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This article examines the evolutionary stability of other-regarding preferences in a group contest for a prize, which is endogenously determined. In a destructive contest, such as war, contest e¤orts of all groups decrease the value of the prize. In contrast, in a productive contest, such as a patent race, contest e¤orts of all groups increase the value of the prize. The indirect evolutionary approach allows to endogenize players'preferences, that is, the utility weights given by a group member, in her subjective utility function, to the material payo¤s of in-group and out-group members. After characterized the set of evolutionarily stable preference types, I show that the evolutionary stable degree of in-group altruism is always stronger when the group contest is destructive than when it is productive. Moreover, when the group contest is strongly productive, preference evolution leads to in-group spite. However, a smaller group size and a larger number of competing groups makes this outcome less likely.

Introduction

From ancient times, intergroup competition and con ‡ict have been ubiquitous in human societies. Thus, they have been extensively studied within di¤erent disciplines, including social psychology (Böhm et al., 2020), political science (Lopez and Johnson, 2020), and economics (Kimbrough et al., 2020). In particular, early studies in social psychology have pointed out that in-group favoritism can emerge in intergroup con ‡ict even though groups are not formed according to some intrinsic characteristics, but by random assignment (Tajfel and Turner, 1979; Tajfel, 1982). More recent experimental works by social psychologists show, in simple team games, that intergroup competition improves coordination within the group and, hence, enhances group e¤ort (see, e.g., Rapoport and Bornstein, 1987, 1989; Bornstein, 1992, 2003; Bornstein et al., 2002). Economists have also conducted experimental studies with monetary incentives, and generally conclude that subjects over-contribute to group e¤ort in group contests, compared to the predictions implied by the Homo economicus paradigm (see, e.g., Abbink et al., 2010, 2012; and for a survey, see Sheremeta, 2018).

While there is an important literature in human evolutionary biology that explains how genetic relatedness, or kinship, can result in "parochial altruism" -the combination of in-group altruism and out-group hostility -in the context of warfare, there are very few theoretical analyses of the evolutionary stability of non-kin altruism within competing groups. [START_REF] Abbink | Intergroup con ‡ict and intragroup punishment in an experimental contest game[END_REF] Eaton et al. (2011) analyze in-group favoritism and out-group spite by using a "guns versus butter" model, where groups compete for a common access resource that is processed to produce a consumption good. Players'preferences are observable and population is in…nite. They show (numerically) that intergroup hostility falls, while intragroup solidarity rises as the resource becomes more abundant. Konrad and Morath (2012) analyze the evolutionary stability of in-group favoritism and out-group spite in a model of group contest for an exogenous prize. The population is …nite, and players' preferences are private information. Thus, they introduce the concept of "robust beliefs" such that any player with a certain preference type believes that all other players are of the same type (and have the same "robust beliefs"). In this context, they characterize the set of evolutionarily stable preference types, which involve a linear combination of the two parameters re ‡ecting in-group altruism and out-group spite, with the two traits being perfect substitutes.

In this paper, I also analyze the evolutionary stability of non-kin altruism in group contests, but I consider that the value of the contested prize changes with the aggregate e¤ort of all groups. [START_REF] Abbink | Parochial altruism in intergroup con ‡icts[END_REF] Indeed, although the …xed-value assumption appears to be reasonable in some speci…c contexts -such as in the case of lobbying competition for quotas -it is much more questionable in a variety of real-world situations. On the one hand, intergroup con ‡ict can reduce the value of the contested prize. The group contest is thus destructive. One can think, for example, of a tribal war for land and natural resources that are damaged by the con ‡ict, thus diminishing their economic value for the victorious tribe. On the other hand, intergroup competition can result in wealth creation, thus increasing the value of the prize. The group contest is thus productive. One can think, for example, of R&D investments to obtain a monopoly right, or even to the competition in medical sciences and biology between research teams for …nding a vaccine. Research e¤orts by di¤erent teams produce knowledge externalities, that can ultimately bene…t the research team(s) that successfully developed the vaccine.

The equilibrium concept is that of Evolutionarily Stable Strategies, introduced by evolutionary biologists Maynard Smith and Price (1973), and adapted to the case of …nite population by Scha¤er (1988). An ESS is such that it cannot be invaded by another strategy in the sense that if the whole population of players adopts it, then, there is no other strategy that a player could use for obtaining a higher relative payo¤ or …tness.

In group contests, the evolutionary success of an individual player depends on his material payo¤ relative, not only to the material payo¤s of his teammates, but also relative to the material payo¤s of out-group members. If, for instance, a player increases his contribution to collective e¤ort above the level corresponding to sel…sh behavior, it increases the probability of success of his group to the detriment of the rival groups and, hence, it can increase his …tness relative to that of out-group members. However, it also decreases the player's …tness relative to that of his teammates because they bene…t from the increase in the probability of success of the group, without having exerted additional e¤ort. Overall, as shown by Konrad and Morath (2012), group members expend more e¤ort in the evolutionarily stable equilibrium than in the standard Nash equilibrium when the value of the prize is constant. I demonstrate that this result still holds when the group contest is destructive or when it is productive, provided the elasticity of the prize, with respect to change in the aggregate e¤ort of all groups, is su¢ ciently small. If, however, the group contest is quite productive, in that the elasticity of the prize is relatively large, group members exert less e¤ort in the evolutionarily stable equilibrium, than if they were to maximize their material payo¤ only.

Next, I use the indirect evolutionary approach, pioneered by Güth and Yaari (1992), for endogenizing players'preferences. In other words, evolution does not play directly at the level of strategies, but indirectly at the level of preferences, which determine players'actions and, in turn, individual material payo¤. [START_REF] Alger | Kinship, incentives and evolution[END_REF] Following Konrad and Morath (2012), I also consider that players have "robust beliefs" about others'preferences, and then determine which objective function(s) can achieve the equilibrium level of e¤ort in evolutionarily stable strategies. This approach has the advantage of interpreting evolutionarily stable behaviors as the result of evolutionarily stable interdependent preferences of conscious and rational players.

Speci…cally, the preference type of a player is a couple of parameters, corresponding to the utility weights given by the player, in his subjective utility, to the material payo¤s of his teammates and to the material payo¤s of the members of the rival groups. I …rst characterize the set of evolutionarily stable preference types without restricting the signs of the two preference parameters in any way. I then show that several combinations of in-group altru-ism/spite and out-group altruism/spite can constitute an equilibrium in evolutionarily stable preferences, whether the contest is destructive or productive. Interestingly, however, when the elasticity of the prize is su¢ ciently large, but not too large relative to the 'decisiveness parameter' of the contest success function, parochial altruism -i.e. in-group altruism and out-group spite -cannot be an evolutionarily stable preference type.

Next, I assume that the subjective utility function of each player is based on his own material payo¤, and on the material payo¤s of either his teammates, or his opponents. When preferences towards the out-group members are ignored, the evolutionarily stable utility weight given by a group member to the material payo¤s of his teammates is decreasing in the elasticity of the prize with respect to change in the aggregate e¤ort of all groups. If this elasticity is negative, the group contest is destructive and preference evolution leads to a positive degree of in-group altruism, that induces a higher level of e¤ort than in the symmetric Nash equilibrium. This, in turn, aggravates the destructiveness of the con ‡ict between groups. When the elasticity of the prize is positive, but su¢ ciently small, group members are still altruistic towards each other under preference evolution. However, the evolutionarily stable degree of in-group altruism is lower than when the group contest is destructive. Finally, when the elasticity of the prize is relatively large, then in-group spite emerges in the equilibrium in evolutionarily stable preferences, thus resulting in a lower level of aggregate e¤ort than in a monomorphic population of sel…sh players. I also investigate the symmetric situation where in-group preferences are ignored, and explain that an equilibrium in evolutionarily stable out-group preferences may fail to exist in this case.

Finally, to obtain additional results on the impact of the 'economic environment'on the evolutionarily stable equilibrium, I consider that the prize function is quasi-linear in the initial value of the prize, and focus on evolutionarily stable in-group preferences in the case of productive contests. I then show that a larger group size makes in-group spite more likely to emerge under preference evolution. In contrast, a stronger rivalry in the environment, as measured by the number of competing groups, or a larger initial prize value, makes in-group altruism more likely to be evolutionarily stable.

