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Climate change impact 
on the potential geographical 
distribution of two invading 
Xylosandrus ambrosia beetles
T. Urvois1*, M. A. Auger‑Rozenberg1, A. Roques1, J. P. Rossi2,3 & C. Kerdelhue2,3

Xylosandrus compactus and X. crassiusculus are two polyphagous ambrosia beetles originating from 
Asia and invasive in circumtropical regions worldwide. Both species were recently reported in Italy 
and further invaded several other European countries in the following years. We used the MaxEnt 
algorithm to estimate the suitable areas worldwide for both species under the current climate. We 
also made future projections for years 2050 and 2070 using 11 different General Circulation Models, 
for 4 Representative Concentration Pathways (2.6, 4.5, 6.0 and 8.5). Our analyses showed that X. 
compactus has not been reported in all potentially suitable areas yet. Its current distribution in Europe 
is localised, whereas our results predicted that most of the periphery of the Mediterranean Sea and 
most of the Atlantic coast of France could be suitable. Outside Europe, our results also predicted 
Central America, all islands in Southeast Asia and some Oceanian coasts as suitable. Even though our 
results when modelling its potential distribution under future climates were more variable, the models 
predicted an increase in suitability poleward and more uncertainty in the circumtropical regions. For 
X. crassiusculus, the same method only yielded poor results, and the models thus could not be used 
for predictions. We discuss here these results and propose advice about risk prevention and invasion 
management of both species.

Biological invasions are one of the main threats to biodiversity worldwide, and their magnitude has increased 
over the last decades with global  change1. Indeed, climate change alters environmental parameters such as tem-
perature and precipitation patterns and tends to increase the frequency of extreme  events2. These alterations 
can decrease ecosystems’ resistance and resilience to  invasion3,4, increase species  invasiveness5 and initiate range 
 shifts6. Human transportation, whether intentional or unintentional, also plays a significant role in shifting spe-
cies’ range by increasing species passive  dispersion7, including in normally out-of-reach areas. Moreover, it also 
increases the propagule pressure (i.e. the number of individuals introduced and the number of introduction 
events), known to affect establishment probability and ultimately the number of invasive  species8. Two major 
challenges of trans-boundary species management are (1) to detect target species at the earliest possible stage 
and (2) to quickly provide specific actions to regulate or eradicate  them9. To do so, it is necessary to plan ahead 
and perform pest risk analyses, which aims at assessing species’ invasion risk considering various biological and 
environmental characteristics in a given area.

Species distribution modelling (SDM) aims at predicting environment suitability, and thus the potential dis-
tribution of a given species in a determined range. SDM is an increasingly important tool for decision-makers 
when prioritising biodiversity conservation efforts or dealing with invasive  species10. For the latter, the estimation 
of habitat suitability can be used to decide how and where to set up detection methods and thus improve early 
detection probability. SDM uses the relationship between environmental descriptors and the species’ observed 
distribution to estimate its realised  niche11, which is used to extrapolate habitat suitability outside of the cur-
rent species’ range. SDM is also an interesting tool to assess the potential effects of climate change on species 
 distribution12. To simulate future climate, scientists rely on Global Circulation Models (GCMs), which attempt 
to account for all the physical and chemical processes influencing climate, such as ocean, atmosphere, land and 
sea ice. To predict the effect of greenhouse gases concentration on future climate, each GCM can be run using 
different radiative forcing scenarios, represented by different Representative Concentration Pathways (RCPs). 
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Four RCPs were used for the IPCC 5th Assessment  Report13, ranging from the most optimistic one (RCP2.6) to 
the least optimistic (RCP8.5). Different GCMs are available that all represent a possible future, which we cannot 
discriminate from. Therefore, GCM selection can potentially affect the results of future distribution  modelling14, 
being the primary source of variability between models after the algorithm  choice15. However, this step is often 
overlooked and the GCM choice made by default or not  justified12. When facing biological invasion, it is equally 
important to determine which areas are suitable and could be threatened, and which ones are consistently pre-
dicted as unsuitable. In this regard, using several GCMs allows to explore the uncertainty of SDM predictions 
and to gain confidence on suitability estimates.

