe Summer data set) and the fall (Europe Fall data set) samples
separately (Kapun et al., 2020).

We first analysed the distribution of the SNPs that showed sig-
nificant population differentiation patterns across chromosomes
(Figure 2). We tested whether any of the four main cosmopolitan
inversions described in D. melanogaster (In(2L)t, In(2R)NS, In(3L)P,
and In(3R)P) were enriched for significantly differentiated SNPs by
comparing the SNPs located inside each insertion with the rest of
the chromosome (Corbett-Detig & Hartl, 2012; Figure 2, Table S6A).
In the European and European Fall data sets, inversion In(2L)t was
enriched for significantly differentiated SNPs (Fisher exact test p-
value <0.001). This inversion shows a strong frequency gradient in
European populations ranging from 2% to 50% (Table S6E-F; Kapun
et al., 2020). On the other hand, in the North American data set in-
version In(3R)P was enriched for significantly differentiated SNPs
(Fisher's exact test p-value <0.001), which also shows a strong fre-
quency gradient in North American populations ranging from 0%
to 41% (Tables S6E-F; Kapun et al., 2016; Kapun & Flatt, 2019).
Our results are consistent with previous analyses that found that
these two inversions show latitudinal and/or seasonal clinal patterns
mainly in Australia and North America (Kapun et al., 2016; Kapun &
Flatt, 2019).

We considered genes with at least one significant SNP located
in the gene body region or in their 1 kb upstream regions to be can-
didates for adaptive differentiation, i.e., to be subjected to selection
(Table S7; see Materials and Methods; Hoskins et al., 2011). Overall,
we identified 1,300 candidate genes. Among our candidates, we
found genes previously known to play a role in adaptation, such as
cpo, involved in reproductive dormancy (Cogni et al., 2014; Schmidt
etal., 2008), sgg involved in circadian rhythm (Rand et al., 2010; Wolf
et al., 2007), mth involved in longevity and stress response (Schmidt
et al., 2000), and Ace, involved mainly in insecticide resistance
(Fournier et al., 1992; Menozzi et al., 2004). We also found other in-
teresting genes, which have been previously reported as candidates
in North America but not in Europe, such as obst-F, which has been
suggested to be involved in longitudinal clinality (Table 2; Campo
et al., 2013). obst-F is involved in the cuticle formation, which acts as
a barrier between the fly and the environment protecting it from in-
secticides, solar radiation, and desiccation (Balabanidou et al., 2018;

Behr & Hoch, 2005; Ferveur et al., 2018; Rajpurohit et al., 2018).
Indeed, most of the SNPs with the highest differentiation score were
located in genes that are candidate for several stress responses,
such as oxidative and starvation stress response, and behavioural
phenotypes (Table 2).

To identify which biological processes underlay the population
differentiation in the four data sets analysed, we performed a GO
term enrichment analysis (Table 3 and Table S8). Both in Europe
and in North America, the most significant clusters were related
to development and signalling, suggesting that similar biological
processes have been involved in adaptation in the two continents.
Signalling was the most enriched cluster in the Europe Fall data set,
while development and morphogenesis were enriched both in the
Europe Summer and Europe Fall data sets (Table 3). These results are
similar to previous analysis performed in D. melanogaster: develop-
ment and morphogenesis have been reported in population differ-
entiation studies in different continents such as Europe, Australia,
and North America (Fabian et al., 2012; Kolaczkowski et al., 2011;
Mateo et al., 2018; Reinhardt et al., 2014). Note that excluding the
SNPs that are located inside inversions led to very similar enriched
biological processes GO terms (Table S8B).

Finally, we also tested whether there was a significant overlap
between the candidate genes for local adaptation found in Europe
and in North America. We found 55 significant genes overlapping in
the two continents (SuperExactTest p-value <0.05; Table S9A, see
Materials and Methods). Among these 55 genes, we found already
known genes such as cpo and Ace, as well as other genes previously
identified in North American clinal studies such as Cow, involved in
neuromuscular junction development (Kopke et al., 2020) or dpy, in-
volved in wing and trachea development (Wilkin et al., 2000) (Table
S7; Table S9B). We performed a GO enrichment analysis with these
55 overlapping genes among continents, and the main clusters were
related to regulation, signalling and response to stimulus, and devel-
opment (Table S9C).