The basic framework is a simple group contest game (see Katz et al., 1990; Nitzan, 1991; and for a survey, see Konrad, 2009). The case where the value of the prize is endogenous has been investigated in contests between single players. Chung (1996) considers the case of productive contests, and shows that the amount of aggregate e¤ort can be larger in the Nash equilibrium than in the social optimum. Sha¤er (2006) considers both productive and destructive contests with symmetric players, while Chowdhury and Sheremeta (2011), Hirai and Szidarovszky (2013), and Damianov et al. (2018), extend the analysis to the case of asymmetric (productive and destructive) contests between single players. In the present analysis, I consider contests, not between single agents, but between groups of players. More importantly, I analyze the evolutionary stability of non-kin altruism within groups in group contests with endogenous prizes.

This article is organized as follows. Section 2 presents the model of a group contest with an endogenous prize and derives the Nash solution. Section 3 characterizes evolutionarily stable strategies in the group contest. In Section 4, I introduce the indirect evolutionary approach for characterizing evolutionarily stable preferences. In Section 5, I suppose that the value of the prize is a quasi-linear function, and analyze the impact of the 'economic environment'on the evolutionarily stable equilibrium. Finally, Section 6 concludes.

2 The group contest game I consider a …nite number of players N who are randomly partitioned into m groups of n players (with n 2 and m 2). The groups compete for a prize G. Let (i; j) for i 2 I = f1; 2; :::; ng and j 2 J = f1; 2; :::; mg, denote member i of group j. x ij 0 is the amount of e¤ort expended by player (i; j), and I assume that each player has the same …nite endowment w, so that x ij w. Let W = N w be the aggregate endowment, and X j = P n i=1 x ij 2 R + be the total e¤ort of group j. The probability of winning the prize for each group depends on its collective e¤ort relative to the collective e¤orts of competing groups according to a Contest Success Function (CSF), which has the ratio-form. Speci…cally, given the vector of group e¤orts X (X 1 ; ::; X m ) 2 R m + , the winning probability of group j, p j : R m + ! [0; 1], is

p j (X) = 8 > > > > < > > > > : X r j X r j + X m k6 =j X r k if X r j + X m k6 =j X r k 6 = 0; 1 m otherwise, (1) 
where r 2 (0; 1] is a 'decisiveness parameter'that measures the responsiveness of the probability of winning to the ratio of group e¤orts. [START_REF] Alger | Evolutionary models of preference formation[END_REF] In case of winning, each member receives an equal amount of the prize G that depends on the aggregate e¤ort X = X m j=1 X j . I assume that G(X) satis…es the following properties.

Assumption 1.

(i) G (0) is strictly positive and bounded;

(ii) G(X) is twice continuously di¤erentiable for all X 2 (0; W ];

(iii) For all X 2 [0; W ], G(X) > 0 and G(X) satis…es either (iiia) or (iiib) where: (iiia) G 0 (X) 0 and G 00 (X) 0;

(iiib) G 0 (X) 0; X > and X > , where X = G 0 (X)X=G(X), X = G 00 (X)X=G 0 (X) and r(m 1); (iv) There exists X 2 (0; W ] such that G X X = 0.

Property (iii) states that G(X) is always strictly positive, and allows for both productive and destructive contests, that is, for situations where the value of the prize increases or decreases with the aggregate e¤ort of all groups. If the group contest is productive -i.e. G 0 (X) 0 -it is assumed that the value of the prize increases with X at a decreasing rate -i.e. G 00 (X) 0. This implies that the elasticity of the prize with respect to change in the aggregate e¤ortdenoted by X -is strictly lower than 1, for any X 2 [0; W ]. [START_REF] Alger | Evolution of preferences in structured populations: Genes, guns and culture[END_REF] When the group contest is destructive -i.e. G 0 (X) 0 -the elasticity X is negative, and the existence of a symmetric interior Nash equilibrium in contest e¤orts, and of an evolutionarily stable equilibrium, requires that this elasticity is not "too" small (or "too" large in absolute value) -i.e. X > (with < 0). However, unlike the case of a productive contest, we do not restrict the G(:) function to be always a concave function. It can be a convex function as well -i.e. G 00 (X) 0 -which may be more plausible in the case of destructive con ‡icts about natural resources. Yet, it must not be "too convex" for equilibrium existence. It boils down to a lower bound, which is negative, on the elasticity of the G 0 (:) function with respect to change in the aggregate e¤ort. Speci…cally, this elasticity -denoted X -must have the same lower bound than the elasticity of the G(:) function itself with respect to X -i.e. X > (with < 0). [START_REF] Alós-Ferrer | Local equilibria in economic games[END_REF] Finally, property (iv) is similar to Assumption 3 in Chung (1996), and is also required for the existence of a symmetric interior Nash equilibrium. It simply states that there exists a …nite and strictly positive level of aggregate e¤ort X; such that social welfare is equal to 0. Together with (iii), it implies that social welfare is strictly positive for any level of aggregate e¤ort below X -i.e. G(X) X > 0 for X 2 0; X .

Note also that G(X) depends on the number of competing groups m and on group size n, because the aggregate e¤ort X depends on the total number of players involved in the contest. Furthermore, in group contests, a distinction must be made between the total value of the prize and the per-capita value of the prize for the winning group. The per-capita value of the prize can also depend directly -and negatively -on group size according to the degree of rivalry of the prize. In order to save on notation, I shall simply write G(X) for the value of the prize received by each member of the winning group, with the understanding that this per-capita value can also, in general, depend directly on group size n.

Finally, I assume that all players incur a linear cost function of e¤ort. As a result, the expected material payo¤ of player (i; j) 2 I J is given by ij : R

+ [0; 1] [0; w] ! R + , that is, ij = p j (X) G (X) x ij . ( 2 
)
Let us …rst characterize the equilibrium induced by Nash behavior. One can establish the following Proposition.

Proposition 1. Under Assumption 1, there exists a unique symmetric pure-strategy Nash equilibrium. The equilibrium aggregate e¤ort X N must satisfy

(m 1) r (X N ) 1 + [G 0 (X N ) 1] = 0; (3) 
where

(X N ) G(X N )=X N . 7
Proof. Appendix A1.

It is worth emphasizing that, due to the public-good nature of group contests, there exists a continuum of (asymmetric) pure-strategy Nash equilibria. However, we consider the unique symmetric equilibrium such that all members of all groups exert the same level of e¤ort.

Also, the Nash equilibrium is, in general, ine¢ cient. This is obvious when the group contest is destructive. When the contest is productive, the (in-)e¢ ciency of contest e¤orts is more ambiguous because, as …rst pointed out by Chung (1996), there are two opposing e¤ects. On the one hand, there is a negative rent-seeking -or unproductive -e¤ect in that all groups expend resources to increase their probability of winning the prize, but neutralize each other in the symmetric equilibrium. On the other hand, there is a positive -or productive -e¤ect in that the value of the prize increases with the aggregate e¤ort of all groups. Consequently, in productive contests, the Nash equilibrium can generate too much or too low amounts of aggregate e¤ort compared to the social optimum. [START_REF] Böhm | The psychology of intergroup con ‡ict: a review of theories and measures[END_REF] 

Evolutionarily stable strategies

Let us now determine which level of individual e¤ort is an evolutionarily stable strategy (ESS) by using Scha¤er (1988)'s de…nition of ESS for …nite populations, and adapted to group contests by Konrad and Morath (2012). Suppose that, initially, all players adopt the same strategy by expending the same amount of e¤ort x. A mutant strategy x M 6 = x adopted by a single player can invade x, if the material payo¤ of the mutant player using x M is strictly larger than that of the other players using x. A strategy x E 2 [0; w] is an ESS, if it cannot be invaded by any other strategy. As already mentioned, this equilibrium concept originates from theoretical biology. The underlying justi…cation is that, in the dynamic process of mutations and of adjustments to ESS (not modeled here), more successful strategies have an advantage in reproducing, thus leading to the extinction of less successful strategies. And, in an economic context, success is simply identi…ed with material payo¤.