Bark and ambrosia beetles (Coleoptera:Curculionidae:Scolytinae) are considered as one of the most successful 
groups of invasive  species16 and represent an increasing concern  worldwide17. They are hard to detect as they are 
usually minute insects, and can travel long distances unnoticed, hidden in wood packaging or living  plants18. 
Within this group, the species of the genus Xylosandrus are especially threatening. Two of them, X. crassiusculus 
and X. compactus, native of Southeast Asia, are known invaders worldwide and share similar invasion histories. 
Both have been detected outside of their native range more than one century ago in Madagascar before spread-
ing to continental Africa and later in the New World. X. compactus was detected in North America in 1941 in 
 Florida19, in Hawaii in  196420 and in South America in Brazil in  197921. X. crassiusculus was first detected in 
Hawaii in  195022, in North America in South Carolina in  197423 and in South America in Argentina in  200124. 
Both species were recently reported from Europe where they were first detected in Italy, X. crassiusculus in  200325 
and X. compactus  201126, before being detected in France in 2014 and  201527, respectively. X. crassiusculus was 
then detected in 2016 in  Spain28 and in 2017 in  Slovenia29 whilst X. compactus was detected in 2019 in  Greece30 
and on the island of Majorca in  Spain31. As other ambrosia beetles, their ecological characteristics tend to favour 
invasion. They are xylomycetophagous and feed on symbiotic fungi carried in a specialised structure in their body 
called mycangium. This feature allows them to attack a broader range of host  tree32, which is known to be a major 
reason for their success as  invaders33. More, siblings mate directly in the maternal gallery, which could allow 
a single mated female to establish a population. Therefore, they presumably avoid classical detrimental effects 
of deterministic processes such as mate-finding Allee effect or inbreeding as they are haplodiploid and evolved 
under inbred mating  strategies34. Both species originate from subtropical areas and succeeded in invading tropical 
and subtropical regions in a first step. However, both are now established under temperate and Mediterranean 
climates, as X. crassiusculus is now established as far North as South  Canada35 and was intercepted several times 
in the Netherlands during the last  decade36. We can thus assume that both species are quite plastic, although 
little is known about their precise ecological requirements.

The first goal of this study was to estimate the potential distribution of both species, with a particular focus 
on Europe that was recently invaded and where the distribution range of both species is still fairly limited. It is 
thus now necessary to identify the regions where these invaders still do not occur but could be at risk, to antici-
pate their expansion and develop preventive management strategies. The second goal of this study is to make 
predictions about the effect of climate change on both species’ potential distributions in the near future to assess 
whether some new areas could become suitable or conversely if some area could stay or become unsuitable. To 
answer both objectives, we performed SDM on X. crassiusculus and X. compactus using MaxEnt algorithm (1) 
on current and (2) on future climate models for 2050 and 2070 using 11 GCMs and 4 RCPs. As both species have 
similar ecological characteristics and a parallel invasion history, we expect that they could threaten the same 
regions. As hypothesised by Kirkendall and  Faccoli17, the Mediterranean seems particularly favourable for inva-
sive species with a rich biodiversity and milder winters than the rest of Europe. It corresponds to a biodiversity 
hotspot that is expected to be particularly susceptible to climate  change37. Assessing the risk of further invasions 
in this area is thus of prime importance.

Material and methods
Occurrence data and environmental variables. We collected worldwide occurrence records of X. 
crassiusculus and X. compactus from the scientific literature (Supplementary Table S1), the Global Biodiversity 
Information Facility (GBIF) and direct observations up until the 13th of September 2019. Once removed the 
localities where the species was not proven to be established, we were left with respectively 781 and 323 records 
for X. crassiusculus and X. compactus. We then removed duplicated data, by withdrawing all but one occurrence 
record per pixel of the climate raster (see below), and ended with 311 occurrences for X. crassiusculus (33% in its 
native area) and 205 occurrences for X. compactus (30% in its native area) (Fig. 1).

We used environmental variables available from the Worldclim database (version 2.0)38, corresponding to the 
average climate values for 1970–2000, with a resolution of 2.5 arc-min (≈4.5 km at the equator). We selected a 
priori 11 variables assumed to be potential drivers of X. crassiusculus and X. compactus distributions. Five were 
descriptors of the temperature: the temperature seasonality (bio4) and the average temperatures of the wettest, 
driest, hottest and coldest quarters (respectively bio8, bio9, bio10 and bio11). The remaining 6 variables were 
the annual precipitations (bio12), the precipitation seasonality (bio15), and the average precipitations of the wet-
test, driest, hottest and coldest quarters (respectively bio16, bio17, bio18, bio19). Model overfitting is an  issue39 
especially when one aims at using the model to assess future potential  distribution40. To reduce this issue, we 
grouped the environmental descriptors by groups of 4 or 5 to produce 126 environmental datasets. Modelling 
was performed with small sets of variables, hence preventing overfitting.

