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Abstract: This article examines the evolutionary stability of other-regarding preferences
in a group contest for a prize, which is endogenously determined. In a destructive contest,
such as war, contest e¤orts of all groups decrease the value of the prize. In contrast, in a
productive contest, such as a patent race, contest e¤orts of all groups increase the value of the
prize. The indirect evolutionary approach allows to endogenize players�preferences, that is,
the utility weights given by a group member, in her subjective utility function, to the mate-
rial payo¤s of in-group and out-group members. After characterized the set of evolutionarily
stable preference types, I show that the evolutionary stable degree of in-group altruism is
always stronger when the group contest is destructive than when it is productive. Moreover,
when the group contest is strongly productive, preference evolution leads to in-group spite.
However, a smaller group size and a larger number of competing groups makes this outcome
less likely.
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1 Introduction

From ancient times, intergroup competition and con�ict have been ubiquitous in human
societies. Thus, they have been extensively studied within di¤erent disciplines, including
social psychology (Böhm et al., 2020), political science (Lopez and Johnson, 2020), and
economics (Kimbrough et al., 2020). In particular, early studies in social psychology have
pointed out that in-group favoritism can emerge in intergroup con�ict even though groups are
not formed according to some intrinsic characteristics, but by random assignment (Tajfel and
Turner, 1979; Tajfel, 1982). More recent experimental works by social psychologists show, in
simple team games, that intergroup competition improves coordination within the group and,
hence, enhances group e¤ort (see, e.g., Rapoport and Bornstein, 1987, 1989; Bornstein, 1992,
2003; Bornstein et al., 2002). Economists have also conducted experimental studies with
monetary incentives, and generally conclude that subjects over-contribute to group e¤ort in
group contests, compared to the predictions implied by the Homo economicus paradigm (see,
e.g., Abbink et al., 2010, 2012; and for a survey, see Sheremeta, 2018).
While there is an important literature in human evolutionary biology that explains how ge-

netic relatedness, or kinship, can result in "parochial altruism" �the combination of in-group
altruism and out-group hostility �in the context of warfare, there are very few theoretical
analyses of the evolutionary stability of non-kin altruism within competing groups.1 Eaton
et al. (2011) analyze in-group favoritism and out-group spite by using a "guns versus butter"
model, where groups compete for a common access resource that is processed to produce a
consumption good. Players�preferences are observable and population is in�nite. They show
(numerically) that intergroup hostility falls, while intragroup solidarity rises as the resource
becomes more abundant. Konrad and Morath (2012) analyze the evolutionary stability of
in-group favoritism and out-group spite in a model of group contest for an exogenous prize.
The population is �nite, and players�preferences are private information. Thus, they in-
troduce the concept of "robust beliefs" such that any player with a certain preference type
believes that all other players are of the same type (and have the same "robust beliefs"). In
this context, they characterize the set of evolutionarily stable preference types, which involve
a linear combination of the two parameters re�ecting in-group altruism and out-group spite,
with the two traits being perfect substitutes.
In this paper, I also analyze the evolutionary stability of non-kin altruism in group con-

tests, but I consider that the value of the contested prize changes with the aggregate e¤ort of
all groups.2 Indeed, although the �xed-value assumption appears to be reasonable in some
speci�c contexts �such as in the case of lobbying competition for quotas �it is much more
questionable in a variety of real-world situations. On the one hand, intergroup con�ict can
reduce the value of the contested prize. The group contest is thus destructive. One can

1For studies on "parochial altruism", see Choi and Bowles (2007), Lehmann and Feldman (2008), and
for a survey, see Rusch (2014), Glowacki et al. (2020), and Rusch and Gravilets (2020). There are also few
theoretical analyses of "gene-culture coevolutionary" processes leading to human altruism in group con�icts
(see, e.g., Bowles, 2006; Alger et al., 2020).

2In another paper (Cheikbossian, 2021), I investigate the evolutionary stability of in-group altruism in
group contests for an exogenous prize. As in Eaton et al. (2011), I consider an in�nite population whose
preferences are observable, so that a change in a player�s preference type induces changes in other players�
equilibrium actions. I show that group members are more likely to be altruistic towards each other under
preference evolution when the number of competing groups, and the degree of complementarity between
individual e¤orts, are both relatively large.
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think, for example, of a tribal war for land and natural resources that are damaged by the
con�ict, thus diminishing their economic value for the victorious tribe. On the other hand,
intergroup competition can result in wealth creation, thus increasing the value of the prize.
The group contest is thus productive. One can think, for example, of R&D investments to
obtain a monopoly right, or even to the competition in medical sciences and biology between
research teams for �nding a vaccine. Research e¤orts by di¤erent teams produce knowledge
externalities, that can ultimately bene�t the research team(s) that successfully developed the
vaccine.
The equilibrium concept is that of Evolutionarily Stable Strategies, introduced by evolu-

tionary biologists Maynard Smith and Price (1973), and adapted to the case of �nite popu-
lation by Scha¤er (1988). An ESS is such that it cannot be invaded by another strategy in
the sense that if the whole population of players adopts it, then, there is no other strategy
that a player could use for obtaining a higher relative payo¤ or �tness.
In group contests, the evolutionary success of an individual player depends on his material

payo¤ relative, not only to the material payo¤s of his teammates, but also relative to the
material payo¤s of out-group members. If, for instance, a player increases his contribution to
collective e¤ort above the level corresponding to sel�sh behavior, it increases the probability
of success of his group to the detriment of the rival groups and, hence, it can increase his
�tness relative to that of out-group members. However, it also decreases the player�s �tness
relative to that of his teammates because they bene�t from the increase in the probability
of success of the group, without having exerted additional e¤ort. Overall, as shown by
Konrad and Morath (2012), group members expend more e¤ort in the evolutionarily stable
equilibrium than in the standard Nash equilibrium when the value of the prize is constant.
I demonstrate that this result still holds when the group contest is destructive or when it
is productive, provided the elasticity of the prize, with respect to change in the aggregate
e¤ort of all groups, is su¢ ciently small. If, however, the group contest is quite productive,
in that the elasticity of the prize is relatively large, group members exert less e¤ort in the
evolutionarily stable equilibrium, than if they were to maximize their material payo¤ only.
Next, I use the indirect evolutionary approach, pioneered by Güth and Yaari (1992), for

endogenizing players�preferences. In other words, evolution does not play directly at the level
of strategies, but indirectly at the level of preferences, which determine players�actions and, in
turn, individual material payo¤.3 Following Konrad and Morath (2012), I also consider that
players have "robust beliefs" about others�preferences, and then determine which objective
function(s) can achieve the equilibrium level of e¤ort in evolutionarily stable strategies. This
approach has the advantage of interpreting evolutionarily stable behaviors as the result of
evolutionarily stable interdependent preferences of conscious and rational players.
Speci�cally, the preference type of a player is a couple of parameters, corresponding to

the utility weights given by the player, in his subjective utility, to the material payo¤s of his
teammates and to the material payo¤s of the members of the rival groups. I �rst character-
ize the set of evolutionarily stable preference types without restricting the signs of the two
preference parameters in any way. I then show that several combinations of in-group altru-

3For early analyses of preference evolution in games between single players, see Bester and Güth (1998),
Sethi and Somanathan (2001), Ok and Vega-Redondo, (2001), Dekel et al. (2007), Heifetz et al. (2007), and
for a recent survey, see Alger and Weibull (2019). For the evolutionary stability of strategies and preferences
in contests between single players, see Eaton and Eswaran (2003), Hehenkamp et al. (2004), and Leininger
(2009).
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ism/spite and out-group altruism/spite can constitute an equilibrium in evolutionarily stable
preferences, whether the contest is destructive or productive. Interestingly, however, when
the elasticity of the prize is su¢ ciently large, but not too large relative to the �decisiveness
parameter�of the contest success function, parochial altruism �i.e. in-group altruism and
out-group spite �cannot be an evolutionarily stable preference type.
Next, I assume that the subjective utility function of each player is based on his own

material payo¤, and on the material payo¤s of either his teammates, or his opponents. When
preferences towards the out-group members are ignored, the evolutionarily stable utility
weight given by a group member to the material payo¤s of his teammates is decreasing in
the elasticity of the prize with respect to change in the aggregate e¤ort of all groups. If
this elasticity is negative, the group contest is destructive and preference evolution leads
to a positive degree of in-group altruism, that induces a higher level of e¤ort than in the
symmetric Nash equilibrium. This, in turn, aggravates the destructiveness of the con�ict
between groups. When the elasticity of the prize is positive, but su¢ ciently small, group
members are still altruistic towards each other under preference evolution. However, the
evolutionarily stable degree of in-group altruism is lower than when the group contest is
destructive. Finally, when the elasticity of the prize is relatively large, then in-group spite
emerges in the equilibrium in evolutionarily stable preferences, thus resulting in a lower level
of aggregate e¤ort than in a monomorphic population of sel�sh players. I also investigate the
symmetric situation where in-group preferences are ignored, and explain that an equilibrium
in evolutionarily stable out-group preferences may fail to exist in this case.
Finally, to obtain additional results on the impact of the �economic environment�on the