Let M (x M ; x E M ) be the expected material payo¤ of the mutant player who exerts an amount of e¤ort x M 2 [0; w], given that all other players exert the e¤ort level x E . We have

M (x M ; x E M ) = x M + (n 1)x E r [x M + (n 1)x E ] r + (m 1) [nx E ] r G(x M ; x E M ) x M : (4) 
Similarly, let M (x M ; x E M ) be the expected material payo¤ of a player exerting the e¤ort level x E , given that mn 2 other players also spend x E ; and that there is one mutant player expending an amount of e¤ort x M . Each player expending x E has a probability (n 1)=(mn 1) of being matched with the mutant player in the same group, and a probability n(m 1)=(mn 1) of belonging to a group with all players expending x E . Therefore, we have

M (x M ; x E M ) = n 1 mn 1 " x M + (n 1)x E r [x M + (n 1)x E ] r + (m 1) [nx E ] r G(x M ; x E M ) x E # 8
Speci…cally, the socially e¢ cient level of aggregate e¤ort is X arg max X G(X) X, and thus satis…es G 0 (X ) = 1. Using (3), the Nash equilibrium is e¢ cient -i.e. X N = X -when r = r with r = 1= (X ) = X =G(X ) 2 (0; 1). Furthermore, as shown in the proof of Proposition 1, the left-hand term of Eq. ( 3) is decreasing in X, and is equal to 0 for X = X N . Hence, if r > r , the left-hand term of Eq. (3) becomes strictly positive -i.e. (m 1) [r (X ) 1] > 0 -which implies that X < X N , because (:) and G 0 (:) are decreasing functions. A symmetric reasoning applies for r < r . In conclusion, if r > r (r < r ) the aggregate e¤ort in the Nash equilibrium is greater (lower) than the e¢ cient level in the case of a productive contest (see also Chung, 1996).

+

n(m 1) mn 1

" nx E r [x M + (n 1)x E ] r + (m 1) [nx E ] r G(x M ; x E M ) x E # : (5) 
For x E to be an ESS, one must have

M (x M ; x E M ) M (x M ; x E M ) for all x M 2 [0; w].
An alternative equivalent de…nition of ESS is as follows:

De…nition 1. Let x E
M be the vector of e¤orts of all mn 1 players -other than the mutant player M -who all expend the e¤ort level x E 2 [0; w]. Then, x E is an evolutionarily stable strategy (ESS) if it is a solution to:

M ax x M M (x M ; x E M ) M (x M ; x E M ); ( 6 
)
for x M 2 [0; w].
Thus, if all players choose x E , a mutant player cannot obtain a strictly higher relative payo¤ than ESS players by choosing a di¤erent strategy x M 6 = x E . In other words, we search for an evolutionarily stable strategy x E that is a solution of ( 6) for all x M 2 [0; w], in which case (6) as a function of x M would reach a global maximum at x M = x E : When the prize is exogenous and is independent of players' e¤orts, such an ESS exists. [START_REF] Bowles | Group competition, reproductive leveling, and the evolution of human altruism[END_REF] When the prize is endogenous and depends on the aggregate e¤ort of all groups, we can show that an ESS still exists on the condition that we use the restriction of local stability, as introduced by Alós-Ferrer and Ania (2001). Thus, let us introduce the following de…nition: 

De…nition 2. x E is
(X E ) = mn 1 rn(m 1) ; (7) 
where

(X E ) G(X E )=X E , with X E = mnx E .
Proof. Appendix A2. [START_REF] Bowles | Group competition, reproductive leveling, and the evolution of human altruism[END_REF] When G 0 (X) = 0, it can be veri…ed that the second derivative of M (x M ; x E M ) M (x M ; x E M ) with respect to x M is strictly negative for any x E > 0 (see the proof of Proposition 2). Furthermore, x E = 0 cannot be an ESS since then M (x M ; x E M ) M (x M ; x E M ) becomes strictly positive by expending an arbitrarily small amount x M .

Under Assumption 1, (X) is decreasing in X; whether the contest is productive or destructive (see Footnote 7). Consequently, x E and X E are both increasing in r, because the right-hand term of ( 7) is decreasing in r. Again, this parameter is a measure of the sensitivity of the probability of winning the contest to the ratio of group e¤orts. As r increases, the contest technology becomes more responsive to any di¤erences in group e¤orts. Thus, the result that the evolutionarily stable equilibrium level of e¤ort increases with r is very intuitive.

One can also observe that the right-hand-term of ( 7) is decreasing in the number of competing groups m, implying that X E is increasing in m. The individual level of e¤ort does not, however, necessarily increase in m; because x E = X E =mn. Note, also, that the righthand term of ( 7) is increasing in group size n. Furthermore, recall that the per-capita value of the prize G(:) corresponds to the total value of the prize when it has the characteristics of a pure public good, while it decreases directly with n when it is (at least partially) private. Therefore, (:) can be a decreasing function of n. Since it is also decreasing in X, it must be the case that the aggregate e¤ort X E , in evolutionarily stable strategies, decreases as group size n increases (while the aggregate e¤ort is independent of group size in the symmetric Nash equilibrium, as shown by ( 3)). Obviously, it implies that the individual level of e¤ort x E is also decreasing in n. I shall return to the e¤ects of the number of competing groups and group size in Section 5.

The next Proposition compares the aggregate level of e¤ort induced by ESS with that when players adopt the Nash standard of behavior. Proposition 3. Let = r(m 1)=(mn 1) < r and let X = G 0 (X N )X N =G(X N ), with X N implicitly given by (3). If X < ( X > ), then X E , implicitly given by (7), is strictly higher (lower) than X N , and

X E = X N if X = .
Proof. (3) can be rewritten as X N = m= [r(m 1) + X ] and (X E ) is given by (7). We have that X N T X E as X S . (:) being a decreasing function, we thus have

X E T X N as X S .
The reason for which behaviors, induced by the ESS, deviate to those in the Nash equilibrium is that a player's …tness is based on relative payo¤s. If starting with a monomorphic population of players exerting the Nash equilibrium level of e¤ort, a mutation occurs with one player exerting a (slightly) higher level of e¤ort, it increases the winning probability of his group and induces a direct …tness cost to the player. The higher probability of success also bene…ts the mutant's teammates, although they did not bear the cost of the additional e¤ort. Consequently, it increases their …tness relative to that of the mutant player, independently of whether the group contest is destructive or productive. However, the additional contribution of the mutant player also decreases the probability of success for the competing groups. If, the contest is destructive, it decreases the value of the prize for all players, including out-group members. In this case, the additional contribution of the mutant player decreases both the probability of success and the value of the prize for the members of the rival groups, thus decreasing their expected material payo¤. Therefore, it increases the mutant player's …tness relative to that of out-group members. In sum, if starting with a population of sel…sh players, one player exerts a higher level of e¤ort, it makes the player worse o¤ relative to his teammates, but better o¤ relative to his opponents in the group contest. Overall, e¤orts are higher in the ESS than in the symmetric Nash equilibrium when the group contest is destructive. In other words, relative payo¤ considerations across groups dominate those within groups. Now, consider that the group contest is productive. In this case, the higher level of e¤ort exerted by the mutant player has two countervailing e¤ects on the expected material payo¤ of the members of the rival groups. On the one hand, it decreases their probability of winning the contest but, on the other hand, it increases the value of the prize if they win the prize. However, according to Proposition 3, if the group contest is moderately productive -that is if X -evolutionary pressure still leads to higher levels of e¤ort than in the symmetric Nash equilibrium. This is because a higher level of e¤ort still improves one's …tness relative to out-group members by more than it decreases one's …tness relative to in-group members.

If, however, the group contest is quite productive -that is if X -group members exert less e¤ort in the (locally) evolutionarily stable equilibrium than if they were to maximize material payo¤ only. If starting with a monomorphic population of Nash players, a mutation occurs with one player exerting a (slightly) lower level of e¤ort, it decreases the probability of success of his own group. The mutant player is now better o¤ relative to his teammates because he bears a lower e¤ort cost. The lower level of e¤ort exerted by the mutant player also increases the winning probability of the rival groups. However, the members of the rival groups also su¤er from a decrease in the value of the prize if they win the contest, all the more so as the elasticity of the prize with respect to change in the aggregate e¤ort, is relatively large. Consequently, if this elasticity is su¢ ciently large -that is if X -evolutionary pressure leads to lower levels of e¤ort than in the symmetric Nash equilibrium.