Modelling. Because the Xylosandrus species under study are invaders in various regions of the world, their 
spatial range is in constant evolution. In such a non-equilibrium situation, it is very hard to identify locations 
where the species is absent because environmental conditions are unfavourable (i.e. true absence) rather than 
because of (transient) dispersal limitations. In such a situation, presence-only algorithms are  recommended10. 
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We thus used the MaxEnt  algorithm41, which has been widely adopted in species modelling, notably in biologi-
cal invasions  surveys42. To make predictions, MaxEnt relies on presence-only data and background points (i.e. 
locations where the species’ presence in unknown used as a contrast against presence occurrences).

A first step of the modelling framework consisted in selecting the combinations of climate descriptors that 
led to the MaxEnt models that best predicted European occurrences when calibrated using occurrences from 
other regions of the world (see e.g. Godefroid et al.42 for an example of such a strategy). To do so, we removed 
the European occurrences from the datasets of each species, and randomly sampled 80% of the remaining occur-
rence records to train the model. The remaining 20% of records were used to evaluate the model. To characterise 
the background environment, 10,000 background points were randomly generated in a wide area representative 
of the species’ habitat. We did this for 10 replicates for each of the 126 environmental datasets used for each 
species. We retained a dataset when at least 5 replicates performed (1) an Area Under Curve (AUC) > 0.8, (2) a 
True Skill Statistics (TSS) > 0.6 and (3) were able to predict 100% of the European occurrences. Such combina-
tions of model × environmental dataset were considered successful and thus used in the next modelling  step43.

Before running the second step, we searched for the optimal MaxEnt parameters to avoid  overfitting39 by 
fitting MaxEnt models with different rate multiplier values (from 0.5 to 4 with increments of 0.5) and six feature 
classes (1. Linear; 2. Linear + quadratic; 3. hinge; 4. linear + quadratic + hinge; 5. linear + quadratic + hinge + prod-
uct; 6. linear + quadratic + hinge + product + threshold) using the R package  ENMeval44. We selected the best 
combination of MaxEnt parameters based on AIC (see Muscarella et al.44 for a full explanation of this method).

In a second step, we used the models and environmental datasets that were selected as explained above with 
all the occurrence data, thus including the European records. A model was finally kept if it scored an AUC > 0.7. 
Model outputs were transformed to binary maps using the threshold that optimised the TSS statistics on the 
testing  data10. The resulting binary maps were averaged to create a consensus map showing the proportion of 
models predicting any pixel as  suitable10.

To visualise the variability of habitat suitability estimates according to the environmental datasets used to 
calibrate the models, we calculated the standard deviation for each pixel of the consensus maps (Supplementary 
Fig. S1). We calculated the proportion of area unanimously predicted as respectively suitable and non-suitable, 

Figure 1.  Occurrence data used in the present study of (a) Xylosandrus compactus (n = 205) and (b) Xylosandrus 
crassiusculus (n = 311) after duplicate removal. The maps were generated using R 4.0.0 (https ://cran.r-proje 
ct.org/).

https://cran.r-project.org/
https://cran.r-project.org/
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and the proportion of area for which at least 95% of the models agreed upon (i.e. which value is lower than 0.05 
or higher than 0.95) which will thereafter be referred to as “high agreement areas”. All these results were com-
puted considering the suitability of landmass (1) worldwide (Supplementary Table S2) and (2) on a restricted 
focal area including most of Europe and the Mediterranean area, comprised between longitudes 20° W and 50° 
E and latitudes 27.5  N and 70° N (see Supplementary Table S3).

