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Abstract: The growing incidence of non-communicable diseases makes the search for natural sources
of bioactive compounds a priority for such disease prevention/control. Achyrocline satureioides
(‘marcela’), a plant rich in polyphenols and native to Brazil, Uruguay, Paraguay, and Argentina,
could be used for this purpose. Data on its antidiabetic/antiobesity properties and cellular uptake
of bioactive compounds are lacking. The potentiality of non-thermal technologies such as high-
hydrostatic pressure (HP) to enhance polyphenol extraction retains attention. Thus, in the present
study aqueous and ethanolic marcela extracts with/without assisted-HP processing were chemically
characterized and assessed for their in vitro antioxidant capacity, antidiabetic and antiobesity
activities, as well as cellular cytotoxicity and uptake on intestinal cell monolayers (TC7-cells, a clone
of Caco-2 cells). Aqueous and ethanolic conventional extracts presented different polyphenolic
profiles characterized mainly by phenolic acids or flavonoids, respectively, as stated by reverse
phase-high-performance liquid chromatography (RP-HPLC) analyses. In general, ethanolic extracts
presented the strongest bioactive properties and HP had none or a negative effect on in vitro
bioactivities comparing to conventional extracts. TC7-cell viability and cellular uptake demonstrated
in conventional and HP-assisted extracts, highlighted the biological effects of marcela bioactive
compounds on TC7-cell monolayers. TC7-cell studies showed no HP-induced cytotoxicity. In sum,
marcela extracts have great potential as functional ingredients for the prevention/treatment of
chronic diseases such as diabetes.

Keywords: bioactive compounds; cell metabolism; flavonoids; high-hydrostatic pressure; marcela;
phenolic compounds; TC7-cellular uptake

1. Introduction

Achyrocline satureioides (known by the popular name of ‘marcela’) could be used for
the prevention/treatment of non-communicable chronic diseases including cardiovascu-
lar diseases, cancers, respiratory diseases, and diabetes [1], which are the main cause of
deaths in the current times. Thus, the search for antioxidant, antidiabetic, and antiobesity
natural sources is of great importance for their prevention/treatment. Marcela has been
studied for its antioxidant, cell cytoprotective effect against oxidants [2], anti-inflammatory,
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analgesic, antispasmodic, constipating, sedative, immunomodulatory, antiviral, antiher-
petic, choleretic and hepatoprotective actions, whereas partial cytotoxicity in mice and
rats has been found for aqueous and ethanolic extracts [3]. It is a plant native to Brazil,
Uruguay, Paraguay, and Argentina, commonly used as herbal tea [2–4]. Recently, marcela
proved to present anti-cancer activity against glioma cell lines (U87, U251 and C6) and
to be less cytotoxic to brain cell than gliomas [5]. However, no scientific studies regard-
ing its antidiabetic and antiobesity underlying mechanisms have been reported. Marcela
extracts are composed of flavonoids such as quercetin, luteolin and 3-O-methylquercetin
in their glycosylated and aglycone forms [2], found in both ethanolic [6] and aqueous [2]
extracts. These compounds possess several bioactive properties such as cytoprotective
activity against oxidant agents [2], but there are no reports on the bioavailability and/or
absorption experiments, neither about its cytotoxicity on intestinal cells (as a means to
elucidate the effect after their ingestion), which are necessary to assess the potential effec-
tiveness of the marcela bioactive compounds. Once absorbed, these compounds may exert
the above-mentioned bioactivities.

Aqueous and ethanolic extracts have shown different polyphenolic profiles as a
consequence of different polyphenols solubility correspondent to solvent polarity, with sub-
sequently different bioactive properties and/or biological effectiveness. High hydrostatic
pressure (HP) technology proved to increase polyphenolic extraction yields [7] and plant
cell membrane damage [8]. HP can also disrupt weak bonds such as hydrophobic bonds
subsequently generating conformational changes as well as denaturating cell proteins,
which could lead to enhance compounds accessibility during extraction [8]. HP technology
could be a resourceful procedure for Achyrocline satureioides polyphenols extraction by
the use of moderate or no heat treatment [7,9], being especially useful for thermolabile
compounds extraction [10]. However, these compounds could suffer modifications during
the process. Thus, studies regarding bioactivity, absorption and cytotoxicity are needed in
order to state if this innovative technology presents advantages related to conventional
extraction procedures as well as to ensure this novel extracts are safe for consumption.

The aim of the present work is to evaluate Achyrocline satureioides antioxidant, antidia-
betic and antiobesity properties of aqueous and ethanolic extracts compared to HP-assisted
extracts, along with the exposure to cultures of intestinal cells in order to elucidate the de-
gree of cytotoxicity (as assessed on cellular metabolic activity and cell membrane integrity)
and uptake/absorption of extracted bioactive compounds.