In fact, it might be possible that decreasing one's own level of e¤ort decreases, in absolute terms, the expected material payo¤ of the out-group members, despite their greater probability of winning the contest. [START_REF] Bonstein | The free-rider problem in intergroup con ‡icts over step-level and continuous public goods[END_REF] This depends on how sensitive is the outcome of the contest with respect to di¤erences in group e¤ort, as measured by the 'decisiveness parameter'r, relative to the elasticity of the prize with respect to change in the aggregate e¤ort of all groups. Speci…cally, let evaluate the marginal material payo¤ of player (k; l) with respect to player (i; j)'s e¤ort, with j 6 = l. Using (2), we have kl =@x ij = [@p l (X) =@x ij ] G(X) + p l (X) G 0 (X). Starting with a monomorphic population of players who exert the same level of e¤ort x, we have (@ kl =@x ij ) x ij =x = [r=(mX)] G(X) + [1=m] G 0 (X). This expression can be rewritten as a function of the elasticity X to obtain (@ kl =@x ij ) x ij =x = [ (X)=m] ( X r), which is positive for X r; and negative for X r. In other words, the lower level of e¤ort exerted by the mutant player can decrease the expected material payo¤ of out-group members, despite a higher probability of success in the group contest. This happens if the contest is strongly productive -that is if X r -otherwise, the members of the rival groups enjoy a higher expected material payo¤.

To conclude, if the group contest is quite, but not too, productive -that is, if X 2 [ ; r] -the lower level of e¤ort exerted by the mutant player decreases his …tness relative to that of his opponents in the rival groups, but this is more than o¤set by the increase in his …tness relative to that of his teammates. Relative payo¤ considerations within groups dominate relative payo¤ considerations across groups, which leads to lower levels of e¤ort in the (locally) evolutionarily stable equilibrium than in the symmetric Nash equilibrium. It is even more valid when the group contest is strongly productive, that is when X 2 [r; 1). In this case, exerting a lower level of e¤ort not only allows increasing one's …tness relative to one's teammates, but also reduces the expected material payo¤ of the members of the rival groups. [START_REF] Bornstein | Intergroup con ‡ict: individual, group and collective interests[END_REF] 

Evolutionarily stable preferences

In economics, it is typically assumed that e¤ort choices result from a conscious and rational process that consists in maximizing a utility function. It is thus only natural to ask which utility function of players induces the ESS characterized in the previous section. To this end, I use the indirect evolutionary approach pioneered by Güth and Yaari (1992). The players are randomly matched into the m groups of size n; and each of them has a subjective utility function that depends on her own material payo¤, and on the material payo¤s of both ingroup and out-group members. [START_REF] Bornstein | The e¤ect of intergroup competition on group coordination: an experimental study[END_REF] Speci…cally, let the utility of player (i; j) -member i of group j -be given by

V ij ij ; ij = ij + ij n 1 P n k6 =i kj + ij n(m 1) P m l6 =j P n i=1 il , (8) 
where the pair ( ij ; ij ) is the preference type of player (i; j), that is, the utility weights given by this group member, in her subjective utility, to the material payo¤s of her teammates in group j; and to the material payo¤s of her opponents in all groups l 6 = j. It would be natural to suppose, as in Konrad and Morath (2012), that ij 0 and ij 0 for all (i; j) 2 I J, or that players have altruistic preferences towards their teammates and spiteful preferences towards the members of the rival groups. However, at this stage, let us remain agnostic as to whether these parameters are positive or negative. Thus, consider that ij 2 ( 1; K] -with K 1 -and that ij 2 L; L with L < 0 and L > 0. [START_REF] Cheikbossian | Evolutionarily stable in-group altruism in intergroup con ‡ict over (local) public goods[END_REF] Also, note that the valuations of the material payo¤s of both in-group members and out-group members are weighted by the inverse of their respective numbers, so that the relative weight of player (i; j)'s payo¤ does not change with either group size or the number of competing groups.

Following Konrad and Morath (2012), I assume that players have "robust beliefs" in the sense that a player endowed with a certain preference type believes that all other playersincluding out-group members -are of the same type and have the same robust beliefs. The assumption of unobservability of types is not only more plausible than the opposite. It also drastically simpli…es the analysis of preference evolution, because it eliminates all strategic e¤ects of a change in a player's type on other players'equilibrium actions.

Suppose that mn 1 players are of type E ; E , while one player -the mutant -is of type ( M ; M ) 6 = E ; E . All players choose their e¤ort level to maximize their subjective utility given by (8). Let M (( M ; M ) ; E ; E ) and M (( M ; M ) ; E ; E ) be, respectively, the expected material payo¤ obtained by the mutant player and by a player of type E ; E in the Nash equilibrium with robust beliefs, where E ; E is the vector of mn 1 copies of E ; E .

Let us de…ne locally evolutionarily stable preference types as follows:

De…nition 3. Let E ; E 2 ( 1; K] mn 1 
L; L mn 1 be the vector of preference types of all mn 1 players -other than the mutant player M -all with the same pair of preference parameters E ; E 2 ( 1; K] L; L . Then, E ; E is a locally evolutionarily stable preference type (ESP), with robust beliefs, if it is a solution to:

M ax M ; M M (( M ; M ) ; E ; E ) M (( M ; M ) ; E ; E ); (9) 
for ( M ; M ) in some neighborhood of E ; E :

The notion of local stability at the level of preferences can be justi…ed if we consider that the evolutionary process exhibits what Alger and Weibull (2010) calls a "cultural drift", with the mutant player endowed with preferences slightly di¤erent from those of the incumbent players.

The next Proposition characterizes the set of (locally) evolutionarily stable preference types.

Proposition 4. Let = r(m 1)=(mn 1) < r. If Assumption 1 holds with G 00 (X) 0 for all X 2 (0; W ], and if L; L ( n =r; n (m 1)), then there exists a non-empty set of locally ESP E ; E 2 ( 1; K] L; L with robust beliefs, that must satisfy

1 + E = mn + E (r X ) r(m 1) + X ; (10) 
where X = G 0 (X E )X E =G(X E ), with X E implicitly given by (7).

Proof. Appendix A3.

The proof of this result follows Konrad and Morath (2012) and can be summarized as follows.

When players have robust beliefs, we can characterize the "symmetric robust-beliefs Nash equilibrium" in e¤orts of each player type. For a certain preference type, it would correspond to the symmetric Nash equilibrium under complete information when all players are e¤ectively of the type in question. When players have di¤erent preferences and cannot observe others' preferences, their choices do not correspond to a set of mutually best replies. But these choices only occur o¤ the equilibrium with evolutionarily stable preferences. Indeed, in such an equilibrium, all players have the same preferences and according to De…nition 3, a mutant player with di¤erent preference parameters than E ; E cannot obtain a strictly higher relative payo¤. [START_REF] Chowdhury | A generalized Tullock contest[END_REF] Proposition 2 describes the evolutionarily stable strategy, that is the e¤ort choice that cannot be invaded by another e¤ort choice for maximizing relative payo¤. Since under the indirect evolutionary approach, preferences determine behaviors, evolutionarily stable preferences, as characterized by Proposition 4, must implement evolutionarily stable strategies, as characterized by Proposition 2.

Also, the set of evolutionarily stable preference types involves a linear combination of the two parameters re ‡ecting in-group bias and out-group bias. The reason is that the subjective utility of a player is itself given by a linear combination of the material payo¤s of the player's teammates, and of the material payo¤s of the out-group members. However, each player exerts just one level of e¤ort and, hence, there exists an in…nity of preference types E ; E that implement evolutionarily stable strategies as characterized by Proposition 2. In other words, the system is under-determined and, consequently, several combinations of in-group altruism/spite and out-group altruism/spite can constitute a (local) equilibrium in evolutionarily stable preferences, whether the contest is destructive or productive. [START_REF] Choi | The coevolution of parochial altruism and war[END_REF] However, the next Proposition states that one can always exclude a speci…c combination of preference parameters. Proposition 5. Let = r(m 1)=(mn 1) < r and X = G 0 (X E )X E =G(X E ), then all combinations of in-group altruism/spite and out-group altruism/spite can constitute a (local) equilibrium in evolutionarily stable preferences with robust beliefs, except:

(i) In-group spite and out-group altruism -i.e. E < 0 and E > 0 -if X < r; (ii) In-group altruism and out-group spite -i.e. E > 0 and E < 0 -if X 2 [ ; r) ; (iii) In-group altruism and out-group altruism -i.e. E > 0 and E > 0 -if X > r;

Proof. Let ! = ( X )=(r X ). (i) If X < r, then ! 0. Suppose …rst that E > 0 (or that 1 + E > 1). Using (10), this implies that E > ! , which can be veri…ed with both E 0 and E 0. Symmetrically, suppose that E < 0. This implies that E < !, so that one must have E < 0. (ii) If X 2 [ ; r), then ! 0. E > 0 still implies that E > !, so that one must have E > 0. E < 0 implies that E < !, which can be veri…ed with both E 0 and E 0. (iii) If X > r > , then ! < 0. Using (10), E > 0 now implies that E < !, so that one must have E < 0. E < 0 implies E > !, which can be veri…ed with both E 0 and E 0.