Potential distribution under future climate conditions. To assess future distributions, we relied on 
projections of the environmental variable values based on several GCMs developed by climate  institutes45. These 
numerical models can be run using different scenarios of greenhouse gases concentration changes called “Rep-
resentative Concentration Pathways” (RCPs) and labelled after their radiative forcing value in 2100 (e.g. RCP2.6 
or RCP8.5). To predict future distributions, we used future climate projections for 2050 (average for 2041–2060) 
and 2070 (average for 2061–2080). These estimates were obtained using 11 different GCMs obtained from the 
WorldClim database (version 1.4) (Table 1), for 4 different RCPs: RCP2.6, RCP4.5, RCP6.0 and RCP8.5. We 
used the models selected in the second step (see “Results”) to create a total of 12,320 models (combinations of 
14 environmental datasets × 10 replicates × 4 RCP × 11 GCMs × 2 years). Models outputs were transformed into 
binary maps using the threshold that optimised the TSS statistics on the testing data. These binary maps were 
averaged to create a consensus map per RCP in both 2050 and 2070 that shows for each pixel the projected habi-
tat suitability expressed as a percentage of the models predicting suitable habitat (Supplementary Fig. S2). We 
also calculated the standard deviation for each pixel of each consensus map (Supplementary Fig. S3).

Since GCMs differ in some regions and/or for some climate features, they may lead to different model pre-
dictions. This variability was expressed as follows (1) for each year we computed the average habitat suitability 
over the 11 GCMs for a given RCP (Supplementary Fig. S4), (2) this average was used to centre projections from 
each GCM. The resulting maps (one by GCM) (Supplementary Fig. S5) finally displayed a negative value when 
the GCM considered predicted a lower suitability than the average of all GCMs and a positive value otherwise.

We used the R  software46 and the following R packages to perform modelling and render the maps:  dismo47, 
 biomod248,  ENMeval44,  cowplot49,  ggplot250,  rnaturalearth51 and  raster52.

Results
SDM under current conditions. Out of the 126 environmental datasets tested in the first step of the 
analysis, none fulfilled the evaluation criteria for Xylosandrus crassiusculus, either due to lack of predictive power 
regarding European occurrences, low AUC (< 0.8) or low TSS (< 0.6) values. Consequently, we could not per-
form ecological niche modelling on this species, and the results presented hereafter only concern X. compactus. 
For this species, 14 datasets fulfilled the evaluation criteria of step 1 and were thus used in step 2. Supplemen-
tary Table S4 shows a summary of the evaluation metrics for the models retained to perform the consensus 
map (Fig. 2). Under the current climate, 55% of the world surface was unanimously predicted as non-suitable, 
whereas 1.13% was unanimously predicted as suitable. In the focal area, these predictions were respectively 66% 
and 0.23%. There was a high agreement for 65% of the world; this number reached 77% in the focal area, where 
at least 25% of the models predicted most Mediterranean coasts and islands as suitable, except for Tunisia, Libya, 
Egypt and Southeastern Spain. The models also predicted the Western coasts of Spain, France, up to the UK as 
suitable, although the values decreased northwards. In most places, the suitability decreased with distance from 
the coast. Outside of the focal area, a substantial part of the models predicted Central America, all islands in 
Southeast Asia, Nepal, and some Australian coasts as suitable.

Modelling distributions under future climate estimates. In both 2050 and 2070 and for all RCPs, 
ca. 50% of the world was unanimously predicted as non-suitable (Supplementary Fig. S2). Conversely, less than 
0.35% was consensually predicted as suitable, ranging from 0.19% for the RCP2.6 in 2050 to 0.31% for the 
RCP8.5 in 2070. In the focal area, 55% of the land territory was unanimously predicted as non-suitable and 
around 0.1% was consensually predicted as suitable (Fig. 3). Yet, the results for 2070 with RCP8.5 in Europe 

Table 1.  Names of the Global Circulation Models used to make future projections and their references.