3.2 | Temperature, rainfall, and wind are the most
contributing variables in the genome-environment
association analyses

To identify the environmental variables that are relevant for adapta-
tion in D. melanogaster natural populations, we looked for significant
associations between SNPs frequencies and several environmen-
tal variables using the BayPass standard model (see Materials and
Methods). We analysed 59 environmental variables related to tem-
perature, rainfall, evaporation, solar radiation, wind, daylight hours,
and soil type (Table S3 and S5, see also Materials and Methods), and
we found significant associations between at least one of these vari-
ables and 748 genes (Table S10).

For all data sets, temperature was the variable associated with
the highest number of genes, followed by wind in Europe and Europe
Fall, and rainfall in the North America and Europe Summer data
sets (Table 4). Significant SNPs located in some of these genes were
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TABLE 2 Candidate genes showing the
most significant population differentiation

Gene
patterns

BORCS6/klar
Gale
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IncRNA:CR43314
CG6951

Argk

capu

ed
CG7102
Ace

obst-F

CG17233

Clc

RapGAP1
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Data
SNP location set XtX* Phenotype
Gene body/Upstream NA 89.63 -/Alcohol, Starvation
Upstream NA 88.85 Aggressiveness; Diapause;
Immunity; Starvation
Gene body NA 88.40 Olfactory
Gene body NA 83.40 Circadian; Starvation
Upstream NA 77.60 -
Upstream EuS 171.38 Alcohol; Oxidative
Upstream EuF 117.21 Immunity; Starvation
Gene body EuF 105.60 Alcohol, Circadian
behavior, Oxidative,
Xenobiotic
Gene body EuF 104.07 Olfactory, Oxidative
Gene body EuF 116.21 -
Gene body Eu 197.83 Diapause, Insecticide
resistance, Olfactory,
Starvation
Gene body EuS 166.55
Gene body Eu 213.90 -
Gene body EuS 194.73
Gene body Eu 228.63 -
Gene body EuS 172.06
Upstream/ Gene body  Eu 192.62 Starvation
EuS 171.38
Gene body Eu 211.90 Aggressiveness
Gene body EuF 110.64

For each data set, top 5 genes with SNPs located in the gene body or upstream region (< 1kb) with
the highest significant XtX* values and their associated phenotype (see Table 512).

Abbreviations: Eu, Europe; EuF, Europe Fall; EuS, Europe Summer; NA, North America.

associated with more than one variable as expected from the correla-
tion found between some of the covariates (Figure S1). For instance,
in North America most of the SNPs associated with solar radiation
variables were also associated with Temperature variables (84/103),
which is consistent with the correlation found between these vari-
ables (Figure 3b). Note that, the majority of SNPs that were associ-
ated with wind were not associated with any other environmental
variables (Figure 3a,d), which is consistent with the lack of significant
correlation between wind and other environmental variables (Figure
S1). On the other hand, in Europe Summer the majority of SNPs as-
sociated with evaporation were also associated with temperature,
although we did not find a strong correlation between evaporation
and temperature variables (Figure 3c, Figure S1D). However, there
are studies reporting similar responses to cold and desiccation stress
(Sinclair et al., 2007). Among the top five genes with the highest
BF scores in the four data sets, we found several associations with
Annual mean temperature and Annual mean solar radiation (Table 5).

We also tested whether candidate genes with SNPs associated
with environmental variables were enriched inside cosmopolitan in-
versions (Figure 2; Corbett-Detig & Hartl, 2012). We found an en-
richment of significant SNPs in the In(2L)t inversion in the Europe

Fall data set and in the In(3R)P inversion in the North America data
set (Fisher's exact test p-value <0.001; Table S6B). The In(2L)t inver-
sion in the Europe Fall data set was enriched for SNPs associated
with temperature variables while the In(3R)P in the North America
data set was enriched for SNPs associated with rainfall, solar radi-
ation, and wind variables (Table S6C-D). In previous studies In(2 )
t and In(3R)P were correlated with climatic factors varying latitudi-
nally in North America, specifically with temperature and rainfall
(Kapun et al., 2016). Our analysis suggests that other climatic factors
such as wind may also be correlated with inversions.