Interestingly, the combination of in-group altruism and out-group spite -or "parochial altruism" -cannot always achieve evolutionarily stable e¤ort choices under preference evolution. This happens when the group contest is relatively productive, but neither too much nor too little, that is when X 2 [ ; r). In this case, group members exert a lower level of e¤ort in the ESS than in the symmetric Nash equilibrium, and at the same time, exerting less e¤ort than all other players increases the expected material payo¤ of the members of the rival groups. Therefore, if preference evolution leads to in-group altruism, it must be accompanied by outgroup altruism. But, a lower level of e¤ort in the ESS when X 2 [ ; r) can also be achieved with out-group altruism and in-group spite, or spiteful preferences towards both in-group and out-group members. Also, when X > r, exerting a lower level of e¤ort decreases the expected material payo¤ of out-group members, because it decreases the value of the prize by more than it increases their probability of winning the prize. Consequently, if the lower ESS e¤ort level (relative to the Nash equilibrium e¤ort) is induced by in-group altruism, it must be accompanied by out-group spite under preference evolution. But, as for X 2 [ ; r), in-group spite together with out-group altruism, or fully spiteful preferences towards both in-group and out-group members, are also (locally) evolutionarily stable.

To move forward, let us ignore either in-group preferences or out-group preferences by setting ij = 0 or ij = 0 for all (i; j) 2 I J. We can obtain the following Proposition. Proposition 6. Let = r(m 1)=(mn 1) < r and X = G 0 (X E )X E =G(X E ).

(i) Suppose that ij = 0 for all (i; j) 2 I J.

Under Assumption 1, there exists a unique locally ESP E 2 ( 1; K], and it is characterized by:

1 + E = mn r(m 1) + X ; (11) 
which is strictly greater (lower) than 1 for X < ( X > ), and equal to 1 for X = .

(ii) Suppose that ij = 0 for all (i; j) 2 I J.

(iia) If Assumption 1 holds with G 00 (X) 0 for all X 2 (0; W ], and if X < n < r; then there exists a unique locally ESP E 2 ( n =r; (m 1)), and it is characterized by

E = X r X ; (12) 
which is strictly negative (positive) for X < ( X 2 ( ; n )), and equal to 0 for X = ; if X n , a locally ESP may fail to exist.

(iib) If Assumption 1 holds with G 00 (X) = 0 for all X 2 (0; W ]-implying that G(X) is a¢ ne -then X < r, and there always exists a unique locally ESP E 2 ( 1; (m 1)) given by (12), which is strictly negative (positive) for X < ( X > ), and equal to 0 for X = .

Proof. Appendix A4.

Before interpreting these results, some technical remarks have to be made. First, if we ignore out-group preferences, one can demonstrate the existence of a unique (locally) evolutionarily stable in-group preference parameter, without assuming that the prize function is always concave. When the contest is destructive, it can be convex as well under the restriction that property (iiib) of Assumption 1 is satis…ed. However, if we ignore in-group preferences, the existence of a unique locally out-group preference parameter is not always guaranteed, except if the value of the prize is a¢ ne in the level of aggregate e¤ort. Otherwise, we need to assume that the prize function is concave, and that the elasticity X is lower than a certain threshold given by n .

In general, if the group contest is quite or strongly productive -i.e. if X n -a locally ESP may fail to exist when ignoring in-group preferences. This would be the case when the elasticity of the prize X is "close" to the 'decisiveness parameter' r of the contest success function. To understand it, recall that evolutionarily stable preferences must implement evolutionarily stable strategies, and that these strategies induce behaviors that maximize relative payo¤. Now, consider the polar case where X is equal to r, so that a player's e¤ort has no e¤ect on the material payo¤s of the members of the rival groups. Indeed, in this case, if a group member exerts a higher level of e¤ort, the increase in the value of the prize just counterbalances the decrease in the probability of success for the members of the rival groups, thus leaving unchanged their expected material payo¤s. Thus, if players'subjective utilities do not depend on the payo¤s of in-group members and if X = r, players can only behave as if they were to maximize their absolute material payo¤ (which is evolutionarily stable only in the special case where X = ). Consequently, an equilibrium in evolutionarily stable preferences fails to exist in this case.

Also, ignoring out-group preferences, one can observe that the condition determining the sign of the evolutionarily stable in-group preference parameter is the same than that obtained in Proposition 3 for the comparison of e¤orts between ESS and Nash equilibria. Proposition 3 and property (i) of Proposition 6 together state that if the elasticity of the prize X is lower (larger) than the threshold value , then e¤ort levels are higher (lower) in the ESS than in the symmetric Nash equilibrium, and it corresponds to in-group altruism (spite) under preference evolution. However, the elasticity of the prize is evaluated at X E in Proposition 6, while it is evaluated at X N in Proposition 3. Notwithstanding this, a higher (lower) ESS e¤ort level, relative to the Nash equilibrium level, must correspond to a positive (negative) value for E under preference evolution. This is obvious when the group contest is destructive because, in this case, the elasticity of the prize is always negative (and thus, always, lower than ). When the contest is productive, it must also be the case that the two (positive) elasticities evaluated at X N and X E are either both lower or both larger than the threshold value .

First, the two elasticities are equal if and only if X E = X N , in which case they are both equal to . Thus, if out-group preference are ignored and if X = , we have E = 0 and absolute payo¤ maximization is evolutionarily stable. Suppose now that X N 6 = X E and that X evaluated at X N is slightly lower (higher) than . According to Proposition 3, this implies that X E > X N (X E < X N ). Players expend more (less) e¤ort in the evolutionarily stable equilibrium than if they were absolute-payo¤ maximizers. This necessarily re ‡ects a positive (negative) degree of in-group altruism under preference evolution, so that X evaluated at X E must also be slightly lower (higher) than . The reason is that a player's equilibrium e¤ort level depends positively on his own degree of in-group altruism. Indeed, a positive degree of in-group altruism increases the marginal bene…t of exerting e¤ort and has no e¤ect on the marginal cost. [START_REF] Chung | Rent-seeking contests when the prize increases with aggregate e¤ort[END_REF] Consequently, mutating towards in-group altruism (spite), under preference [START_REF] Chung | Rent-seeking contests when the prize increases with aggregate e¤ort[END_REF] Formally, suppose that player (i; j) has robust beliefs and anticipates that the mn 1 other players exert the e¤ort level x. Then, player (i; j)'s subjective utility is

V ij ( ij ) = (1 + ij )p j (X) G(X) (x ij + ij x),
which is continuous and locally concave in x ij (see the proof of Proposition 6). Hence, the …rst-order condition is necessary and su¢ cient for local maximization. Consequently, the impact of a marginal increase in ij on the player (i; j)'s optimal e¤ort level is given by the cross-derivative of V ij ( ij ) with respect to x ij and ij . We have @ [@V ij ( ij ) =@x ij ] =@ ij = [@p j (X) =@x ij ] G(X) + p j (X) G 0 (X), which is clearly strictly positive evolution, must correspond to a higher (lower) level of e¤ort than in the symmetric Nash equilibrium, under strategy evolution.

To summarize, when the group contest is destructive or moderately productive -that is when X -group members are more aggressive than if they were absolute-payo¤ maximizers. When out-group preferences are ignored, this can be viewed as in-group altruism under preference evolution. If a player exerts a higher level of e¤ort, it increases the probability of success of his group to the detriment of the rival groups. If the group contest is destructive, it also decreases the value of the prize for the player and for her teammates. But, it also decreases it for all the members of the rival groups, in addition to decreasing their probability of winning the prize. If the group contest is moderately productive -i.e. if X -preference evolution still leads to in-group altruism, but to a lesser extent than when the group contest is destructive. The reason is that a player's contribution increases the value of the prize for all players, including the members of the rival groups, which counteracts the decrease in their probability of winning the prize.