evolutionarily stable equilibrium, I consider that the prize function is quasi-linear in the
initial value of the prize, and focus on evolutionarily stable in-group preferences in the case
of productive contests. I then show that a larger group size makes in-group spite more likely
to emerge under preference evolution. In contrast, a stronger rivalry in the environment, as
measured by the number of competing groups, or a larger initial prize value, makes in-group
altruism more likely to be evolutionarily stable.
The basic framework is a simple group contest game (see Katz et al., 1990; Nitzan, 1991;

and for a survey, see Konrad, 2009). The case where the value of the prize is endogenous
has been investigated in contests between single players. Chung (1996) considers the case
of productive contests, and shows that the amount of aggregate e¤ort can be larger in the
Nash equilibrium than in the social optimum. Sha¤er (2006) considers both productive and
destructive contests with symmetric players, while Chowdhury and Sheremeta (2011), Hirai
and Szidarovszky (2013), and Damianov et al. (2018), extend the analysis to the case of
asymmetric (productive and destructive) contests between single players. In the present
analysis, I consider contests, not between single agents, but between groups of players. More
importantly, I analyze the evolutionary stability of non-kin altruism within groups in group
contests with endogenous prizes.
This article is organized as follows. Section 2 presents the model of a group contest with

an endogenous prize and derives the Nash solution. Section 3 characterizes evolutionarily
stable strategies in the group contest. In Section 4, I introduce the indirect evolutionary
approach for characterizing evolutionarily stable preferences. In Section 5, I suppose that
the value of the prize is a quasi-linear function, and analyze the impact of the �economic
environment�on the evolutionarily stable equilibrium. Finally, Section 6 concludes.
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2 The group contest game

I consider a �nite number of players N who are randomly partitioned into m groups of
n players (with n � 2 and m � 2). The groups compete for a prize G. Let (i; j) for
i 2 I = f1; 2; :::; ng and j 2 J = f1; 2; :::;mg, denote member i of group j. xij � 0 is
the amount of e¤ort expended by player (i; j), and I assume that each player has the same
�nite endowment w, so that xij � w. Let W = Nw be the aggregate endowment, and
Xj =

Pn
i=1 xij 2 R+ be the total e¤ort of group j. The probability of winning the prize

for each group depends on its collective e¤ort relative to the collective e¤orts of competing
groups according to a Contest Success Function (CSF), which has the ratio-form. Speci�cally,
given the vector of group e¤orts X � (X1; ::; Xm) 2 Rm+ , the winning probability of group j,
pj : Rm+ ! [0; 1], is

pj (X) =

8>>>><>>>>:
Xr
j

Xr
j +

Xm

k 6=j
Xr
k

if Xr
j +

Xm

k 6=j
Xr
k 6= 0;

1

m
otherwise,

(1)

where r 2 (0; 1] is a �decisiveness parameter�that measures the responsiveness of the proba-
bility of winning to the ratio of group e¤orts.4

In case of winning, each member receives an equal amount of the prize G that depends on
the aggregate e¤ort X =

Xm

j=1
Xj. I assume that G(X) satis�es the following properties.

Assumption 1.

(i) G (0) is strictly positive and bounded;
(ii) G(X) is twice continuously di¤erentiable for all X 2 (0;W ];
(iii) For all X 2 [0;W ], G(X) > 0 and G(X) satis�es either (iiia) or (iiib) where:
(iiia) G0(X) � 0 and G00(X) � 0;
(iiib) G0 (X) � 0; �X > � and �X > �, where �X = G0(X)X=G(X), �X = G00(X)X=G0(X)

and � � �r(m� 1);
(iv) There exists �X 2 (0;W ] such that G

�
�X
�
� �X = 0.

Property (iii) states that G(X) is always strictly positive, and allows for both productive and
destructive contests, that is, for situations where the value of the prize increases or decreases
with the aggregate e¤ort of all groups. If the group contest is productive �i.e. G0(X) � 0 �it
is assumed that the value of the prize increases with X at a decreasing rate �i.e. G00(X) � 0.
This implies that the elasticity of the prize with respect to change in the aggregate e¤ort �
denoted by �X �is strictly lower than 1, for any X 2 [0;W ].5
When the group contest is destructive �i.e. G0(X) � 0 �the elasticity �X is negative,

and the existence of a symmetric interior Nash equilibrium in contest e¤orts, and of an
4For an axiomatization of group contest success functions, see Munster (2009).
5The sign of �X�1 = [G0(X)X�G(X)]=G(X) is the same as the sign of its numerator, which is decreasing

in X. Indeed, the derivative of the numerator with respect to X is given by G00(X)X, which is negative,
under the weak concavity assumption of the G(:) function in the case of a productive contest. The numerator
of �X � 1 thus reaches a maximum in X = 0, in which case it becomes �G(0) < 0, under property (i). This
implies that �X � 1 < 0.
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evolutionarily stable equilibrium, requires that this elasticity is not "too" small (or "too"
large in absolute value) �i.e. �X > � (with � < 0). However, unlike the case of a productive
contest, we do not restrict the G(:) function to be always a concave function. It can be
a convex function as well � i.e. G00(X) � 0 �which may be more plausible in the case of
destructive con�icts about natural resources. Yet, it must not be "too convex" for equilibrium
existence. It boils down to a lower bound, which is negative, on the elasticity of the G0(:)
function with respect to change in the aggregate e¤ort. Speci�cally, this elasticity �denoted
�X �must have the same lower bound than the elasticity of the G(:) function itself with
respect to X �i.e. �X > � (with � < 0).6

Finally, property (iv) is similar to Assumption 3 in Chung (1996), and is also required for
the existence of a symmetric interior Nash equilibrium. It simply states that there exists a
�nite and strictly positive level of aggregate e¤ort �X; such that social welfare is equal to 0.
Together with (iii), it implies that social welfare is strictly positive for any level of aggregate
e¤ort below �X �i.e. G(X)�X > 0 for X 2

�
0; �X

�
.

Note also that G(X) depends on the number of competing groups m and on group size
n, because the aggregate e¤ort X depends on the total number of players involved in the
contest. Furthermore, in group contests, a distinction must be made between the total value
of the prize and the per-capita value of the prize for the winning group. The per-capita value
of the prize can also depend directly �and negatively �on group size according to the degree
of rivalry of the prize. In order to save on notation, I shall simply write G(X) for the value
of the prize received by each member of the winning group, with the understanding that this
per-capita value can also, in general, depend directly on group size n.
Finally, I assume that all players incur a linear cost function of e¤ort. As a result, the

expected material payo¤ of player (i; j) 2 I � J is given by �ij : R+ � [0; 1]� [0; w]! R+,
that is,

�ij = pj (X)G (X)� xij. (2)

Let us �rst characterize the equilibrium induced by Nash behavior. One can establish the
following Proposition.

Proposition 1. Under Assumption 1, there exists a unique symmetric pure-strategy Nash
equilibrium. The equilibrium aggregate e¤ort XN must satisfy

(m� 1)
�
r�(XN)� 1

�
+ [G0(XN)� 1] = 0; (3)

where �(XN) � G(XN)=XN .7

Proof. Appendix A1. �

It is worth emphasizing that, due to the public-good nature of group contests, there exists a
continuum of (asymmetric) pure-strategy Nash equilibria. However, we consider the unique
symmetric equilibrium such that all members of all groups exert the same level of e¤ort.

6This condition is always satis�ed when the G(:) function is decreasing and concave since then �X > 0.
7�(X) is a decreasing function. We have �0(X) = [G0(X)X �G(X)] =X2, which is always negative.

Indeed, when the contest is destructive, we have G0(X) < 0. When the contest is productive, the numerator
of �0(X) is also negative under the concavity assumption of the G(:) function (see Footnote 5).
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Also, the Nash equilibrium is, in general, ine¢ cient. This is obvious when the group
contest is destructive. When the contest is productive, the (in-)e¢ ciency of contest e¤orts is
more ambiguous because, as �rst pointed out by Chung (1996), there are two opposing e¤ects.
On the one hand, there is a negative rent-seeking �or unproductive �e¤ect in that all groups
expend resources to increase their probability of winning the prize, but neutralize each other
in the symmetric equilibrium. On the other hand, there is a positive �or productive �e¤ect
in that the value of the prize increases with the aggregate e¤ort of all groups. Consequently,
in productive contests, the Nash equilibrium can generate too much or too low amounts of
aggregate e¤ort compared to the social optimum.8

3 Evolutionarily stable strategies

Let us now determine which level of individual e¤ort is an evolutionarily stable strategy
(ESS) by using Scha¤er (1988)�s de�nition of ESS for �nite populations, and adapted to
group contests by Konrad and Morath (2012). Suppose that, initially, all players adopt the
same strategy by expending the same amount of e¤ort x. A mutant strategy xM 6= x adopted
by a single player can invade x, if the material payo¤of the mutant player using xM is strictly
larger than that of the other players using x. A strategy xE 2 [0; w] is an ESS, if it cannot
be invaded by any other strategy. As already mentioned, this equilibrium concept originates
from theoretical biology. The underlying justi�cation is that, in the dynamic process of
mutations and of adjustments to ESS (not modeled here), more successful strategies have an
advantage in reproducing, thus leading to the extinction of less successful strategies. And,
in an economic context, success is simply identi�ed with material payo¤.
Let �M(xM ;xE�M) be the expected material payo¤ of the mutant player who exerts an

amount of e¤ort xM 2 [0; w], given that all other players exert the e¤ort level xE. We have