Finally, we also found a significant overlap between the genes
with SNPs significantly associated with environmental variables
identified in the North American and the European data sets
(SuperExactTest p-value <0.05; see Materials and Methods; Table
S9 and S10). Among the 32 significantly overlapping genes, fipi is
involved in the Drosophila courtship song (Fedotov et al., 2018) and
was associated with variables related to wind in Europe and North
America. Courtship song, as well as wind have been shown to acti-
vate neurons which are related to the antennal and mechanosen-
sory motor center in the central brain in D. melanogaster (Matsuo &
Kamikouchi, 2013; Yorozu et al., 2009).



946
—I—W] LE Y-1Y(e]#:Xel8) ¥N:§:{ele) Xo €)%

BOGAERTS-MARQUEZ ET AL.

GO enrichment terms

TABLE 3 GO enrichment analysis of
candidate genes for local adaptation

Neuron development; eye

development; signalling;
organ morphogenesis; growth

Response to stimulus; organ

development; regulation
of growth; nervous system
development; localization and

transport

Learning/memory; eye

development; neuron
development; sensory
perception of pain; organ
morphogenesis

Significant Significant
Data set SNPs genes
Europe 719 410
North America 1,164 583
Europe Summer 752 396
Europe Fall 821 412

Signalling; localization/transport;

organ morphogenesis;
neuron development; heart
morphogenesis

For each data set, the number of genes and significant single nucleotide polymorphisms (SNPs),
located in the gene body and upstream region (<1 kb), and the top five most enriched GO
terms (significance >1.3). The significance of the SNPs was determined based on the empirical
distribution of the calibrated XtX* values (top 0.05%), which corresponds to g-value thresholds
of 7.56e-10 in Europe, 3.70e-07 in Europe Summer, 1.10e-05 in Europe Fall, 9.90e-06 in North
America for autosomes; and to g-value thresholds of 1.49e-05 in Europe, 0.0003 in Europe
Summer, 0.000441 in Europe Fall and 0.03 North America for X chromosome.

TABLE 4 Summary of results obtained for environmental
association

Europe Europe

Europe NA Summer Fall
Temperature 143 217 87 33
Wind 118 83 17 20
Rainfall 29 152 62 13
Evaporation 36 79 51 7
Solar radiation 45 103 19
Soil = 4 = =
Daylight hours 18 52 8 1
Total 296 382 155 64

Number of genes with significant SNPs (BF = 30) located in the gene
body or upstream region (< 1 kb) for each type of environmental
variable. In bold, three top type of environmental variables with more
genes for each data set.

3.3 | 23% to 51% of the genes significantly
associated with environmental variables did not show
adaptive differentiation across populations

We found that, across data sets, only 12% to 37% of the genes that
showed patterns of population differentiation (XtX*) were associ-
ated with at least one environmental variable (Table S7). Indeed,
most of the genes that showed the highest association with envi-
ronmental variables, such as Ace and obst-F, were also among the

top candidates for significant population differentiation (Tables 2
and 5). Another example is Gale, which in North America was as-
sociated with a wind variable, and has been related with aggres-
siveness and diapause responses as well as with immunity and
starvation stresses (Tables 2 and 5; Clark et al., 2013; Edwards
et al., 2006; Fukuyama et al., 2013; Gronke et al., 2005; Harbison
et al., 2005; Kucerova et al., 2016; Shorter et al., 2015; Zhao et al.,
2016).

On the other hand, we found that 23% to 51% of the genes that
showed a significant association with at least one environmental
variable, did not show population differentiation patterns (Table
$10). Among these genes, RFeSP has one of the highest association
scores with Wind seasonality in the Europe Fall data set (Table 5
and Table S10). This gene encodes Rieske iron sulphur proteins which
are highly conserved functional constituents of energy-transducing
respiratory complexes (Gontijo et al., 2011).

3.4 | Ten transposable elements insertions are
associated with environmental variables

In addition to SNPs, we also analysed the population differentiation
patterns and correlations with environmental variables for TE inser-
tions (Table S11A). We found that nine out of the 403 TE insertions
showed patterns of population differentiation (XtX*) in at least one
of the data sets analysed; however, we did not find overlap between
continents (Figure 2, Table 6, Table S11A-B). Four of these TEs have
previously been identified as candidate adaptive TEs (Table 6).
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(a) Europe
Temperature Solar Radiation
27
107 16
1
8 1
108
Wind

() Europe Summer

Temperature RainFall
7
44 31
21
15 3
12

Evaporation

(b) North America

Temperature RainFall
43
91 65
41
42 3
17
Solar Radiation
(d) Europe Fall
RainFall 27 Wind
1 3
10 2 15