Symmetrically, the lower ESS e¤ort level when the group contest is quite productivethat is when X -can be viewed as induced by in-group spite. Indeed, in this case, if a player exerts a lower level of e¤ort, it increases his …tness relative to that of his teammates, and it also increases the winning probabilities of the rival groups. According to property (iia) of Proposition 6, the lower ESS e¤ort level can also be interpreted as out-group altruism when in-group preferences are ignored, under the condition that X < n < r. In this case, if a group member expends less e¤ort, the positive e¤ect on the probability of success dominates the negative e¤ect on the value of the prize for the members of the rival groups. Consequently, the out-group members obtain a higher expected material payo¤. The same would apply if X 2 [n ; r) but, again, we cannot demonstrate that an equilibrium in evolutionarily stable preferences always exists in this case, except if the value of the prize is an a¢ ne function. If it is the case, then X < r, and preference evolution leads to out-group altruism for any X (property (iib) of Proposition 6). In general, however, one can have X > r, in which case a lower level of e¤ort decreases the expected material payo¤s of the out-group members despite a higher probability of success. Again, equilibrium existence is not always guaranteed in this case if we ignore in-group preferences. Allowing for both in-group and out-group preferences, all preference combinations can be evolutionarily stable when X > r, except fully altruistic preferences towards both in-group members and out-group members (property (iii) of Proposition 5). 5 The impact of the ' economic environment' [START_REF] Damianov | Asymmetric endogenous prize contests[END_REF] The results about the emergence of evolutionarily stable preference types were framed in terms of the elasticity of the prize with respect to change in the aggregate level of e¤ort, which is itself a function of this level at the equilibrium in evolutionarily stable strategies. Without additional constraints on the G(:) function, we cannot evaluate the impact of a change in the parameters re ‡ecting the 'economic environment'on the evolutionarily stable equilibrium.

when the group contest is productive. Thus, suppose that the prize function G(X) is quasilinear and that, consistently with Assumption 1, it satis…es the following properties.

Assumption 2. Let G(X) = R + F (X) with:

(i) R > 0 and F (0) = 0; (ii) F (X) is twice continuously di¤erentiable for all X 2 (0; W ]; (iii) For all X 2 [0; W ], F (X) satis…es either (iiia) or (iiib) where:

(iiia) F 0 (X) 0 and F 00 (X) 0;

(iiib) F 0 (X) 0, F 0 (X)X > [R + F (X)], and X > , where X = F 00 (X)X=F 0 (X) and r(m 1); (iv) R 2 (maxf0; F (W )g ; W F (W )): [START_REF] Dekel | Evolution of preferences[END_REF] We can now investigate the impact of the initial value of the prize -G(0) = R -that of group size n; and that of the number of groups m; on the evolutionarily stable level of aggregate e¤ort with the help of …gures. [START_REF] Eaton | The evolution of preferences and competition: a rationalization of Veblen's theory of invidious comparisons[END_REF] Figure 1 represents the case of a productive contest, with F (X) satisfying (iiia) of Assumption 2 (together with (i)-(ii)-(iv)). Figure 2 represents the case of a destructive contest, with F (X) being convex and satisfying (iiib) of Assumption 2 (together with (i)-(ii)-(iv)).

INSERT FIGURES 1 & 2

Suppose that players'subjective utilities are based on their own material payo¤s and on those of their teammates only. Figure 1 also shows whether in-group altruism or out-group spite is evolutionarily stable according to values of the parameters re ‡ecting the 'economic environment'. Indeed, observe that (7) can be rewritten as X E = 1=n ; while the elasticity of the prize with respect to change in X at X = X E can be rewritten as X = G 0 (X E )= X E = n G 0 (X E ), with = r(m 1)=(mn 1). Hence, using (i) of Proposition 6, evolutionary pressure on preferences leads to in-group altruism if X or G 0 (X E ) 1=n; and to in-group spite if X or G 0 (X E ) 1=n. Since G 0 (X) = F 0 (X), the vertical dashed line corresponding to X = F 0 1 (1=n) splits the …gure into two regions: one corresponding to in-group spite on the left, and the other corresponding to in-group altruism on the right. When the initial value of the prize is equal to R 1 > 0, the evolutionarily stable level of aggregate e¤ort X E (R 1 ; n) is, from (7), given by the intersection between G 1 (X) and the dashed line passing through the origin with slope (mn 1)=[rn(m 1)]. Preference evolution [START_REF] Dekel | Evolution of preferences[END_REF] Property (iv) ensures that the …nal value of the prize is always strictly positive, for any X 2 [0; W ], and in particular when F (:) is a decreasing function and X = W . This requires a lower bound for R. Property (iv) of Assumption 2 also requires an upper bound for R, which directly follows from property (iv) of Assumption 1. In an additional appendix, I provide closed form solutions for E and X E by using the functional form F (X) = p X with 2 [ 1; 1]. When 0, the group contest is productive and F (:) is concave, while when 0, the group contest is destructive and F (:) is convex. In order to satisfy (iii) and (iv) of Assumption 2 for all 2

[ 1; 1], one must have R 2 ([(1 + 2r) p W ]=2r; W p W ) with W > [(1 + 4r)=2r]
2 , and r > 1= [2(m 1)]. This appendix is available upon request. [START_REF] Eaton | The evolution of preferences and competition: a rationalization of Veblen's theory of invidious comparisons[END_REF] Figure 1 for a productive contest has been provided by a reviewer in his/her report. I am also providing the …gure for a destructive contest, which is actually simpler because, in this case, evolutionary pressure always leads to in-group altruism. Thus, the …gures must be credited to the reviewer. leads to in-group spite in this case. If the initial value of the prize increases from R 1 to R 2 , then it shifts the curve of the prize function G 2 (X) upward. The evolutionarily stable level of aggregate e¤ort is now given by X E (R 2 ; n), which falls into the region of in-group altruism. Now, suppose that group size increases from n to n 0 , then the vertical dashed line delimiting the two regions of altruism and spite within groups moves to the right. At the same time, the slope of the dashed line passing through the origin increases and intersects with G 2 (X) at X E (R 2 ; n 0 ). The level of aggregate e¤ort in evolutionarily stable strategies is thus lower when group size becomes larger, and this level X E (R 2 ; n 0 ) falls, once again, in the (new) region of in-group spite. In contrast, an increase in the number of competing group m (not represented in the …gure) reduces the slope of the dashed line passing through the origin. It increases the equilibrium level of aggregate e¤ort in evolutionarily stable strategies, which can counteract the increase in group size for restoring in-group altruism under preference evolution.

When the contest is destructive, and as shown by …gure 2, the aggregate level of e¤ort in evolutionarily stable strategies is also increasing in the initial value of the prize, decreasing in group size, and increasing in the number of competing groups. The di¤erence is that preference evolution always leads to in-group altruism in this case.

In sum, the evolutionarily stable level of aggregate e¤ort is always increasing in the initial value of the prize, which is rather intuitive because an increase in R automatically increases the stake of the contest, independently of (the impact of) the level of aggregate e¤ort. Contest e¤orts would also increase with R in the symmetric Nash equilibrium. Thus, the (less intuitive) result that an increase in the initial value of the prize can change the evolutionarily stable equilibrium from in-group spite to in-group altruism, when the group contest is productive, re ‡ects the fact that the ESS e¤ort level increases more rapidly with increasing R than the Nash equilibrium e¤ort. Overall, even in the case of a productive contest, in-group altruism can be always evolutionarily stable if the initial value of the prize is su¢ ciently large.

Also, an increase in group size of all groups (for a given number of competing groups) always leads to a decrease in the aggregate and individual levels of e¤ort in evolutionarily stable strategies. The intuition is the following. A larger group size reduces the marginal impact of one's contribution on the probability of success of the group and, hence, on the possibility to increase one's …tness relative to that of out-group members. As group size increases, relative payo¤ considerations within groups become increasingly important for individual …tness. Thus, the evolutionary pressure towards free-riding on others'e¤orts within the group is increased with the number of teammates. And if group size is relatively large, then preference evolution can lead to in-group spite in productive contests, which exacerbates the free-riding incentives within groups, by comparison to what would be expected if group members were purely egoistic.