�M(xM ;x
E
�M) =

�
xM + (n� 1)xE

�r
[xM + (n� 1)xE]r + (m� 1) [nxE]r

G(xM ;x
E
�M)� xM : (4)

Similarly, let ��M(xM ;xE�M) be the expected material payo¤ of a player exerting the e¤ort
level xE, given that mn � 2 other players also spend xE; and that there is one mutant
player expending an amount of e¤ort xM . Each player expending xE has a probability
(n�1)=(mn�1) of being matched with the mutant player in the same group, and a probability
n(m � 1)=(mn � 1) of belonging to a group with all players expending xE. Therefore, we
have

��M(xM ;x
E
�M) =

n� 1
mn� 1

" �
xM + (n� 1)xE

�r
[xM + (n� 1)xE]r + (m� 1) [nxE]r

G(xM ;x
E
�M)� xE

#
8Speci�cally, the socially e¢ cient level of aggregate e¤ort is X� � argmaxX G(X)�X, and thus satis�es

G0(X�) = 1. Using (3), the Nash equilibrium is e¢ cient �i.e. XN = X� �when r = r� with r� = 1=�(X�) =
X�=G(X�) 2 (0; 1). Furthermore, as shown in the proof of Proposition 1, the left-hand term of Eq. (3) is
decreasing in X, and is equal to 0 for X = XN . Hence, if r > r�, the left-hand term of Eq. (3) becomes
strictly positive � i.e. (m � 1) [r�(X�)� 1] > 0 �which implies that X� < XN , because �(:) and G0(:)
are decreasing functions. A symmetric reasoning applies for r < r�. In conclusion, if r > r� (r < r�) the
aggregate e¤ort in the Nash equilibrium is greater (lower) than the e¢ cient level in the case of a productive
contest (see also Chung, 1996).
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+
n(m� 1)
mn� 1

" �
nxE

�r
[xM + (n� 1)xE]r + (m� 1) [nxE]r

G(xM ;x
E
�M)� xE

#
: (5)

For xE to be an ESS, one must have �M(xM ;xE�M) � ��M(xM ;xE�M) for all xM 2 [0; w]. An
alternative equivalent de�nition of ESS is as follows:

De�nition 1. Let xE�M be the vector of e¤orts of all mn�1 players �other than the mutant
player M �who all expend the e¤ort level xE 2 [0; w]. Then, xE is an evolutionarily stable
strategy (ESS) if it is a solution to:

Max
xM

�M(xM ;x
E
�M)� ��M(xM ;xE�M); (6)

for xM 2 [0; w].

Thus, if all players choose xE, a mutant player cannot obtain a strictly higher relative payo¤
than ESS players by choosing a di¤erent strategy xM 6= xE. In other words, we search for an
evolutionarily stable strategy xE that is a solution of (6) for all xM 2 [0; w], in which case (6)
as a function of xM would reach a global maximum at xM = xE:When the prize is exogenous
and is independent of players�e¤orts, such an ESS exists.9 When the prize is endogenous
and depends on the aggregate e¤ort of all groups, we can show that an ESS still exists on
the condition that we use the restriction of local stability, as introduced by Alós-Ferrer and
Ania (2001). Thus, let us introduce the following de�nition:

De�nition 2. xE is a locally evolutionarily stable strategy (ESS) if it is a solution of (6)
for xM in some neighborhood of xE:

In other words, xE is locally evolutionarily stable if (6) as a function of xM reaches a local
maximum at xM = xE. This de�nition of local ESS di¤ers from what Scha¤er (1988) calls a
�playing the �eld ESS�. The requirement of local stability is however su¢ cient if we consider
that the evolutionary process is such that mutating players enter the game with similar �but
slightly deviant �behaviors compared to the incumbent behavior. One can indeed imagine
that behaviors are driven by social (or group) norms that change gradually, thus preventing
too deviant behaviors.
I can now state the following result.

Proposition 2. Under Assumption 1, there exists a unique locally ESS xE; and it is char-
acterized by

�(XE) =
mn� 1
rn(m� 1) ; (7)

where �(XE) � G(XE)=XE, with XE = mnxE.

Proof. Appendix A2. �
9When G0(X) = 0, it can be veri�ed that the second derivative of �M (xM ;xE�M )���M (xM ;xE�M ) with

respect to xM is strictly negative for any xE > 0 (see the proof of Proposition 2). Furthermore, xE = 0
cannot be an ESS since then �M (xM ;xE�M ) � ��M (xM ;xE�M ) becomes strictly positive by expending an
arbitrarily small amount xM .
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Under Assumption 1, �(X) is decreasing in X; whether the contest is productive or de-
structive (see Footnote 7). Consequently, xE and XE are both increasing in r, because the
right-hand term of (7) is decreasing in r. Again, this parameter is a measure of the sensi-
tivity of the probability of winning the contest to the ratio of group e¤orts. As r increases,
the contest technology becomes more responsive to any di¤erences in group e¤orts. Thus,
the result that the evolutionarily stable equilibrium level of e¤ort increases with r is very
intuitive.
One can also observe that the right-hand-term of (7) is decreasing in the number of

competing groups m, implying that XE is increasing in m. The individual level of e¤ort does
not, however, necessarily increase in m; because xE = XE=mn. Note, also, that the right-
hand term of (7) is increasing in group size n. Furthermore, recall that the per-capita value
of the prize G(:) corresponds to the total value of the prize when it has the characteristics of
a pure public good, while it decreases directly with n when it is (at least partially) private.
Therefore, �(:) can be a decreasing function of n. Since it is also decreasing in X, it must be
the case that the aggregate e¤ort XE, in evolutionarily stable strategies, decreases as group
size n increases (while the aggregate e¤ort is independent of group size in the symmetric
Nash equilibrium, as shown by (3)). Obviously, it implies that the individual level of e¤ort
xE is also decreasing in n. I shall return to the e¤ects of the number of competing groups
and group size in Section 5.
The next Proposition compares the aggregate level of e¤ort induced by ESS with that

when players adopt the Nash standard of behavior.

Proposition 3. Let � = r(m � 1)=(mn � 1) < r and let �X = G0(XN)XN=G(XN), with
XN implicitly given by (3). If �X < � (�X > �), then XE, implicitly given by (7), is strictly
higher (lower) than XN , and XE = XN if �X = �.

Proof. (3) can be rewritten as �
�
XN

�
= m= [r(m� 1) + �X ] and �(XE) is given by (7).

We have that �
�
XN

�
T �

�
XE
�
as �X S �. �(:) being a decreasing function, we thus have

XE T XN as �X S �. �

The reason for which behaviors, induced by the ESS, deviate to those in the Nash equilibrium
is that a player�s �tness is based on relative payo¤s. If starting with a monomorphic pop-
ulation of players exerting the Nash equilibrium level of e¤ort, a mutation occurs with one
player exerting a (slightly) higher level of e¤ort, it increases the winning probability of his
group and induces a direct �tness cost to the player. The higher probability of success also
bene�ts the mutant�s teammates, although they did not bear the cost of the additional e¤ort.
Consequently, it increases their �tness relative to that of the mutant player, independently
of whether the group contest is destructive or productive.
However, the additional contribution of the mutant player also decreases the probability

of success for the competing groups. If, the contest is destructive, it decreases the value of the
prize for all players, including out-group members. In this case, the additional contribution
of the mutant player decreases both the probability of success and the value of the prize for
the members of the rival groups, thus decreasing their expected material payo¤. Therefore, it
increases the mutant player�s �tness relative to that of out-group members. In sum, if starting
with a population of sel�sh players, one player exerts a higher level of e¤ort, it makes the
player worse o¤ relative to his teammates, but better o¤ relative to his opponents in the

9



group contest. Overall, e¤orts are higher in the ESS than in the symmetric Nash equilibrium
when the group contest is destructive. In other words, relative payo¤ considerations across
groups dominate those within groups.
Now, consider that the group contest is productive. In this case, the higher level of e¤ort

exerted by the mutant player has two countervailing e¤ects on the expected material payo¤
of the members of the rival groups. On the one hand, it decreases their probability of winning
the contest but, on the other hand, it increases the value of the prize if they win the prize.
However, according to Proposition 3, if the group contest is moderately productive �that is
if �X � � �evolutionary pressure still leads to higher levels of e¤ort than in the symmetric
Nash equilibrium. This is because a higher level of e¤ort still improves one�s �tness relative
to out-group members by more than it decreases one�s �tness relative to in-group members.
If, however, the group contest is quite productive �that is if �X � � �group members

exert less e¤ort in the (locally) evolutionarily stable equilibrium than if they were to maximize
material payo¤ only. If starting with a monomorphic population of Nash players, a mutation
occurs with one player exerting a (slightly) lower level of e¤ort, it decreases the probability
of success of his own group. The mutant player is now better o¤ relative to his teammates
because he bears a lower e¤ort cost. The lower level of e¤ort exerted by the mutant player
also increases the winning probability of the rival groups. However, the members of the rival
groups also su¤er from a decrease in the value of the prize if they win the contest, all the more
so as the elasticity of the prize with respect to change in the aggregate e¤ort, is relatively
large. Consequently, if this elasticity is su¢ ciently large �that is if �X � � �evolutionary
pressure leads to lower levels of e¤ort than in the symmetric Nash equilibrium.
In fact, it might be possible that decreasing one�s own level of e¤ort decreases, in absolute

terms, the expected material payo¤ of the out-group members, despite their greater proba-
bility of winning the contest.10 This depends on how sensitive is the outcome of the contest
with respect to di¤erences in group e¤ort, as measured by the �decisiveness parameter�r, rel-
ative to the elasticity of the prize with respect to change in the aggregate e¤ort of all groups.
Speci�cally, let evaluate the marginal material payo¤ of player (k; l) with respect to player
(i; j)�s e¤ort, with j 6= l. Using (2), we have �kl=@xij = [@pl (X) =@xij]G(X) + pl (X)G0(X).
Starting with a monomorphic population of players who exert the same level of e¤ort x, we
have (@�kl=@xij)