Temperature

FIGURE 3 Overlap between genes with single nucleotide polymorphisms (SNPs) significantly associated with environmental variables.
For each data set, genes with SNPs in the gene body and upstream region (<1 kb) significantly associated with the three groups of
environmental variables with more genes associated with them are depicted [Colour figure can be viewed at wileyonlinelibrary.com]

In addition, we identified six TE insertions in the Europe data
set that showed significant associations with different environmen-
tal variables: four of them showing the highest association with
temperature variables, one with evaporation, and one with rainfall
(Table 7 and Table S11C). Three of these insertions also showed
significant patterns of population differentiation (FBti0019112,
FBti0019164 and FBti0019862; Table 6). FBti0019112 showed the
highest BF value and was associated with the Minimum tempera-
ture of the coldest month variable (Table 7). This insertion is located
in an intron of the lilli gene, which is mainly involved in cell iden-
tity and growth, and plays a role in retinal development (Distefano
et al.,, 2012; Wittwer et al., 2001). This result is interesting given
that other studies in Drosophila showed the impact of temperature
in eye development genes (Del Bel et al., 2018). In addition, llili has
been suggested to have a role in local adaptation, as it was recently
reported to be part of a strong outlier region in a study comparing
D. melanogaster collected in wilderness areas and collected in the
nearby of towns in southern-central Africa (Sprengelmeyer et al.,
2020). FBti0018880 showed the second strongest association also
with temperature, Isothermality (temperature variability index), and
has been reported to play a role in oxidative stress response (Guio
et al., 2014). Other studies performed in D. melanogaster showed
that metabolites involved in oxidative stress are altered by selection
in cold tolerance (Kostal et al., 2016; Williams et al., 2014).

We also identified four TE insertions in the North America data
that showed significant associations with wind, solar radiation, rain-
fall and evaporation (Table 7; Table S11A,C). Two of these insertions
also showed patterns of population differentiation (FBti0061428 and
FBti0020306; Table 6).

4 | DISCUSSION

In this work, we aimed to identify the main environmental driv-
ers of adaptation of D. melanogaster natural populations in a large
continental geographical scale. To accomplish this, we used GEA
analysis on a large set of population samples (up to 20 in Europe
and 11 in North America) representative of different environ-
ments and considering a wide-range of environmental covariates
to capture this variability. We found that in addition to temperature
and rainfall, wind related variables appear to be also relevant for
D. melanogaster environmental adaptation. Temperature and rain-
fall are the most widely used variables in GEA analysis in several
species including D. melanogaster (Bozicevi¢ et al., 2016; Cavedon
et al., 2019; Gao et al., 2017; Hopley & Byrne, 2019; Kapun et al.,
2020; Leroy et al., 2020; Mayol et al., 2020; Pina-Martins et al.,
2019; Todesco et al., 2019). Our results show that the majority of
genes associated with environmental variables were associated
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TABLE 5 Candidate genes associated with environmental variables

Gene Name SNP location Data set Strongest association variable BF Phenotype
Ace Gene body Eu Annual mean temperature 84.89 Diapause, insecticide resistance,
olfactory, starvation
Sap-r Gene body Eu Annual mean solar radiation 62.74 Starvation
obst-F Gene body Eu Annual mean temperature 72.05 -
apn Gene body Eu Mean temperature of warmest 60.59 -
quarter
Ptr Gene body Eu Mean evaporation of warmest 70.75 -
quarter
tok Gene body NA Annual mean solar radiation/ 64.34 Circadian, starvation
Solar rad mean diurnal range
Mhc Gene body NA Solar rad mean diurnal range 61.76 -
CG13705 Gene body NA Temperature seasonality 58.18 -
Abd-B Gene body NA Annual mean solar radiation 51.11 Alcohol, dessication,
pigmentation
Gale Upstream NA Wind mean diurnal range 50.57 Aggressiveness, diapause,
immunity, starvation
Ace Gene body EuS Annual mean temperature 74.38 Diapause, olfactory, starvation
obst-F Gene body EuS Max temperature of warmest 68.08 -
month
CG7290/ CG7298 Gene body/ EuS Max temperature of warmest 58.37 - /Hypoxia, immunity, xenobiotic
Upstream month
CG10257 Upstream EuS Precipitation of driest quarter 58.48 Xenobiotic
Ptr Gene body EuS Mean evaporation of warmest 62.11 -
quarter
capu Gene body EuF Wind variability index 49.59 Alcohol, circadian behaviour,
oxidative, xenobiotic
Kek2 Gene body EuF Wind variability index 44.49 -
Argk Upstream EuF Temperature seasonality 65.35 Immunity, starvation
RFeSP Gene body EuF Wind seasonality 48.51 Hypoxia
CG43750 Gene body EuF Wind seasonality 42,35 -