2. Materials and Methods
2.1. Raw Material and Chemicals

Achyrocline satureioides (marcela) commercial samples were purchased in a pharmacy
store (La Botica del Señor, Montevideo, Uruguay), and milled with a domestic coffee
mill. All the reagents used in physicochemical characterization analyses were of reagent
grade. Phenolic acids (gallic, chlorogenic and caffeic acids) and quercetin standards were
purchased from Sigma-Aldrich (St. Louis, MO, USA) and used for marcela extract compo-
sition by reverse phase-high-performance liquid chromatography (RP-HPLC) and reverse
phase-ultra-high-performance liquid chromatography (RP-UHPLC) analyses. Antioxi-
dant assays reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA): Folin
reagent, 2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS),
6-hydroxy-2,5,7,8-tetramethylch-roman-2-acid (Trolox), fluorescein (FL) disodium salt,
2,20-azobis (2-methylpropionamidine) dihydrochloride (AAPH). Antidiabetic assays
reagents were also purchased from Sigma-Aldrich (St. Louis, MO, USA): bovine serum
albumin (BSA), methylglyoxal (MGO), aminoguanidine (AG), α-glucosidase (rat intestine
acetone powder), acarbose, 4-methylumbelliferyl-α-D-glucopyranoside, human saliva
α-amylase (Type IX-A), starch, maltose standard, 3,5-dinitrosalicylic acid. Antiobesity
assay reagents were the following: lipase from porcine pancreas, 4-methylumbelliferyl
oleate (4-MUO), and dimethyl sulfoxide (DMSO), which were purchased from Sigma-
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Aldrich (St. Louis, MO, USA), and orlistat standard was purchased from Alfa Aesar
(Haverhill, MA, USA).

2.2. TC7-Cells and Reagents for Cell Culture

TC7-cells (a clone of Caco-2 cells) was kindly provided by Dr. Rousset (Centre de
Recherche des Cordeliers, UMR S872, Paris, France). For cell culture, the following reagents
were used.

High-glucose Dulbecco’s modified Eagle medium (DMEM) with L-glutamine and
pyruvate (Phenol red-DMEM), high-glucose Dulbecco’s modified Eagle medium with-
out L-glutamine and pyruvate (Phenol red-free DMEM), Dulbecco’s phosphate-buffered
saline (DPBS) + Ca2+ and Mg2+, Hank’s Balanced Salt Solution (HBSS), penicillin-
streptomycin mixture, MEM non-essential amino acid and foetal bovine serum (FBS)
from GibcoTM were purchased from Life Technologies (Villebon-sur-Yvette, France). For
MTT-assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT) and
dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St-Quentin Fallavier,
France). The β-nicotinamide adenine dinucleotide hydrate (NAD), Trizma® base (Tris),
L-(+)-lactic acid needed for LDH-assay, and Quercetin (96% dry matter, 95% purity)
came from Sigma-Aldrich (St-Quentin Fallavier, France). Triton® X-100 came from
Merck (Darmstadt, Germany).

2.3. Methods
2.3.1. Preparation of Marcela Extracts

Marcela aqueous extract (Mac) was obtained by adding 100 g of milled marcela
powder to 1000 mL of distilled water. The mix was boiled for 1 h, filtered with paper
(Whatman n◦1) and the liquid was freeze-dried until constant weight (96 h).

Marcela ethanolic extract (Me) was obtained by adding 100 g of milled marcela
powder to 1000 mL of ethanol (95%) followed by maceration at 20 ◦C for 24 h. The
mixture was filtered with paper (Whatman n◦1) then rotavaporated (60 ◦C, 120 rpm,
under reduced pressure, approximately 13 kPa) to dryness and 30 mL of distilled water
was added to recuperate polyphenols. Afterwards, the liquid was freeze-dried until
constant weight (96 h).