��
xij=x = � [r=(mX)]G(X)+ [1=m]G0(X). This expression can be rewritten

as a function of the elasticity �X to obtain (@�kl=@xij)
��
xij=x = [�(X)=m] (�X � r), which is

positive for �X � r; and negative for �X � r. In other words, the lower level of e¤ort ex-
erted by the mutant player can decrease the expected material payo¤ of out-group members,
despite a higher probability of success in the group contest. This happens if the contest is
strongly productive �that is if �X � r �otherwise, the members of the rival groups enjoy a
higher expected material payo¤.
To conclude, if the group contest is quite, but not too, productive �that is, if �X 2 [�; r]

� the lower level of e¤ort exerted by the mutant player decreases his �tness relative to
that of his opponents in the rival groups, but this is more than o¤set by the increase in
his �tness relative to that of his teammates. Relative payo¤ considerations within groups
dominate relative payo¤ considerations across groups, which leads to lower levels of e¤ort in
the (locally) evolutionarily stable equilibrium than in the symmetric Nash equilibrium. It is

10I am indebted to an anonymous reviewer for calling my attention to this possibility. Also, this paragraph
directly follows from the detailed comments of the reviewer in his/her report.
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even more valid when the group contest is strongly productive, that is when �X 2 [r; 1). In
this case, exerting a lower level of e¤ort not only allows increasing one�s �tness relative to
one�s teammates, but also reduces the expected material payo¤ of the members of the rival
groups.11

4 Evolutionarily stable preferences

In economics, it is typically assumed that e¤ort choices result from a conscious and rational
process that consists in maximizing a utility function. It is thus only natural to ask which
utility function of players induces the ESS characterized in the previous section. To this end,
I use the indirect evolutionary approach pioneered by Güth and Yaari (1992). The players
are randomly matched into the m groups of size n; and each of them has a subjective utility
function that depends on her own material payo¤, and on the material payo¤s of both in-
group and out-group members.12 Speci�cally, let the utility of player (i; j) �member i of
group j �be given by

Vij
�
�ij; �ij

�
= �ij +

�ij
n� 1

Pn
k 6=i�kj +

�ij
n(m� 1)

Pm
l 6=j
Pn

i=1�il, (8)

where the pair (�ij; �ij) is the preference type of player (i; j), that is, the utility weights given
by this group member, in her subjective utility, to the material payo¤s of her teammates in
group j; and to the material payo¤s of her opponents in all groups l 6= j. It would be natural
to suppose, as in Konrad and Morath (2012), that �ij � 0 and �ij � 0 for all (i; j) 2 I � J ,
or that players have altruistic preferences towards their teammates and spiteful preferences
towards the members of the rival groups. However, at this stage, let us remain agnostic as to
whether these parameters are positive or negative. Thus, consider that �ij 2 (�1; K] �with
K � 1 �and that �ij 2

�
L;L

�
with L < 0 and L > 0.13 Also, note that the valuations of

the material payo¤s of both in-group members and out-group members are weighted by the
inverse of their respective numbers, so that the relative weight of player (i; j)�s payo¤ does
not change with either group size or the number of competing groups.
Following Konrad and Morath (2012), I assume that players have "robust beliefs" in the

sense that a player endowed with a certain preference type believes that all other players �
including out-group members �are of the same type and have the same robust beliefs. The
assumption of unobservability of types is not only more plausible than the opposite. It also

11However, it does not necessarily reduce their �tness relative to that of the mutant player. This is because
a lower level of e¤ort also decreases the expected material payo¤ of the mutant player in absolute terms
(simply because he does not play his best response to other players�strategies). We must remember that
an EES-player does not maximize his material payo¤, but the di¤erence between his material payo¤ and the
average material payo¤ of the other players.
12In a previous version of this article, I ignored preferences towards the out-group members. The general

analysis of the evolutionarily stability of both in-group and out-group preferences in the group contest follows
the detailed comments of an anonymous reviewer. Following this general analysis, I will restrict the set of
admissible preference types that are subject to evolutionary pressure.
13We exclude the case �ij � �1 since then it would prevent positive levels of e¤orts in a symmetric

equilibrium if �ij = 0. However, degrees of altruism �ij � 1 may exist, for instance, between partners. Also,
at this stage, we do not impose restrictions on L or L (other than their signs).
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drastically simpli�es the analysis of preference evolution, because it eliminates all strategic
e¤ects of a change in a player�s type on other players�equilibrium actions.
Suppose thatmn�1 players are of type

�
�E; �E

�
, while one player �the mutant �is of type

(�M ; �M) 6=
�
�E; �E

�
. All players choose their e¤ort level to maximize their subjective utility

given by (8). Let �M((�M ; �M) ;
�
�E;�E

�
) and ��M((�M ; �M) ;

�
�E;�E

�
) be, respectively,

the expected material payo¤ obtained by the mutant player and by a player of type
�
�E; �E

�
in the Nash equilibrium with robust beliefs, where

�
�E;�E

�
is the vector of mn � 1 copies

of
�
�E; �E

�
.

Let us de�ne locally evolutionarily stable preference types as follows:

De�nition 3. Let
�
�E;�E

�
2 (�1; K]mn�1�

�
L;L

�mn�1
be the vector of preference types of

all mn� 1 players �other than the mutant player M �all with the same pair of preference
parameters

�
�E; �E

�
2 (�1; K] �

�
L;L

�
. Then,

�
�E; �E

�
is a locally evolutionarily stable

preference type (ESP), with robust beliefs, if it is a solution to:

Max
�M ;�M

�M((�M ; �M) ;
�
�E;�E

�
)� ��M((�M ; �M) ;

�
�E;�E

�
); (9)

for (�M ; �M) in some neighborhood of
�
�E; �E

�
:

The notion of local stability at the level of preferences can be justi�ed if we consider that
the evolutionary process exhibits what Alger and Weibull (2010) calls a "cultural drift", with
the mutant player endowed with preferences slightly di¤erent from those of the incumbent
players.
The next Proposition characterizes the set of (locally) evolutionarily stable preference

types.

Proposition 4. Let � = r(m � 1)=(mn � 1) < r. If Assumption 1 holds with G00(X) � 0
for all X 2 (0;W ], and if

�
L;L

�
� (�n�=r; n�(m� 1)), then there exists a non-empty set

of locally ESP
�
�E; �E

�
2 (�1; K]�

�
L;L

�
with robust beliefs, that must satisfy

1 + �E =
mn�+ �E(r � �X)
r(m� 1) + �X

; (10)

where �X = G0(XE)XE=G(XE), with XE implicitly given by (7).

Proof. Appendix A3. �

The proof of this result follows Konrad and Morath (2012) and can be summarized as follows.
When players have robust beliefs, we can characterize the "symmetric robust-beliefs Nash
equilibrium" in e¤orts of each player type. For a certain preference type, it would correspond
to the symmetric Nash equilibrium under complete information when all players are e¤ectively
of the type in question. When players have di¤erent preferences and cannot observe others�
preferences, their choices do not correspond to a set of mutually best replies. But these
choices only occur o¤ the equilibrium with evolutionarily stable preferences. Indeed, in such
an equilibrium, all players have the same preferences and according to De�nition 3, a mutant
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player with di¤erent preference parameters than
�
�E; �E

�
cannot obtain a strictly higher

relative payo¤.14

Proposition 2 describes the evolutionarily stable strategy, that is the e¤ort choice that
cannot be invaded by another e¤ort choice for maximizing relative payo¤. Since under the
indirect evolutionary approach, preferences determine behaviors, evolutionarily stable pref-
erences, as characterized by Proposition 4, must implement evolutionarily stable strategies,
as characterized by Proposition 2.
Also, the set of evolutionarily stable preference types involves a linear combination of

the two parameters re�ecting in-group bias and out-group bias. The reason is that the
subjective utility of a player is itself given by a linear combination of the material payo¤s of
the player�s teammates, and of the material payo¤s of the out-group members. However, each
player exerts just one level of e¤ort and, hence, there exists an in�nity of preference types�
�E; �E

�
that implement evolutionarily stable strategies as characterized by Proposition 2.

In other words, the system is under-determined and, consequently, several combinations of
in-group altruism/spite and out-group altruism/spite can constitute a (local) equilibrium in
evolutionarily stable preferences, whether the contest is destructive or productive.15

However, the next Proposition states that one can always exclude a speci�c combination
of preference parameters.