For each data set, the top five genes with significant single nucleotide polymorphisms (SNPs) located in the gene body and upstream region (<1 kb)
with the highest significant Bayes factor (BF) scores, the environmental variable with the strongest association and their associated phenotype (see

Table S12). All significant genes can be found in Table S10.

Abbreviations: EuA, Europe; EuF, Europe Fall; EuS, Europe Summer; NA, North America.

with a temperature-related one (400/748), while the number of
genes associated with rainfall was smaller (241/748) (Table S10).
These results are consistent with similar GEA analysis performed
previously in D. melanogaster (Kapun et al., 2020). Moreover, among
the 748 candidate genes associated with environmental variables in
our study, 226 were associated with a wind-related variable being
the third variable group with most associations, and far from the
following ones (evaporation and solar radiation with 153/748 genes
each) (Table S10). Wind-related variables have been studied mainly
in plant adaptation (Balkenhol et al., 2017), and are often included
as part of PCs where individual wind effect cannot be properly
measured (Gao et al., 2017). In other species, wind has also been
reported to be involved in desiccation stress and thermoregulation
(Baig & Tranquillini, 1980; Ortega et al., 2017). In Drosophila spe-
cies, including in D. melanogaster, it has already been suggested that
wind might be relevant for adaptation (Fuller et al., 2014; Patella

& Wilson, 2018). The effect of wind variables in Drosophila could
be related to the Johnston's organ, which is the largest mecha-
nosensory organ in Drosophila. This organ is involved in a variety of
behaviours such as hearing, touch, vestibular sensing, propriocep-
tion and wind sensing (Patella & Wilson, 2018). In addition, Fuller
et al. (2014) reported how flies regulate flight speed according to
the information from their visual system and their antennae, and
how they can overcome the effect of sudden wind disturbances.
To the best of our knowledge, our analysis is the first that identi-
fies genome-wide variants associated with wind-related variables in
D. melanogaster. Although temperature, rainfall, and wind seem to
be important drivers of adaptation, we still lack information about
other variables directly related to them and that may be actually
underlying adaptive processes. Further analysis testing the direct
effect of these three variables on the genetic variation should be
performed to obtain conclusive evidence.
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TABLE 6 Significant transposable element insertions found in the population differentiation analysis

Transposable element Family Location
FBti0019112 pogo First intron
FBti0019164 X-element First intron
FBti0019144 Rt1b First intron
FBti0019276 S-element Second intron
FBti0019862 Gé6 432 bp downstream
FBti0020056 BS 507 bp downstream
FBti0020306 hopper Third intron/first intron
FBti0060187 G2 First intron
FBti0061428 hobo 52 bp upstream/529 bp
downstream

Gene Data set Evidence of selection

lilli Eu, EuF iHS, H12, nSL (Rech
etal, 2019)

CG9932 Eu Population
differentiation
(Gonzalez et al.,
2008)

CG44153 EuF Population
differentiation
(Gonzélez et al.,
2008)

Adf1 EuF CSTV (Lerat et al., 2019)

Tif-1A Eu, EuS -

bin NA -

atms/CG44098 NA -

Syn1 NA -

CG31809/CG6012 NA -

TE insertions were considered significant if their associated XtX* values were above the top 1% of the empirical distribution of XtX* values, and g-
value <0.05. When the TE insertion is located in intergenic regions, genes located nearby are reported (Table S11A).

Abbreviations: CSTV, correlation with spatiotemporal variables; Eu, Europe; EuF, Europe Fall; EuS, Europe Summer; NA, North America.