Code Global Circulation Model name

BC BCC-CSM1-174

CC CCSM475

GS GISS-E2-R76

HD HadGEM2-AO77

HE HadGEM2-ES77

IP IPSL-CM5A-LR78

MC MIROC579

MG MRI-CGCM380

MI MIROC-ESM-CHEM81

MR MIROC-ESM81

NO NorESM1-M82
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stood out with 45% of the world unanimously predicted as non-suitable and only 0.02% of the area unanimously 
predicted as suitable. Around 60% of the world and 70% of the focal area reached a high agreement. For the 4 
RCPs, we observed a progression of the habitat suitability towards North and Northeast between the current cli-
mate and the projections for 2050 in the focal area, where the consensus map shows that the majority of Western 
Europe would become suitable. However, the suitability was predicted to decrease in Southwestern Spain, along 
the coasts of Morocco and Algeria, and in the easternmost parts of the Mediterranean (Israel, Turkey, Greece). 
We observed the same trends between 2050 and 2070 for the RCP4.5, 6.0 and 8.5. Over the same period, we 
observed the opposite trend for the RCP2.6, with a regression of the habitat suitability in the North and North-
eastern areas and a progression in North Africa and East of the Mediterranean Sea. Outside the focal area, we 
observed an increase of the habitat suitability between 2050 and 2070 in Northern USA, around Uruguay, in 
central Africa, in Oceania and some regions of Asia. Conversely, we observed a regression around Venezuela, 
Central America and some areas in the USA.

The standard deviation of predicted habitat suitability is given in Fig. 3 and in Supplementary material, Fig. 
S3. These maps highlight the areas where models’ projections diverge, showing low values near the coastline, 
where most models predict on high suitability, and in the North-east Europe, where most models agree predict 
low suitability.

We observed the same type of predictions when comparing the GCM maps between 2050 and 2070 for each 
RCP. This is also true for most comparisons between RCPs amongst each predicted year. However, this was not 
true when comparing the predictions between GCMs, which generated divergent results. Figure 4 highlights the 
variability of the model outputs according to GCMs for a given scenario. While maps A and D both displayed 
under average suitability in Western Europe and the Balkans and over average values near Gibraltar, maps B and 
C displayed symmetrical results. On the same principle, we were able to group GCMs according to their predic-
tions. For the year 2050 and RCP2.6, the maps for the GCMs HD and HE displayed above-average suitability 
over the focal area. Conversely, the GCMs CC, GS and MG predicted a lower than average suitability for most of 
the focal area but South-eastern Spain and Northern Africa. The other GCMs patterns were less structured (IP, 
MI and MR) or close to the average predictions (BC, NO, MC). At the worldwide scale, NO and MG predicted 
above-average suitability in Eastern China, South-eastern USA and Northern South America until Paraguay and 
North America. On the contrary, HE, MI and MR predicted below average suitability for these regions.

Discussion
Several pest risk analyses have been performed on species of the Xylosandrus genus in Europe in the last decade 
 (UK53,  France54,  Slovenia55). However, while they assessed the species’ ability to enter, establish and spread in the 
area of interest, the establishment part mostly focused on the presence of host species and lacked information 
about climate suitability. Our study provides the first attempt to model the potential distribution of Xylosandrus 
compactus and X. crassiusculus, two invasive species whose range has been increasing ceaselessly during the last 
century. Both species have similar ecology and invasion history, suggesting that their potential distribution could 
be quite similar and thus that their respective models would produce analogous outputs. However, surprisingly, 
no model created for X. crassiusculus matched our criteria.

Failure to model Xylosandrus crassiusculus’ species distribution. The failure in appropriately 
modelling X. crassiusculus’ potential distribution could be explained by several factors, mutually compatible.

Figure 2.  Consensus map showing habitat suitability for Xylosandrus compactus under current climate 
conditions. This consensus map was computed by averaging binary maps and represents the percentage of 
models predicting each pixel as suitable. The black square represents the limits of the focal area. The map was 
generated using R 4.0.0 (https ://cran.r-proje ct.org/).

https://cran.r-project.org/
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Figure 3.  On the left side, consensus maps showing habitat suitability for Xylosandrus compactus under future 
climate for 2 greenhouse gases concentration scenarios (RCP4.5 and 8.5) and for 2 years (2050 and 2070). 
These consensus maps were computed by averaging presence–absence maps and represent the percentage of 
models predicting each pixel as suitable. On the right side, maps representing the standard deviation of their 
left counterpart where the higher values the lower the agreement between models’ predictions. The maps were 
generated using R 4.0.0 (https ://cran.r-proje ct.org/).