In contrast, an increase in the number of competing groups (for a given group size) always leads to an increase in the aggregate level of e¤ort in evolutionarily stable strategies, but not necessarily to an increase in the individual e¤ort level. Yet, an increase in the number of groups makes in-group altruism more likely to be evolutionarily stable under preference evolution when the group contest is productive. [START_REF] Eaton | Us'and 'Them': the origin of identity, and its economic implications[END_REF] Indeed, a player's …tness becomes in-creasingly directly connected to the success of his group as the number of competing group increases. Thus, when rivalry between groups becomes more intense, relative payo¤ considerations across groups "take over", thus reducing free-riding incentives as a result of altruistic attitudes towards the members of the same group. [START_REF] Glowacki | The evolutionary anthropology of war[END_REF] 

Conclusion

A large number of experimental studies show that group members expend more e¤ort in group contests compared to what one would expect if group members were adopting the Nash standard of behavior (see, again, Sheremeta, 2018, for a recent survey on experimental research on group contests). One explanation of high collective action in group contests is that group members display parochial altruism. As shown by Konrad and Morath (2012), the combination of in-group altruism and out-group spite in group contests can be obtained as the result of evolutionary pressure on preferences. In this paper, we generalize their analysis by considering that the total value of the prize can increase as well as decrease with the aggregate e¤ort of all groups. The main result is that evolutionarily stable in-group altruism is stronger when the contest is destructive, as in the case of an armed con ‡ict, than when it is productive, as in the case of a patent race. Moreover, when the contest is strongly productive, in-group spite is evolutionarily stable under preference evolution. Finally, the combination of in-group altruism and out-group spite cannot always constitute an equilibrium in evolutionarily stable preferences, when the contest is productive.

This opens new prospects for experimental research on group contests. Indeed, the theoretical analysis provides clear predictions on evolutionarily stable behaviors, by comparison to the predictions implied by the Homo economicus paradigm, whether the prize is exogenous, or endogenous with its value increasing or decreasing with contest e¤orts of all groups. Group members exert more e¤ort than in the Nash equilibrium when the group contest is destructive or moderately productive, while they under-invest in collective action when the group contest is strongly productive. Furthermore, the notion of 'productiveness'of contest e¤orts is relative to other important properties of the group contest. The larger the 'decisiveness parameter'of the contest success function, or the larger the number of competing groups relative to their size, the larger must be the elasticity of the prize with respect to change in the aggregate e¤ort, for making under-investment in collective action (relative to the Nash equilibrium), and in-group spite, evolutionarily stable. However, it is worth recalling that because the Nash equilibrium level of individual e¤ort is decreasing in m (and in n). [START_REF] Glowacki | The evolutionary anthropology of war[END_REF] It is also worth emphasizing out that the evolutionarily stable degree of in-group altruism (or spite) E does not necessarily move in the same direction as the equilibrium level of aggregate e¤ort X E with a change in the parameters re ‡ecting the 'economic environment'. This is because E depends on the elasticity of the prize with respect to change in the aggregate e¤ort, and thus on whether the marginal impact of a player's e¤ort on the value of the prize is, itself, a decreasing or an increasing function. One can show, that in the case of a productive contest, E and X E are both increasing in R if F (:) is concave. However, when the contest is destructive, E is decreasing in R if F (:) is convex (while X E is still increasing in R). Under the condition that the total number of players N = mn remains constant, X E and E also move in the same direction with an increase in group size n; or in the number of competing groups m; when F (:) is increasing and concave, and move in opposite directions, when F (:) is decreasing and convex. This is what I demonstrate in the additional appendix, where I also provide closed form solutions for E and X E when G(X) = R + p X, with 2 [ 1; 1]. Again, this additional appendix is available upon request.

the Nash equilibrium can lead to over-exertion of e¤ort in productive contests, so that ingroup spite can lead to behaviors that are actually closer to the social optimum. Again, this depends on the speci…cations of the contest success function and of the prize function. [START_REF] Güth | Explaining reciprocal behavior in simple strategic games[END_REF] value of the prize is G(X E ) = R= [1 n ]. The elasticity of the prize, evaluated at X E is X = n , which is strictly lower than r; because n < r and < 1. In this case, the secondorder condition for local maximization given by (A23) is always satis…ed because G 00 (:) = 0, X = n < n < r, and [ [m(1 r) + 2r] + 2 X ] < 0. Finally, note that the evolutionarily stable out-group preference parameter is E = [( n 1)(m 1)] = [(mn 1) n(m 1)], which is increasing in . When tends to 1, E tends to (m 1). When tends to 1, we have E = [(n + 1)(m 1)] = [2mn (n + 1)] > 1. 
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 121 Figure 1: Productive contest

For studies on "parochial altruism", see[START_REF] Choi | The coevolution of parochial altruism and war[END_REF],[START_REF] Lehmann | War and the evolution of belligerence and bravery[END_REF], and for a survey, see Rusch (2014),[START_REF] Glowacki | The evolutionary anthropology of war[END_REF], and Rusch and Gravilets (2020). There are also few theoretical analyses of "gene-culture coevolutionary" processes leading to human altruism in group con ‡icts (see, e.g.,Bowles, 

2006;[START_REF] Alger | Evolution of preferences in structured populations: Genes, guns and culture[END_REF]).[START_REF] Abbink | Parochial altruism in intergroup con ‡icts[END_REF] In another paper[START_REF] Cheikbossian | Evolutionarily stable in-group altruism in intergroup con ‡ict over (local) public goods[END_REF], I investigate the evolutionary stability of in-group altruism in group contests for an exogenous prize. As in[START_REF] Eaton | Us'and 'Them': the origin of identity, and its economic implications[END_REF], I consider an in…nite population whose preferences are observable, so that a change in a player's preference type induces changes in other players' equilibrium actions. I show that group members are more likely to be altruistic towards each other under preference evolution when the number of competing groups, and the degree of complementarity between individual e¤orts, are both relatively large.

For early analyses of preference evolution in games between single players, see Bester and Güth (1998), Sethi and Somanathan (2001), Ok and Vega-Redondo, (2001), Dekel et al. (2007), Heifetz et al. (2007), and for a recent survey, see Alger and Weibull (2019). For the evolutionary stability of strategies and preferences in contests between single players, see Eaton and Eswaran (2003), Hehenkamp et al. (2004), and Leininger (2009).

For an axiomatization of group contest success functions, see Munster (2009).

The sign of X 1 = [G 0 (X)X G(X)]=G(X) is the same as the sign of its numerator, which is decreasing in X. Indeed, the derivative of the numerator with respect to X is given by G 00 (X)X, which is negative, under the weak concavity assumption of the G(:) function in the case of a productive contest. The numerator of X 1 thus reaches a maximum in X = 0, in which case it becomes G(0) < 0, under property (i). This implies that X 1 < 0.

This condition is always satis…ed when the G(:) function is decreasing and concave since then X > 0.

(X) is a decreasing function. We have 0 (X) = [G 0 (X)X G(X)] =X 2 , which is always negative. Indeed, when the contest is destructive, we have G 0 (X) < 0. When the contest is productive, the numerator of 0 (X) is also negative under the concavity assumption of the G(:) function (see Footnote 5).

I am indebted to an anonymous reviewer for calling my attention to this possibility. Also, this paragraph directly follows from the detailed comments of the reviewer in his/her report.

However, it does not necessarily reduce their …tness relative to that of the mutant player. This is because a lower level of e¤ort also decreases the expected material payo¤ of the mutant player in absolute terms (simply because he does not play his best response to other players' strategies). We must remember that an EES-player does not maximize his material payo¤, but the di¤erence between his material payo¤ and the average material payo¤ of the other players.

In a previous version of this article, I ignored preferences towards the out-group members. The general analysis of the evolutionarily stability of both in-group and out-group preferences in the group contest follows the detailed comments of an anonymous reviewer. Following this general analysis, I will restrict the set of admissible preference types that are subject to evolutionary pressure.

We exclude the case ij 1 since then it would prevent positive levels of e¤orts in a symmetric equilibrium if ij = 0. However, degrees of altruism ij 1 may exist, for instance, between partners. Also, at this stage, we do not impose restrictions on L or L (other than their signs).

For a detailed discussion of the properties of evolutionarily stable preferences with robust beliefs, see[START_REF] Konrad | Evolutionarily stable in-group favoritism and out-group spite in intergroup con ‡ict[END_REF].