Proposition 5. Let � = r(m � 1)=(mn � 1) < r and �X = G0(XE)XE=G(XE), then all
combinations of in-group altruism/spite and out-group altruism/spite can constitute a (local)
equilibrium in evolutionarily stable preferences with robust beliefs, except:

(i) In-group spite and out-group altruism �i.e. �E < 0 and �E > 0 �if �X � � < r;
(ii) In-group altruism and out-group spite �i.e. �E > 0 and �E < 0 �if �X 2 [�; r) ;
(iii) In-group altruism and out-group altruism �i.e. �E > 0 and �E > 0 �if �X > r;

Proof. Let ! = (�X � �)=(r� �X). (i) If �X � � < r, then ! � 0. Suppose �rst that �E > 0
(or that 1 + �E > 1). Using (10), this implies that �E > ! , which can be veri�ed with both
�E � 0 and �E � 0. Symmetrically, suppose that �E < 0. This implies that �E < !, so that
one must have �E < 0. (ii) If �X 2 [�; r), then ! � 0. �E > 0 still implies that �E > !, so
that one must have �E > 0. �E < 0 implies that �E < !, which can be veri�ed with both
�E � 0 and �E � 0. (iii) If �X > r > �, then ! < 0. Using (10), �E > 0 now implies that
�E < !, so that one must have �E < 0. �E < 0 implies �E > !, which can be veri�ed with
both �E � 0 and �E � 0. �

Interestingly, the combination of in-group altruism and out-group spite �or "parochial altru-
ism" �cannot always achieve evolutionarily stable e¤ort choices under preference evolution.
This happens when the group contest is relatively productive, but neither too much nor too
little, that is when �X 2 [�; r). In this case, group members exert a lower level of e¤ort in the
ESS than in the symmetric Nash equilibrium, and at the same time, exerting less e¤ort than

14For a detailed discussion of the properties of evolutionarily stable preferences with robust beliefs, see
Konrad and Morath (2012).
15This problem of underdetermination does not occur in Eaton et al. (2011) because they consider a

"production and con�ict" model, where each player exerts two types of e¤ort: a processing e¤ort and an
appropriative e¤ort. However, they do not obtain closed-form solutions for their model, and rely on numerical
simulations for endogenizing the utility weights.
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all other players increases the expected material payo¤ of the members of the rival groups.
Therefore, if preference evolution leads to in-group altruism, it must be accompanied by out-
group altruism. But, a lower level of e¤ort in the ESS when �X 2 [�; r) can also be achieved
with out-group altruism and in-group spite, or spiteful preferences towards both in-group
and out-group members. Also, when �X > r, exerting a lower level of e¤ort decreases the
expected material payo¤ of out-group members, because it decreases the value of the prize
by more than it increases their probability of winning the prize. Consequently, if the lower
ESS e¤ort level (relative to the Nash equilibrium e¤ort) is induced by in-group altruism, it
must be accompanied by out-group spite under preference evolution. But, as for �X 2 [�; r),
in-group spite together with out-group altruism, or fully spiteful preferences towards both
in-group and out-group members, are also (locally) evolutionarily stable.
To move forward, let us ignore either in-group preferences or out-group preferences by

setting �ij = 0 or �ij = 0 for all (i; j) 2 I � J . We can obtain the following Proposition.

Proposition 6. Let � = r(m� 1)=(mn� 1) < r and �X = G0(XE)XE=G(XE).

(i) Suppose that �ij = 0 for all (i; j) 2 I � J .
Under Assumption 1, there exists a unique locally ESP �E 2 (�1; K], and it is characterized
by:

1 + �E =
mn�

r(m� 1) + �X
; (11)

which is strictly greater (lower) than 1 for �X < � (�X > �), and equal to 1 for �X = �.

(ii) Suppose that �ij = 0 for all (i; j) 2 I � J .
(iia) If Assumption 1 holds with G00(X) � 0 for all X 2 (0;W ], and if �X < n� < r; then
there exists a unique locally ESP �E 2 (�n�=r; (m� 1)), and it is characterized by

�E =
�X � �
r � �X

; (12)

which is strictly negative (positive) for �X < � (�X 2 (�; n�)), and equal to 0 for �X = �; if
�X � n�, a locally ESP may fail to exist.
(iib) If Assumption 1 holds with G00(X) = 0 for all X 2 (0;W ]�implying that G(X) is a¢ ne
� then �X < r, and there always exists a unique locally ESP �E 2 (�1; (m � 1)) given by
(12), which is strictly negative (positive) for �X < � (�X > �), and equal to 0 for �X = �.

Proof. Appendix A4. �

Before interpreting these results, some technical remarks have to be made. First, if we ignore
out-group preferences, one can demonstrate the existence of a unique (locally) evolutionarily
stable in-group preference parameter, without assuming that the prize function is always
concave. When the contest is destructive, it can be convex as well under the restriction that
property (iiib) of Assumption 1 is satis�ed. However, if we ignore in-group preferences, the
existence of a unique locally out-group preference parameter is not always guaranteed, except
if the value of the prize is a¢ ne in the level of aggregate e¤ort. Otherwise, we need to assume
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that the prize function is concave, and that the elasticity �X is lower than a certain threshold
given by n�.
In general, if the group contest is quite or strongly productive �i.e. if �X � n� �a locally

ESP may fail to exist when ignoring in-group preferences. This would be the case when the
elasticity of the prize �X is "close" to the �decisiveness parameter�r of the contest success
function. To understand it, recall that evolutionarily stable preferences must implement
evolutionarily stable strategies, and that these strategies induce behaviors that maximize
relative payo¤. Now, consider the polar case where �X is equal to r, so that a player�s e¤ort
has no e¤ect on the material payo¤s of the members of the rival groups. Indeed, in this
case, if a group member exerts a higher level of e¤ort, the increase in the value of the prize
just counterbalances the decrease in the probability of success for the members of the rival
groups, thus leaving unchanged their expected material payo¤s. Thus, if players�subjective
utilities do not depend on the payo¤s of in-group members and if �X = r, players can only
behave as if they were to maximize their absolute material payo¤ (which is evolutionarily
stable only in the special case where �X = �). Consequently, an equilibrium in evolutionarily
stable preferences fails to exist in this case.
Also, ignoring out-group preferences, one can observe that the condition determining the

sign of the evolutionarily stable in-group preference parameter is the same than that obtained
in Proposition 3 for the comparison of e¤orts between ESS and Nash equilibria. Proposition
3 and property (i) of Proposition 6 together state that if the elasticity of the prize �X is lower
(larger) than the threshold value �, then e¤ort levels are higher (lower) in the ESS than in the
symmetric Nash equilibrium, and it corresponds to in-group altruism (spite) under preference
evolution. However, the elasticity of the prize is evaluated at XE in Proposition 6, while it
is evaluated at XN in Proposition 3. Notwithstanding this, a higher (lower) ESS e¤ort level,
relative to the Nash equilibrium level, must correspond to a positive (negative) value for �E

under preference evolution. This is obvious when the group contest is destructive because,
in this case, the elasticity of the prize is always negative (and thus, always, lower than �).
When the contest is productive, it must also be the case that the two (positive) elasticities
evaluated at XN and XE are either both lower or both larger than the threshold value �.
First, the two elasticities are equal if and only if XE = XN , in which case they are both

equal to �. Thus, if out-group preference are ignored and if �X = �, we have �E = 0 and
absolute payo¤maximization is evolutionarily stable. Suppose now that XN 6= XE and that
�X evaluated at XN is slightly lower (higher) than �. According to Proposition 3, this implies
that XE > XN (XE < XN). Players expend more (less) e¤ort in the evolutionarily stable
equilibrium than if they were absolute-payo¤maximizers. This necessarily re�ects a positive
(negative) degree of in-group altruism under preference evolution, so that �X evaluated at
XE must also be slightly lower (higher) than �. The reason is that a player�s equilibrium e¤ort
level depends positively on his own degree of in-group altruism. Indeed, a positive degree of
in-group altruism increases the marginal bene�t of exerting e¤ort and has no e¤ect on the
marginal cost.16 Consequently, mutating towards in-group altruism (spite), under preference

16Formally, suppose that player (i; j) has robust beliefs and anticipates that the mn�1 other players exert
the e¤ort level x. Then, player (i; j)�s subjective utility is Vij (�ij) = (1 + �ij)pj (X)G(X) � (xij + �ijx),
which is continuous and locally concave in xij (see the proof of Proposition 6). Hence, the �rst-order condition
is necessary and su¢ cient for local maximization. Consequently, the impact of a marginal increase in �ij on
the player (i; j)�s optimal e¤ort level is given by the cross-derivative of Vij (�ij) with respect to xij and �ij .
We have @ [@Vij (�ij) =@xij ] =@�ij = [@pj (X) =@xij ]G(X) + pj (X)G