https://cran.r-project.org/


7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1339  | https://doi.org/10.1038/s41598-020-80157-9

www.nature.com/scientificreports/

Our first hypothesis is that we may have overlooked crucial information when performing SDM on X. cras-
siusculus. According to the literature, X. crassiusculus is genetically structured and could be divided into two or 
more differentiated clades, corresponding to potential cryptic  diversity56,57. It has been shown that integrating 
phylogeographical information into SDM can alter the results when performing SDM on different clades of a 
 species58,59. Yet, as genetic studies concerning X. crassiusculus in different regions of the world did not rely on 
similar molecular markers, it is not possible at present to determine which clade occurs in a given region. We 
thus tested the SDM approach at the species level, i.e. all occurrences were used to calibrate the model. In doing 
so, we possibly grouped clades with potentially different ecological features, hence building models with weak 
predictive power. To counter this problem, we are currently working on a comprehensive genetic analysis of X. 
crassiusculus worldwide, to get a better insight about its genetic structure and assign a clade to each locality. This 
would then allow us to perform a SDM for each clade separately.

Another hypothesis is that SDM relies on several assumptions that can easily be violated when working on 
expanding invasive species. One is that species are supposed to be at equilibrium, which means that they should 
be present in all suitable  areas60. However, we know that X. crassiusculus is still expanding. Moreover, even though 
we reached more than 300 occurrence records, we might have under-sampled the native area, which could pre-
vent us from inferring X. crassiusculus’ realised niche. Indeed, particular populations can sometimes evolve to 
face a harsher environment, and thus be preadapted to certain conditions, which ease further  invasion61. Failing 
to include such peculiar populations might affect SDM outputs, although it is difficult to evaluate the magnitude 
of such effect. A last possible explanation for SDM failure could be related to variable selection, but this latter 
possibility appears very unlikely as we followed the same procedure as for X. compactus and created models with 
126 variable datasets made of 11 environmental variables.

Figure 4.  Illustration of the variability between the GCMs used to create consensus maps using centered 
and standardised maps. These display a negative value when the GCM considered predicts a lower suitability 
than the average of all GCMs and a positive value otherwise. A and B correspond to two GCMs (MG and MI 
respectively) used to compute the RCP2.6 maps for the year 2050, C and D represent two GCM (HD and MG 
respectively) used to compute the RCP8.5 for the year 2070. The maps were generated using R 4.0.0 (https ://
cran.r-proje ct.org/).

https://cran.r-project.org/
https://cran.r-project.org/
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Potential distribution of X. compactus under current climate. Correlative SDM uses relationships 
between environmental predictors and species’ occurrences to predict its potential distribution. Therefore, 
unreliable information regarding X. compactus’ distribution such as countries for which exact occurrence data 
were not mentioned, or localities where the species was detected but was not proved to have settled, had to be 
removed from datasets. Despite these precautions, our model successfully spotted suitable areas that were not 
initially included in the occurrence dataset (e.g., in Central Africa and Oceania) for X. compactus. Similarly, the 
models predicted the Greek province of Peloponnese and the Balearic Island Mallorca, where it was reported as 
established after we stopped gathering occurrence  data30,31, which suggests that the models have good predictive 
power. According to our model, X. compactus’ distribution in America could expand to Chile and Argentina, all 
Central America and the Western coast of North America. In the focal area, most of the Mediterranean coasts 
and the westernmost parts of the UK are predicted as suitable. Besides Northwest Australia, almost all Oceania 
and South East Asia is expected to be suitable. This suggests that even in its native area in Asia, X. compactus 
might colonise new areas or islands where it is not present yet. Even though X. compactus has proven to be very 
adaptable, invading different climatic regions in the last century, our models unanimously predicted more than 
50% of the world’s area as not suitable. Most of these areas are considered arid or semi-arid62 whether hot (e.g. 
Sahara or Arabian Peninsula) or cold (e.g. Canada or Andean Mountains). Little is known about the critical 
thermal minimum and maximum limits in species of the Xylosandrus genus, which could be used as thresholds 
constraining X. compactus’ distribution. Gugliozzo et  al.63 fitted a linear relationship between mortality and 
minimum temperature and found a 40% mortality in overwintering adults when the minimum temperatures 
decreased to 5 °C. The study did not record temperature under 5 °C, far from the lower lethal temperature of  
10 °C observed for Xyleborus glabratus, another ambrosia  beetle64. Some Xylosandrus species, including X. com-
pactus, showed an absence of flight activity under 20 °C65,66, a temperature threshold which may act as another 
constraining parameter. X. compactus’ distribution is expected to shift with climate change as precipitations and 
temperature patterns are modified.