TABLE 7 Significant candidate TE
insertions associated with environmental
variables (BF = 20)

FBti0018880

FBti0019112

FBti0019164
FBti0019165

FBti0020057
FBti0019862
FBti0061428
FBti0020086

FBti0020306

FBti0019318

Transposable element

Significant Data
Environmental variable XtX* BF set
Isothermality No 30.53 Eu
Min temperature of coldest Yes 43.38 Eu
month
Temperature Annual range Yes 24.79 Eu
Evaporation Mean diurnal No 20.52 Eu
range
Precipitation Seasonality No 22.12 Eu
Isothermality Yes 23.69 Eu
Annual mean wind Yes 43.95 NA
Solar radiation variability No 26.83 NA
index
Precipitation of wettest Yes 26.02 NA
quarter
Mean evaporation of coldest No 28.57 NA

quarter

The environmental variable with highest score is reported (Table S11).

Abbreviations: Eu, Europe; NA, North America.

We found that an important proportion of the genes showing sig-
nals of adaptive differentiation did not show associations with any of
the environmental variables studied (>60%). As we addressed previ-
ously, it is difficult to know a priori the variables that may be relevant
for adaptation, so, it could be that we are not including in our analysis
the environmental variables responsible for the adaptive processes in
which these genes are involved. For example, 185 of the 1,300 genes
showing population differentiation patterns are candidates for xeno-
biotic stress response (Rech et al., 2019). For the majority of these

genes, we did not find any association with environmental variables.
Thus, including variables related to pollution might help explain the
population differentiation in some of these genes. It could also be
that although the relevant environmental variables are included in the
analysis, our samples do not allow us to capture the whole range of
the variation of these environmental variables making the GEA analy-
ses less powerful. Alternatively, population differentiation patterns in
some of these genes might be due to selective pressures not related
to the environment. We also found that between 23% and 51% of
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the candidate genes showed association with an environmental vari-
able but did not show significant population differentiation. Thus, GEA
analyses not only identifies the relevant environmental variables, but
also allows to identify genetic variants involved in environmental ad-
aptation that cannot be detected through population differentiation
analysis, as expected if they result in too subtle changes in allele fre-
quencies across populations (Gautier, 2015).

Our work also aimed at evaluating to which extent our observed
signal of adaptation were consistent across the European and North
American continents. We found that 55 genes showing patterns of
population differentiation, and 32 genes showing association with at
least one environmental variable, overlapped in these two continents.
Out of these 32 genes, 14 were associated with a different environ-
mental variable group in each continent, and 12 were associated with
different variables in the same group. This suggests that although
there is a pattern of parallel adaptation, there may be different envi-
ronmental pressures which may drive adaptation for the same genes.

We also assessed whether samples collected in European
populations in summer and fall differed in their association with
environmental variables. Recent studies have shown the role of
temperature in seasonal variation (Machado et al., 2019). We
found that in the summer and in the fall data sets the majority of
genes were associated with temperature and rainfall (Figure 3c,
d, Table 4). However, there was a substantial proportion of can-
didate genes associated with evaporation in Europe Summer but
not in Europe Fall (33% vs. 11%; Table 4). On the other hand, there
were more candidate genes associated with wind variables in the
Europe Fall than in the Europe Summer data set (31% vs. 11%;
Table 4). These results suggest that different environmental vari-
ables, evaporation and wind, might play a role across seasons.
However, temporal data series from several years should be anal-
ysed to confirm these results.

Finally, we identified four TE insertions showing significant
population differentiation patterns, five TE insertions associated
with an environmental variable, and five insertions showing both.
We described as candidates for the first time three of these TE
insertions, FBti0019862, FBti0020306 and FBti0061428, which
are associated with environmental variables and showed signifi-
cant population differentiation patterns, as well as FBti0019164
only reported in Gonzalez et al. (2008) and FBti0019112 which
has shown previous evidence of selection (Rech et al., 2019). This
analysis is, however, limited as we could only investigate those TE
insertions present in the reference genome and that were poly-
morphic in our samples. We suggest that both reference and non-
reference insertions should be included in future analysis in order
to get a comprehensive picture of the role of TE insertions in en-
vironmental adaptation.

Overall, we identified temperature, rainfall and wind as envi-
ronmental variables which may play a critical role in environmen-
tal adaptive processes in D. melanogaster. In addition to increasing
the number of populations and of TE insertions analysed, we fur-
ther suggest that performing GEA analysis in populations collected
across time should inform us about how the role of environmental

variables changes through time and contributes to the dynamics
of genetic variation across populations and to the maintenance of
adaptive variants. Extending this analysis to other continents should
also further enhance our understanding of the role of environmental
variables in adaptive evolution.
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