0(X), which is clearly strictly positive
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evolution, must correspond to a higher (lower) level of e¤ort than in the symmetric Nash
equilibrium, under strategy evolution.
To summarize, when the group contest is destructive or moderately productive �that is

when �X � � �group members are more aggressive than if they were absolute-payo¤ max-
imizers. When out-group preferences are ignored, this can be viewed as in-group altruism
under preference evolution. If a player exerts a higher level of e¤ort, it increases the prob-
ability of success of his group to the detriment of the rival groups. If the group contest is
destructive, it also decreases the value of the prize for the player and for her teammates. But,
it also decreases it for all the members of the rival groups, in addition to decreasing their
probability of winning the prize. If the group contest is moderately productive �i.e. if �X � �
�preference evolution still leads to in-group altruism, but to a lesser extent than when the
group contest is destructive. The reason is that a player�s contribution increases the value
of the prize for all players, including the members of the rival groups, which counteracts the
decrease in their probability of winning the prize.
Symmetrically, the lower ESS e¤ort level when the group contest is quite productive �

that is when �X � � �can be viewed as induced by in-group spite. Indeed, in this case, if a
player exerts a lower level of e¤ort, it increases his �tness relative to that of his teammates,
and it also increases the winning probabilities of the rival groups. According to property (iia)
of Proposition 6, the lower ESS e¤ort level can also be interpreted as out-group altruism when
in-group preferences are ignored, under the condition that �X < n� < r. In this case, if a
group member expends less e¤ort, the positive e¤ect on the probability of success dominates
the negative e¤ect on the value of the prize for the members of the rival groups. Consequently,
the out-group members obtain a higher expected material payo¤. The same would apply if
�X 2 [n�; r) but, again, we cannot demonstrate that an equilibrium in evolutionarily stable
preferences always exists in this case, except if the value of the prize is an a¢ ne function.
If it is the case, then �X < r, and preference evolution leads to out-group altruism for any
�X � � (property (iib) of Proposition 6).
In general, however, one can have �X > r, in which case a lower level of e¤ort decreases the

expected material payo¤s of the out-group members despite a higher probability of success.
Again, equilibrium existence is not always guaranteed in this case if we ignore in-group pref-
erences. Allowing for both in-group and out-group preferences, all preference combinations
can be evolutionarily stable when �X > r, except fully altruistic preferences towards both
in-group members and out-group members (property (iii) of Proposition 5).

5 The impact of the �economic environment�17

The results about the emergence of evolutionarily stable preference types were framed in
terms of the elasticity of the prize with respect to change in the aggregate level of e¤ort,
which is itself a function of this level at the equilibrium in evolutionarily stable strategies.
Without additional constraints on the G(:) function, we cannot evaluate the impact of a
change in the parameters re�ecting the �economic environment�on the evolutionarily stable
equilibrium.

when the group contest is productive.
17This Section builds on the detailed comments of an anonymous reviewer. I am indebted to him/her for

the results, presented in this Section.
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Thus, suppose that the prize function G(X) is quasilinear and that, consistently with
Assumption 1, it satis�es the following properties.

Assumption 2. Let G(X) = R + F (X) with:

(i) R > 0 and F (0) = 0;
(ii) F (X) is twice continuously di¤erentiable for all X 2 (0;W ];
(iii) For all X 2 [0;W ], F (X) satis�es either (iiia) or (iiib) where:
(iiia) F 0(X) � 0 and F 00(X) � 0;
(iiib) F 0 (X) � 0, F 0(X)X > � [R + F (X)], and �X > �, where �X = F 00(X)X=F 0(X)

and � � �r(m� 1);
(iv) R 2 (maxf0;�F (W )g ;W � F (W )):18

We can now investigate the impact of the initial value of the prize �G(0) = R �that of group
size n; and that of the number of groups m; on the evolutionarily stable level of aggregate
e¤ort with the help of �gures.19 Figure 1 represents the case of a productive contest, with
F (X) satisfying (iiia) of Assumption 2 (together with (i)-(ii)-(iv)). Figure 2 represents the
case of a destructive contest, with F (X) being convex and satisfying (iiib) of Assumption 2
(together with (i)-(ii)-(iv)).

INSERT FIGURES 1 & 2

Suppose that players�subjective utilities are based on their own material payo¤s and on
those of their teammates only. Figure 1 also shows whether in-group altruism or out-group
spite is evolutionarily stable according to values of the parameters re�ecting the �economic
environment�. Indeed, observe that (7) can be rewritten as �

�
XE
�
= 1=n�; while the

elasticity of the prize with respect to change in X at X = XE can be rewritten as �X =
G0(XE)=�

�
XE
�
= n�G0(XE), with � = r(m� 1)=(mn� 1). Hence, using (i) of Proposition

6, evolutionary pressure on preferences leads to in-group altruism if �X � � or G0(XE) � 1=n;
and to in-group spite if �X � � or G0(XE) � 1=n. Since G0(X) = F 0(X), the vertical dashed
line corresponding to X = F 0�1(1=n) splits the �gure into two regions: one corresponding
to in-group spite on the left, and the other corresponding to in-group altruism on the right.
When the initial value of the prize is equal to R1 > 0, the evolutionarily stable level of
aggregate e¤ort XE(R1; n) is, from (7), given by the intersection between G1(X) and the
dashed line passing through the origin with slope (mn�1)=[rn(m�1)]. Preference evolution
18Property (iv) ensures that the �nal value of the prize is always strictly positive, for any X 2 [0;W ],

and in particular when F (:) is a decreasing function and X = W . This requires a lower bound for R.
Property (iv) of Assumption 2 also requires an upper bound for R, which directly follows from property (iv)
of Assumption 1. In an additional appendix, I provide closed form solutions for �E and XE by using the
functional form F (X) = �

p
X with � 2 [�1; 1]. When � � 0, the group contest is productive and F (:) is

concave, while when � � 0, the group contest is destructive and F (:) is convex. In order to satisfy (iii) and (iv)
of Assumption 2 for all � 2 [�1; 1], one must have R 2 ([(1+2r)

p
W ]=2r;W �

p
W ) withW > [(1 + 4r)=2r]

2,
and r > 1= [2(m� 1)]. This appendix is available upon request.
19Figure 1 for a productive contest has been provided by a reviewer in his/her report. I am also providing

the �gure for a destructive contest, which is actually simpler because, in this case, evolutionary pressure
always leads to in-group altruism. Thus, the �gures must be credited to the reviewer.
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leads to in-group spite in this case. If the initial value of the prize increases from R1 to R2,
then it shifts the curve of the prize function G2(X) upward. The evolutionarily stable level of
aggregate e¤ort is now given by XE(R2; n), which falls into the region of in-group altruism.
Now, suppose that group size increases from n to n0, then the vertical dashed line delim-

iting the two regions of altruism and spite within groups moves to the right. At the same
time, the slope of the dashed line passing through the origin increases and intersects with
G2(X) at XE(R2; n

0). The level of aggregate e¤ort in evolutionarily stable strategies is thus
lower when group size becomes larger, and this level XE(R2; n

0) falls, once again, in the (new)
region of in-group spite. In contrast, an increase in the number of competing group m (not
represented in the �gure) reduces the slope of the dashed line passing through the origin. It
increases the equilibrium level of aggregate e¤ort in evolutionarily stable strategies, which
can counteract the increase in group size for restoring in-group altruism under preference
evolution.
When the contest is destructive, and as shown by �gure 2, the aggregate level of e¤ort in

evolutionarily stable strategies is also increasing in the initial value of the prize, decreasing
in group size, and increasing in the number of competing groups. The di¤erence is that
preference evolution always leads to in-group altruism in this case.
In sum, the evolutionarily stable level of aggregate e¤ort is always increasing in the

initial value of the prize, which is rather intuitive because an increase in R automatically
increases the stake of the contest, independently of (the impact of) the level of aggregate
e¤ort. Contest e¤orts would also increase with R in the symmetric Nash equilibrium. Thus,
the (less intuitive) result that an increase in the initial value of the prize can change the
evolutionarily stable equilibrium from in-group spite to in-group altruism, when the group
contest is productive, re�ects the fact that the ESS e¤ort level increases more rapidly with
increasing R than the Nash equilibrium e¤ort. Overall, even in the case of a productive
contest, in-group altruism can be always evolutionarily stable if the initial value of the prize
is su¢ ciently large.
Also, an increase in group size of all groups (for a given number of competing groups)

always leads to a decrease in the aggregate and individual levels of e¤ort in evolutionarily
stable strategies. The intuition is the following. A larger group size reduces the marginal
impact of one�s contribution on the probability of success of the group and, hence, on the
possibility to increase one�s �tness relative to that of out-group members. As group size
increases, relative payo¤ considerations within groups become increasingly important for in-
dividual �tness. Thus, the evolutionary pressure towards free-riding on others�e¤orts within
the group is increased with the number of teammates. And if group size is relatively large,
then preference evolution can lead to in-group spite in productive contests, which exacerbates
the free-riding incentives within groups, by comparison to what would be expected if group
members were purely egoistic.
In contrast, an increase in the number of competing groups (for a given group size) al-

ways leads to an increase in the aggregate level of e¤ort in evolutionarily stable strategies,
but not necessarily to an increase in the individual e¤ort level. Yet, an increase in the number
of groups makes in-group altruism more likely to be evolutionarily stable under preference
evolution when the group contest is productive.20 Indeed, a player�s �tness becomes in-

20A decrease in the individual level of e¤ort in evolutionarily stable strategies with an increase in m is
not incompatible with a shift from in-group spite to in-group altruism under preference evolution. This is
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creasingly directly connected to the success of his group as the number of competing group
increases. Thus, when rivalry between groups becomes more intense, relative payo¤ consider-
ations across groups "take over", thus reducing free-riding incentives as a result of altruistic
attitudes towards the members of the same group.21