Potential distribution of X. compactus under future climate conditions. The direction and mag-
nitude of a range shift depend on how climate change will affect the environmental parameters that constrain the 
species’  distribution67. Being generalist and carrying its symbiotic fungi to feed on, X. compactus’ distribution is 
expected to be mostly dependent on temperature and humidity. However, X. compactus lives most of its life in 
galleries, where wood acts as a buffer, protecting individuals from ambient air temperature and extreme  events64. 
The uncertainties of predictions were higher when dealing with future conditions compared to the consensus 
obtained under the current climate. Indeed, apart from Central Africa, the values observed on the consensus 
maps are usually lower. Whereas the areas predicted as suitable by at least some models stretches polewards in 
the Northern hemisphere, the predicted suitability in the Southern hemisphere is less consistent, decreasing over 
time in some places but not in others. In the focal area, the habitat suitability is predicted to increase going North 
and Northeast, reaching Central Europe, the Balkans and the Black Sea. However, outside the focal area, no new 
country is projected to become suitable between now and 2050 or 2070.

Even though some GCMs can make close predictions for the environmental parameters’ value in the future, it 
is necessary to use several of them when predicting species’ potential distribution. Indeed, when using general-
purpose machine learning methods such as MaxEnt, which relies on complex relations between the predictors to 
assess if areas are suitable or not, even small differences could lead to unpredictable and substantial differences in 
the final  predictions12. Moreover, performing models over a range of GCMs and RCPs provide decision-makers 
more reliable information regarding species’ potential distribution under future climate, notably regarding the 
areas predicted as unsuitable. On this point, our study is remarkable as it uses an exceptionally high number 
of GCMs, sometimes predicting divergent if not symmetrical results, and 4 RCPs, aimed at representing four 
different potential futures. Indeed, in their review, Porfirio et al.12 found that 40% of the studies (out of 163) 
used 2 or more GCMs, with only 7 using more than 10 GCMs, all being focused on methodology and not on 
conservation issues.

Risk prevention and invasion management. In addition to altering ambrosia beetles’ distribution, cli-
mate change might increase the damage they  cause68. On the one hand, temperature changes could facilitate 
their survival and development and thus significantly modify their population dynamics. On the other hand, 
changes in precipitations pattern would impact tree by prompting stress-induced ethanol emissions, which 
might increase their susceptibility to ambrosia  beetles69,70. While ambrosia beetles have been eradicated when 
established in very localised  areas71, this strategy is most of the time unsuccessful. Indeed, they live most of their 
lives inside galleries where they are protected from pesticides, parasitoids and predators. Moreover, these eco-
logical characteristics make them difficult to detect, which prevent efficient eradication strategies. Even if cutting 
and destroying infested trees can reduce population density, it is not applicable with high population densities 
or already widespread species.

The most cost effective management strategy is to prevent species’ invasion in the first place. Wood trans-
portation is a major introduction pathway for bark and ambrosia  beetles68, allowing them to disperse over long 
distances passively. However, even if phytosanitary measures are in place to prevent involuntarily transporting 
species (e.g. heat treatment or fumigation of the wood), they are not sufficient to ensure that no specimen reaches 
its destination alive. Moreover, bark and ambrosia beetles are also known to travel in living plants, which do not 
comply with the same regulations. To limit species’ invasion through wood and living plant transportation, a 
strengthening of the regulation might be necessary. However, resources are limited, so it is essential to prioritise 
areas to survey. For monophagous or oligophagous invasive species, the invasion pathways and currently suitable 
areas can be determined using host species transportation and distribution. However, both X. compactus and 



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1339  | https://doi.org/10.1038/s41598-020-80157-9

www.nature.com/scientificreports/

X. crassiusculus are known to have a broad range of  hosts31,72, and more are added to the list as they invade new 
 regions73. Hence, managers should not rely on pre-existing host lists as a way to consider an area as unsuitable. 
Our result relies on environmental parameters to show which areas are suitable for X. compactus. This could 
significantly improve the future pest risk analyses, in addition to being a helpful tool for decision-makers when 
making policies about trapping for early detection of X. compactus. Indeed, our results show that some areas 
are still free of X. compactus even though they are predicted as suitable, today or in the future. We suggest that 
such areas should be prioritised for early detection strategy, while efforts could be partially relaxed in regions 
unanimously predicted as unsuitable in the present study.
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