High pressure (HP) extracts were prepared using a high-pressure unit Model S-IL-
100-250-09W (HP Food Processor, Stansted Fluid Power, Ltd., Harlow, UK) located in
Laboratorio Tecnológico del Uruguay pilot food plant (Montevideo, Uruguay). The pres-
sure chamber (2 L volume, 100 mm bore internal diameter, 250 mm long) has inside the
canister to hold samples. The vessel body and the pressure-transmitting fluid (water) were
kept at treatment temperature (25 ◦C) by circulating water through an internal heat transfer
jacket fitted to the outside of the high-pressure barrel assembly. The temperature of the
pressure-transmitting fluid was monitored with a thermocouple positioned at the cham-
ber bottom. Before treatment, samples were individually packed in Cryovac® pouches
(Sealed Air®, Charlotte, North Carolina, USA) by adding 10 g of milled marcela powder to
100 mL of phosphate buffer pH 7.9 for aqueous HP extract, or to 100 mL of ethanol (95%)
for ethanolic HP extract, then vacuum sealed. Samples were introduced in the pressuriza-
tion chamber previously thermostated at 25 ◦C then submitted to 400 MPa and 25 ◦C for
1 min, in the case of ethanolic HP extract (Me HP), or 200 MPa and 25 ◦C, at pH 7.9 for
1 min for aqueous HP extract (Mac HP). These conditions were selected in previous trials
studying optimum conditions for marcela antioxidant compounds extraction through HP
procedure. Pressure was raised from 0.1 MPa at a rate of 100 MPa per 30 s, maintained at
the desired pressure level for 1 min then reduced down to 0.1 MPa in less than 30 s. Sample
blanks were also prepared in the same way at 0.1 MPa and 25 ◦C for 1 min but without the
pressure-processing step, by adding 10 g of milled marcela powder to 100 mL of phosphate
buffer pH 7.9 for aqueous HP blank extract (Mac HP BL), or to 100 mL of ethanol (95%) for
ethanolic HP blank extract (Me HP BL). Afterwards, liquid samples were freeze-dried until
constant weight (96 h). All the extracts were stored at −20 ◦C for further analyses.
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2.3.2. Proximate Analysis

To characterize the initial sample or raw material (marcela powder), different parame-
ters were determined: fat, protein, ashes, dietary fiber, moisture, and total carbohydrates
(by difference using protein, moisture, ashes, and fat content). All determinations were per-
formed at least in triplicate as in Association of Official Analytical Chemists (AOAC) [11]
methods. Briefly, protein content was determined by Kjeldhal method using the conversion
factor 6.25, moisture was determined using a conventional oven at 105 ◦C till constant
weight, ashes was determined by using a furnace at 525 ◦C for 8 h, and fat content was
obtained by Soxhlet method for 6 h using petroleum ether.

2.3.3. RP-HPLC and RP-UHPLC Analyses

To obtain the polyphenolic profile of extracts, each of the extract samples were eluted
by RP-HPLC (Shimadzu, SPD-20A detector and LC-10AT pump) according to De Souza
et al. [6] with detection at 370 nm in a Jupiter C18 reverse phase column and an isocratic flow
program of 1 mL/min. The mobile phase was composed by methanol:0.16 M phosphoric
acid, in a ratio of 53:47 (v/v). The injection volume was 20 µL.

Each of the samples were also eluted by RP-UHPLC according to Reza et al. [12] with
some modifications. RP-UHPLC UltiMate 3000 (Thermo Fisher Scientific, Massachusetts,
USA) was used with a diode array detection (DAD detector). The reverse phase col-
umn was a Thermo Scientific BDS Hypersil C18 (150 × 3 mm, 3 µm particle size) used
at 1 mL/min flow rate. Mobile phase was composed by methanol, phosphoric acid
(pH 2.81) and acetonitrile in gradient: time 0 min, 5% acetonitrile and 95% phosphoric
acid (initial condition); time 10 min, 10% acetonitrile, 10% methanol and 80% phosphoric
acid; time 20 min, 20% acetonitrile, 20% methanol and 60% phosphoric acid; time 40 min,
20% acetonitrile, 20% methanol and 60% phosphoric acid; time 45 min, 100% acetonitrile;
time 50 min, 100% acetonitrile; time 55 min, 5% acetonitrile and 95% phosphoric acid
(to return to the initial conditions). The duration of each run was 55 min. The injection
volume was 20 µL. The software used was Dionex Chromeleon 7.1 SR2. Phenolic acids
were quantified by detection at 290 nm and quercetin was quantified at 370 nm. Phenolic
acids and quercetin were identified and quantified by the use of pure standards and the
construction of calibration curves through the detection at 290 and 370 nm for phenolic
acids and quercetin, respectively.

2.3.4. Antioxidant Capacity

Total polyphenol content was performed by Folin–Ciocalteau method [13] as de-
scribed by Fernández-Fernández, Iriondo-DeHond, Dellacassa, Medrano-Fernandez, and
del Castillo [14], preparing sample solutions in distilled water and using a gallic acid
standard curve (0.05–1.0 mg/mL). Results were expressed as mg GAE/g extract.

The ABTS method [15] was performed as described by Fernández-Fernández et al. [14],
preparing samples in phosphate buffer (pH 7.4) and using a Trolox calibration curve
(0.25–1.5 mM). Results were expressed as µmol TE/mg extract.