6 Conclusion

A large number of experimental studies show that group members expend more e¤ort in
group contests compared to what one would expect if group members were adopting the
Nash standard of behavior (see, again, Sheremeta, 2018, for a recent survey on experimental
research on group contests). One explanation of high collective action in group contests is
that group members display parochial altruism. As shown by Konrad and Morath (2012), the
combination of in-group altruism and out-group spite in group contests can be obtained as the
result of evolutionary pressure on preferences. In this paper, we generalize their analysis by
considering that the total value of the prize can increase as well as decrease with the aggregate
e¤ort of all groups. The main result is that evolutionarily stable in-group altruism is stronger
when the contest is destructive, as in the case of an armed con�ict, than when it is productive,
as in the case of a patent race. Moreover, when the contest is strongly productive, in-group
spite is evolutionarily stable under preference evolution. Finally, the combination of in-group
altruism and out-group spite cannot always constitute an equilibrium in evolutionarily stable
preferences, when the contest is productive.
This opens new prospects for experimental research on group contests. Indeed, the theo-

retical analysis provides clear predictions on evolutionarily stable behaviors, by comparison
to the predictions implied by the Homo economicus paradigm, whether the prize is exoge-
nous, or endogenous with its value increasing or decreasing with contest e¤orts of all groups.
Group members exert more e¤ort than in the Nash equilibrium when the group contest is
destructive or moderately productive, while they under-invest in collective action when the
group contest is strongly productive. Furthermore, the notion of �productiveness�of contest
e¤orts is relative to other important properties of the group contest. The larger the �decisive-
ness parameter�of the contest success function, or the larger the number of competing groups
relative to their size, the larger must be the elasticity of the prize with respect to change in
the aggregate e¤ort, for making under-investment in collective action (relative to the Nash
equilibrium), and in-group spite, evolutionarily stable. However, it is worth recalling that

because the Nash equilibrium level of individual e¤ort is decreasing in m (and in n).
21It is also worth emphasizing out that the evolutionarily stable degree of in-group altruism (or spite) �E

does not necessarily move in the same direction as the equilibrium level of aggregate e¤ort XE with a change
in the parameters re�ecting the �economic environment�. This is because �E depends on the elasticity of the
prize with respect to change in the aggregate e¤ort, and thus on whether the marginal impact of a player�s
e¤ort on the value of the prize is, itself, a decreasing or an increasing function. One can show, that in the case
of a productive contest, �E and XE are both increasing in R if F (:) is concave. However, when the contest
is destructive, �E is decreasing in R if F (:) is convex (while XE is still increasing in R). Under the condition
that the total number of players N = mn remains constant, XE and �E also move in the same direction with
an increase in group size n; or in the number of competing groups m; when F (:) is increasing and concave,
and move in opposite directions, when F (:) is decreasing and convex. This is what I demonstrate in the
additional appendix, where I also provide closed form solutions for �E and XE when G(X) = R + �

p
X,

with � 2 [�1; 1]. Again, this additional appendix is available upon request.
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the Nash equilibrium can lead to over-exertion of e¤ort in productive contests, so that in-
group spite can lead to behaviors that are actually closer to the social optimum. Again, this
depends on the speci�cations of the contest success function and of the prize function.22

Appendix

A.1 Proof of Proposition 1

In a Nash equilibrium, each player (i; j) chooses her e¤ort xij to maximize her material
payo¤ �ij given by (2). The �rst-order condition for maximizing (2) with respect to xij, for
i 2 I = f1; 2; :::; ng and j 2 J = f1; 2; :::;mg, is

rXr�1
j

Xm

k 6=j
Xr
kh

Xr
j +

Xm

k 6=j
Xr
k

i2G(X) + Xr
j

Xr
j +

Xm

k 6=j
Xr
k

G0(X)� 1 = 0. (A1)

The �rst-order conditions only determine group expenditures so that there can exist multiple
asymmetric equilibria with players expending di¤erent levels of e¤ort. We focus, however, on
a symmetric equilibrium such that all members of all groups exert the same level of e¤ort.
In a symmetric equilibrium, (A1) becomes

r(m� 1)G(X)
mX

+
G0(X)

m
= 1. (A2)

This condition can be rewritten as r(m� 1)G(X) +XG0(X)�mX = 0. Rearranging yields
r(m�1) [G(X)�X]+X [G0(X)� 1]�X(m�1)(1�r) = 0. Dividing by X and rearranging
again, we obtain (3).
Now, di¤erentiating (A2) with respect to X, we obtain

r(m� 1)G(X) [�X � 1]
mX2

+
G00(X)

m
, (A3)

where �X = G0(X)X=G(X).
When G00(X) � 0; the above expression is always strictly negative, because �X < 1 and

G(X) > 0 for all X 2 [0;W ]. Now, suppose that the contest is destructive �i.e. �X � 0 �
and that G00(X) � 0. Then, the expression in (A3) is strictly negative if

�r(m� 1) + �X [r(m� 1) + �X ] < 0, (A4)

where �X = G00(X)X=G0(X). A su¢ cient condition for inequality (A4) to be satis�ed, for
G0(X) � 0 (implying �X � 0) and G00(X) � 0, is that �X > �r(m� 1); as stated in property
(iiib) of Assumption 1.
Thus, under Assumption 1, the expression in (A3) is always strictly negative. It follows

that the left-hand term of (A2) is a decreasing function of X. This term can be rewritten as

22For example, using the standard Tullock (1980) lottery contest, with r = 1, there is always over-exertion
of e¤ort in the Nash equilibrium, for any prize function satisfying Assumption 1 (see Footnote 8).

20



G(X) [r(m� 1) + �X ]
mX

. (A5)

InX = 0, it approaches in�nity since, under Assumption 1, the numerator is a strictly positive
�nite number. Indeed, property (i) of Assumption 1 states that G(0) > 0; and according to
property (iii) the term in [:] is a strictly positive �nite number as well, whether the contest is
productive (and G(X) satis�es (iiia)) or destructive (and G(X) satis�es (iiib)). In X = W ,
the term in (A5) is also strictly lower than 1 because [r(m� 1) + �X ] < mW=G(W ). The
left-hand term of this inequality is strictly lower than m for r � 1 (given that �X < 1),
while the right-hand term is greater than m since W=G(W ) � 1. Indeed �(X) = G(X)=X
is decreasing in X; and thus 1=�(X) = X=G(X) is increasing in X. From property (iv) of
Assumption 1, �X 2 (0;W ] is such that �( �X) = 1=�( �X) = 1, and we have 1=�(W ) � 1
because W � �X. In conclusion, there exists a unique value of aggregate e¤ort that satis�es
(A2).

A.2 Proof of Proposition 2

Calculating the �rst derivative of (6) with respect to xM , we obtain

r
�
xM + (n� 1)xE

�r�1
(m� 1)

�
nxE

�r
G(:)

[[xM + (n� 1)xE]r + (m� 1) [nxE]r]2
+

�
xM + (n� 1)xE

�r
G0(:)

[xM + (n� 1)xE]r + (m� 1) [nxE]r
� 1

� n� 1
mn� 1

(
r
�
xM + (n� 1)xE

�r�1
(m� 1)

�
nxE

�r
G(:)

[[xM + (n� 1)xE]r + (m� 1) [nxE]r]2
+

�
xM + (n� 1)xE

�r
G0(:)

[xM + (n� 1)xE]r + (m� 1) [nxE]r

)

�n(m� 1)
mn� 1

(
�

r
�
xM + (n� 1)xE

�r�1 �
nxE

�r
G(:)

[[xM + (n� 1)xE]r + (m� 1) [nxE]r]2
+

�
nxE

�r
G0(:)

[xM + (n� 1)xE]r + (m� 1) [nxE]r

)
:(A6)

Rearranging this expression gives

mn(m� 1)r
�
xM + (n� 1)xE

�r�1 �
nxE

�r
G(:)

(mn� 1) [[xM + (n� 1)xE]r + (m� 1) [nxE]r]2

+
n (m� 1)

��
xM + (n� 1)xE

�r � �nxE�r�G0(:)
(mn� 1) [[xM + (n� 1)xE]r + (m� 1) [nxE]r]

� 1: (A7)

ESS requires identical behavior of contestants. Thus, evaluating this expression at xM = xE,
and setting it to 0; yields (7), which is the only interior solution candidate.
Di¤erentiating the above expression with respect to xM , we �nd

�
rmn(m� 1)

�
nxE

�r �
xM + (n� 1)xE

�r�2 �
(1 + r)

�
xM + (n� 1)xE

�r
+ (1� r)(m� 1)

�
nxE

�r�
G(:)

(mn� 1) [[xM + (n� 1)xE]r + (m� 1) [nxE]r]3

+
2rmn(m� 1)

�
nxE

�r �
xM + (n� 1)xE

�r�1
G0(:)

(mn� 1) [[xM + (n� 1)xE]r + (m� 1) [nxE]r]2
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+
n(m� 1)

��
xM + (n� 1)xE

�r � �nxE�r�G00(:)
(mn� 1) [[xM + (n� 1)xE]r + (m� 1) [nxE]r]

: (A8)

When the prize is independent of X �implying G0(:) = G00(:) = 0 �the second derivative of
(6) with respect to xM is given by the �rst term of this expression, which is strictly negative
for any xE > 0. When the prize is endogenous, we need to rely on the weaker condition of
local stability. At the symmetric solution xM = xE, the above expression becomes

�rn(m� 1) [m(1� r) + 2r]G(:)
(mn� 1)(XE)2

+
2rn(m� 1)G0(:)
(mn� 1)XE

; (A9)

where XE = mnxE.
A su¢ cient condition for the existence of a local equilibrium in evolutionarily stable

strategies is that (A9) is strictly negative or

� [m(1� r) + 2r]G(:) + 2XEG0(:) < 0; (A10)

which is always satis�ed for G0(:) � 0. If, however G0(:) � 0, one must have

�X <
[m(1� r) + 2r]

2
; (A11)

which is always veri�ed because the right-hand term of this inequality is always greater than
1 for any m � 2, and because �X is always strictly lower than 1.