This problem of underdetermination does not occur in[START_REF] Eaton | Us'and 'Them': the origin of identity, and its economic implications[END_REF] because they consider a "production and con ‡ict" model, where each player exerts two types of e¤ort: a processing e¤ort and an appropriative e¤ort. However, they do not obtain closed-form solutions for their model, and rely on numerical simulations for endogenizing the utility weights.

This Section builds on the detailed comments of an anonymous reviewer. I am indebted to him/her for the results, presented in this Section.

A decrease in the individual level of e¤ort in evolutionarily stable strategies with an increase in m is not incompatible with a shift from in-group spite to in-group altruism under preference evolution. This is

For example, using the standard Tullock (1980) lottery contest, with r = 1, there is always over-exertion of e¤ort in the Nash equilibrium, for any prize function satisfying Assumption 1 (see Footnote 8).

Appendix

A.1 Proof of Proposition 1

In a Nash equilibrium, each player (i; j) chooses her e¤ort x ij to maximize her material payo¤ ij given by (2). The …rst-order condition for maximizing (2) with respect to x ij , for i 2 I = f1; 2; :::; ng and j 2 J = f1; 2; :::; mg, is

The …rst-order conditions only determine group expenditures so that there can exist multiple asymmetric equilibria with players expending di¤erent levels of e¤ort. We focus, however, on a symmetric equilibrium such that all members of all groups exert the same level of e¤ort. In a symmetric equilibrium, (A1) becomes

This condition can be rewritten as r(m 1)G(X) + XG 0 (X) mX = 0. Rearranging yields r(m 1) [G(X) X] + X [G 0 (X) 1] X(m 1)(1 r) = 0. Dividing by X and rearranging again, we obtain (3). Now, di¤erentiating (A2) with respect to X, we obtain

where X = G 0 (X)X=G(X).

When G 00 (X) 0; the above expression is always strictly negative, because X < 1 and G(X) > 0 for all X 2 [0; W ]. Now, suppose that the contest is destructive -i.e. X 0and that G 00 (X) 0. Then, the expression in (A3) is strictly negative if

where X = G 00 (X)X=G 0 (X). A su¢ cient condition for inequality (A4) to be satis…ed, for G 0 (X) 0 (implying X 0) and G 00 (X) 0, is that X > r(m 1); as stated in property (iiib) of Assumption 1. Thus, under Assumption 1, the expression in (A3) is always strictly negative. It follows that the left-hand term of (A2) is a decreasing function of X. This term can be rewritten as

In X = 0, it approaches in…nity since, under Assumption 1, the numerator is a strictly positive …nite number. Indeed, property (i) of Assumption 1 states that G(0) > 0; and according to property (iii) the term in [:] is a strictly positive …nite number as well, whether the contest is productive (and G(X) satis…es (iiia)) or destructive (and G(X) satis…es (iiib)). In X = W , the term in (A5) is also strictly lower than 1 because [r(m 1) + X ] < mW=G(W ). The left-hand term of this inequality is strictly lower than m for r 1 (given that X < 1), while the right-hand term is greater than m since W=G(W ) 1. Indeed (X) = G(X)=X is decreasing in X; and thus 1= (X) = X=G(X) is increasing in X. From property (iv) of Assumption 1, X 2 (0; W ] is such that ( X) = 1= ( X) = 1, and we have 1= (W ) 1 because W X. In conclusion, there exists a unique value of aggregate e¤ort that satis…es (A2).

A.2 Proof of Proposition 2

Calculating the …rst derivative of ( 6) with respect to x M , we obtain

Rearranging this expression gives

ESS requires identical behavior of contestants. Thus, evaluating this expression at x M = x E , and setting it to 0; yields (7), which is the only interior solution candidate. Di¤erentiating the above expression with respect to x M , we …nd

When the prize is independent of X -implying G 0 (:) = G 00 (:) = 0 -the second derivative of (6) with respect to x M is given by the …rst term of this expression, which is strictly negative for any x E > 0. When the prize is endogenous, we need to rely on the weaker condition of local stability. At the symmetric solution x M = x E , the above expression becomes

where

A su¢ cient condition for the existence of a local equilibrium in evolutionarily stable strategies is that (A9) is strictly negative or

which is always satis…ed for G 0 (:) 0. If, however G 0 (:) 0, one must have

which is always veri…ed because the right-hand term of this inequality is always greater than 1 for any m 2, and because X is always strictly lower than 1.

A.3 Proof of Proposition 4

Suppose that the mutant player M believes that all other players choose x i = x. Then, player M , endowed with the preference parameters ( M ; M ), chooses x M to maximize

The …rst derivative of V M (a M ; M ) with respect to x M is given by

Evaluating this expression at x M = x, and setting it to 0, we obtain

where X = mnx, (X) = G(X)=X, and X = G 0 (X) X=G(X). This is the solution candidate for a local Nash equilibrium with robust beliefs. Solving in ( M ; M ) for the equality between (X) given by (A14) and (X E ) given by ( 7), we obtain the set of ( E ; E ), as characterized by (10). Now, we verify equilibrium existence. The second derivative of V M ( M ; M ) with respect to x M is given by

Evaluating this last expression at x M = x with X = mnx, and rearranging the …rst two terms, gives

Evaluating the above expression at ( M ; M ) = E ; E , as given by ( 10), yields

where = r(m 1)=(mn 1).

A su¢ cient condition for the existence of a local equilibrium in evolutionarily stable preferences with robust beliefs is that the expression in (A17) is strictly negative. The second term is negative if G 00 (:) 0 and E > n =r, hence the assumption on L. Again, we also have [ [m(1 r) + 2r] + 2 X ] < 0 (see (A11)). Thus, the …rst term of (A17) is strictly negative if n (m 1)

(by recalling that G(:) is always strictly positive). This inequality is always veri…ed if either X or E is negative. If X and E are both negative, then the inequality is also always satis…ed for E > n =r since X > r(m 1) from property (iiib) of Assumption 1. If X and E are both positive, then E X reaches a maximum when X tends to 1: It follows that the …rst term of (A17) is strictly negative if E < n (m 1), hence the assumption on L:

A.4 Proof of Proposition 6 (i) Suppose …rst that ij = 0 for all (i; j) 2 I J. In this case, (A14) becomes

Solving in 1 + M for the equality between (X) given by (A18) and (X E ) given by (7), we obtain 1 + E given by (11). Using (A16), the second-order condition for local maximization becomes

This condition is always satis…ed for G 00 (:) 0 because [ [m(1 r) + 2r] + 2 X ] < 0, and G(:) > 0.

Suppose now that the group contest is destructive and G 00 (:) 0. In this case, the …rst term is negative, while the second term is positive. (A19) can be rewritten equivalently as

where X = G 00 (X)X=G 0 (X). Under (iiib) of Assumption 1, we have X > r(m 1) and thus (A20) is always veri…ed for X 0.

(iia) Suppose now that ij = 0 for all (i; j) 2 I J. In this case, (A14) becomes

Solving in M for the equality between (X) given by (A21) and (X E ) given by ( 7), we obtain E given by (12). Using (A16), the second-order condition for local maximization becomes

Evaluating the above expression at M = E = ( X )=(r X ), the condition is

We have [ [m(1 r) + 2r] + 2 X ] < 0 and (r ) > 0. If the contest is destructive implying that " X 0, and if G 00 (:) 0, the inequality is clearly satis…ed. Now, consider that the contest is productive, implying that " X 0 and G 00 (:) 0. If X < n < r, the above inequality is also clearly satis…ed. If X 2 [n ; r), then the …rst term of (A23) is positive, while the second term is negative. If X > r, then the …rst term is negative, while the second term is positive. If X = r, the left-hand-term of inequality (A23) is not de…ned. Thus, we cannot guarantee the existence of a (local) equilibrium in evolutionarily stable preferences with robust beliefs for X n . Finally, note that E , given by (12), is increasing in X , and that E 2 ( n =r; (m 1)) for X 2 ( r(m 1); n ).

(iib) If Assumption 1 holds with G 00 (X) = 0, then G(X) is an a¢ ne function of the following form G(X) = R + X, with 2 ; , < 0, and > 0. In order to satisfy (i) of Assumption 1, one must have R > 0. According to (iii) of Assumption 1, one must also have G(X) > 0 for all X 2 [0; W ], which implies that > R=W . Also, according to (iv) of Assumption 1, one must have X = R=( 1) 2 (0; W ], which implies that < 1 and W > R, and hence > 1. Using (7), we have X E = n R= [1 n ], and the equilibrium