A.3 Proof of Proposition 4

Suppose that the mutant playerM believes that all other players choose xi = x. Then, player
M , endowed with the preference parameters (�M ; �M), chooses xM to maximize

VM(aM ; �M) = (1 + �M)
[xM + (n� 1)x]r

[xM + (n� 1)x]r + (m� 1) [nx]r
G(:)� xM � �Mx

+�M
[nx]r

[xM + (n� 1)x]r + (m� 1) [nx]r
G(:)� �Mx: (A12)

The �rst derivative of VM(aM ; �M) with respect to xM is given by

(1 + �M)

"
r [xM + (n� 1)x]r�1 (m� 1) [nx]rG(:)
[[xM + (n� 1)x]r + (m� 1) [nx]r]2

+
[xM + (n� 1)x]rG0(:)

[xM + (n� 1)x]r + (m� 1) [nx]r

#
� 1

+�M

"
� r [xM + (n� 1)x]r�1 [nx]rG(:)
[[xM + (n� 1)x]r + (m� 1) [nx]r]2

+
[nx]rG0(:)

[xM + (n� 1)x]r + (m� 1) [nx]r

#
: (A13)

Evaluating this expression at xM = x, and setting it to 0, we obtain

�(X) =
m

(1 + �M) [r(m� 1) + "X ] + �M("X � r)
; (A14)
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where X = mnx, �(X) = G(X)=X, and �X = G0 (X)X=G(X).
This is the solution candidate for a local Nash equilibrium with robust beliefs. Solving in

(�M ; �M) for the equality between �(X) given by (A14) and �(X
E) given by (7), we obtain

the set of (�E; �E), as characterized by (10).
Now, we verify equilibrium existence. The second derivative of VM (�M ; �M) with respect

to xM is given by

�
r [(1 + �M) (m� 1)� �M ] [nx]

r [xM + (n� 1)x]r�2
"
(1 + r) [xM + (n� 1)x]r

+(1� r)(m� 1) [nx]r

#
G(:)

[[xM + (n� 1)x]r + (m� 1) [nx]r]3

+
2r [(1 + �M) (m� 1)� �M ] [nx]

r [xM + (n� 1)x]r�1G0(:)
[[xM + (n� 1)x]r + (m� 1) [nx]r]2

+
[(1 + �M) [xM + (n� 1)x]r + �M [nx]

r]G00(:)

[xM + (n� 1)x]r + (m� 1) [nx]r
: (A15)

Evaluating this last expression at xM = x with X = mnx, and rearranging the �rst two
terms, gives

r [(1 + �M) (m� 1)� �M ] [� [m(1� r) + 2r] + 2�X ]G(:)
mX2

+
(1 + �M + �M)G

00(:)

m
: (A16)

Evaluating the above expression at (�M ; �M) =
�
�E; �E

�
, as given by (10), yields

r
�
n�(m� 1)� �E�X

�
[� [m(1� r) + 2r] + 2�X ]G(:)

[r(m� 1) + "X ]X2
+

�
n�+ r�E

�
G00(:)

r(m� 1) + "X
; (A17)

where � = r(m� 1)=(mn� 1).
A su¢ cient condition for the existence of a local equilibrium in evolutionarily stable

preferences with robust beliefs is that the expression in (A17) is strictly negative. The
second term is negative if G00(:) � 0 and �E > �n�=r, hence the assumption on L. Again,
we also have [� [m(1� r) + 2r] + 2�X ] < 0 (see (A11)). Thus, the �rst term of (A17) is
strictly negative if n�(m � 1) � �E�X > 0 or �E�X < n�(m � 1) (by recalling that G(:) is
always strictly positive). This inequality is always veri�ed if either �X or �

E is negative. If
�X and �E are both negative, then the inequality is also always satis�ed for �E > �n�=r
since �X > �r(m� 1) from property (iiib) of Assumption 1. If �X and �

E are both positive,
then �E�X reaches a maximum when �X tends to 1: It follows that the �rst term of (A17) is
strictly negative if �E < n�(m� 1), hence the assumption on L:

A.4 Proof of Proposition 6

(i) Suppose �rst that �ij = 0 for all (i; j) 2 I � J . In this case, (A14) becomes

�(X) =
m

(1 + �M) [r(m� 1) + "X ]
: (A18)
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Solving in 1 + �M for the equality between �(X) given by (A18) and �(XE) given by (7),
we obtain 1 + �E given by (11).
Using (A16), the second-order condition for local maximization becomes

r (1 + �M) (m� 1) [� [m(1� r) + 2r] + 2�X ]G(:)
mX2

+
(1 + �M)G

00(:)

m
< 0: (A19)

This condition is always satis�ed for G00(:) � 0 because [� [m(1� r) + 2r] + 2�X ] < 0, and
G(:) > 0.
Suppose now that the group contest is destructive and G00(:) � 0. In this case, the �rst

term is negative, while the second term is positive. (A19) can be rewritten equivalently as

�r(m� 1) [m(1� r) + 2r] + �X [2r(m� 1) + �X ] < 0; (A20)

where �X = G00(X)X=G0(X). Under (iiib) of Assumption 1, we have �X > �r(m � 1) and
thus (A20) is always veri�ed for �X � 0.
(iia) Suppose now that �ij = 0 for all (i; j) 2 I � J . In this case, (A14) becomes

�(X) =
m

[r(m� 1) + "X ] + �M (�X � r)
: (A21)

Solving in �M for the equality between �(X) given by (A21) and �(XE) given by (7), we
obtain �E given by (12).
Using (A16), the second-order condition for local maximization becomes

r [(m� 1)� �M ] [� [m(1� r) + 2r] + 2�X ]G(:)
mX2

+
(1 + �M)G

00(:)

m
< 0: (A22)

Evaluating the above expression at �M = �E = (�X � �)=(r � �X), the condition is

r [n�� �X ] [� [m(1� r) + 2r] + 2�X ]G(:)
(r � "X) (XE)2

+
(r � �)G00(:)
r � "X

< 0. (A23)

We have [� [m(1� r) + 2r] + 2�X ] < 0 and (r � �) > 0. If the contest is destructive implying
that "X � 0, and if G00(:) � 0, the inequality is clearly satis�ed. Now, consider that the
contest is productive, implying that "X � 0 and G00(:) � 0. If �X < n� < r, the above
inequality is also clearly satis�ed. If �X 2 [n�; r), then the �rst term of (A23) is positive,
while the second term is negative. If �X > r, then the �rst term is negative, while the second
term is positive. If �X = r, the left-hand-term of inequality (A23) is not de�ned. Thus, we
cannot guarantee the existence of a (local) equilibrium in evolutionarily stable preferences
with robust beliefs for �X � n�. Finally, note that �E, given by (12), is increasing in �X , and
that �E 2 (�n�=r; (m� 1)) for �X 2 (�r(m� 1); n�).
(iib) If Assumption 1 holds with G00(X) = 0, then G(X) is an a¢ ne function of the

following form G(X) = R + �X, with � 2
�
�; ��
�
, � < 0, and �� > 0. In order to satisfy (i)

of Assumption 1, one must have R > 0. According to (iii) of Assumption 1, one must also
have G(X) > 0 for all X 2 [0;W ], which implies that � > � � �R=W . Also, according to
(iv) of Assumption 1, one must have �X = R=(1� �) 2 (0;W ], which implies that �� < 1 and
W > R, and hence � > �1. Using (7), we have XE = n�R= [1� �n�], and the equilibrium
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value of the prize is G(XE) = R= [1� �n�]. The elasticity of the prize, evaluated at XE is
�X = �n�, which is strictly lower than r; because n� < r and � < 1. In this case, the second-
order condition for local maximization given by (A23) is always satis�ed because G00(:) = 0,
�X = �n� < n� < r, and [� [m(1� r) + 2r] + 2�X ] < 0. Finally, note that the evolutionarily
stable out-group preference parameter is �E = [(�n� 1)(m� 1)] = [(mn� 1)� �n(m� 1)],
which is increasing in �. When � tends to 1, �E tends to (m� 1). When � tends to �1, we
have �E = � [(n+ 1)(m� 1)] = [2mn� (n+ 1)] > �1.
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Figure 1: Productive contest
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Figure 2: Destructive contest
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