Oxygen radical antioxidant capacity-fluorescein (ORAC-FL) assay was performed by
the method of Ou, Hampsch-Woodill, and Prior [16] modified by Dávalos, Bartolomé, and
Gómez-Cordovés [17] as described in Fernández-Fernández et al. [14]. The area under the
curve (AUC) of fluorescence vs. time were calculated and normalized to the AUC of the
blank as follows: AUCantioxidant (trolox or sample)-AUCblank. Trolox calibration curve (AUC vs.
[Trolox]) was constructed and results were expressed as µmol TE/mg extract.

All samples were prepared in triplicate and each one of the preparations was measured
in triplicate.

2.3.5. Antidiabetic and Antiobesity Activities

α-glucosidase inhibition capacity was evaluated as described by Fernández-Fernández
et al. [14] as an antidiabetic strategy. Briefly, fluorescence measurements were displayed at
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37 ◦C for 30 min (each minute) at 360 and 460 nm of excitation and emission wave lengths,
respectively. Acarbose was used as reference with probed inhibition capacity.

α-amylase inhibition assay was evaluated as another antidiabetic strategy and per-
formed as reported by Li, Yao, Du, Deng, and Li [18] with some modifications described by
Fernández-Fernández et al. [19]. The inhibition capacity was calculated by taking positive
control as 100% of enzyme activity.

Fluorescent advanced glycation end products (AGEs) formation was evaluated by
determining BSA-MGO formation inhibition (antiglycant capacity) as another antidiabetic
strategy, obtaining the IC50 value [20]. Briefly, sample mixtures consisted of 500 µL BSA
stock solution (2 mg/mL in PBS, 1 mg/mL final concentration), 25/50 µL 5/10 mM MGO
stock solution (200 mM in PBS, 5 mM final concentration), different volumes of extracts
from a sample stock solution of 50 mg/mL (concentrations 0.1-5 mg/mL) plus sufficient
volume of PBS 10 mM pH 7.4 with 0.02% sodium azide to achieve 1 mL of the mixture final
volume. Sample blanks consisted of the samples (different concentrations) with sufficient
volume of PBS to achieve 1 mL of the mixture final volume (intrinsic fluorescence of the
samples). Positive control was prepared by mixing 500 µL BSA, 25/50 µL 5/10mM MGO
and 475/450 µL PBS, as previously explained. Aminoguanidine (AG) was used as reference
(1, 4 and 8 mM final concentrations) mixed with BSA, MGO and PBS. All stock solutions
were prepared in PBS 10 mM pH 7.4 with 0.02% sodium azide. Eppendorf tubes were
incubated at 37 ◦C for 7 days. Fluorescence measurements were performed at 340 and
420 nm of excitation and emission wavelengths, respectively, and inhibition percentages
were calculated by taking positive control as 100% of AGEs formation.

Pancreatic lipase inhibition capacity was determined as described in Fernández-
Fernández et al. [14]. Measurements were determined after 30 min incubation at
25 ◦C by fluorescence measurements at 360 nm and 460 nm of excitation and emis-
sion wavelengths, respectively.

2.3.6. TC7-Cell Culture and Sample Deposits

TC7-cells were routinely grown according to Benzaria et al. [21,22] with minor changes
in 75 cm2 sterile cell culture flasks in phenol red-DMEM culture medium. TC7-cells
(passages 41-49) were seeded in sterile 12-well plates (3.5 cm2/well; Nunc, VWR, Fontenay-
sous-Bois, France) at a density of 2.5 × 105 cells/well (1 mL of cell suspension/well) then
cultivated at 37 ◦C in controlled atmosphere (8% CO2, 92% air, 100% relative humidity, RH)
(Thermo Scientific 8000 incubator, Thermo Electron, St-Herblain, France) for 19–20 days
to reach cell-confluence and obtain differentiated cells, the culture medium (phenol red-
DMEM supplemented with 20% v/v heat-inactivated FBS, 1% v/v penicillin-streptomycin
and 1% v/v MEM non-essential amino acids), being changed every 2 days. Cell confluence
was assessed by transepithelial electrical resistance (TEER; Millicell®-ERS volt-ohm meter,
Millipore, St-Quentin-en-Yvelines, France) measurements before deposing extract samples
onto the cells. For TEER measurements, cells were grown in sterile Transwell plates with
ThinCert inserts (3 µm pore size; 1.13 cm2/well; Greiner Bio-one, VWR International,
Fontenay-sous-Bois, France) at a density of 2.5 × 105 cells/well, obtaining TEER values of
750–800 Ω cm−2. Cell confluency of the cell cultures was also checked by inverse phase
microscope examination.

After washing using Phenol red-free DMEM, differentiated TC7-cells were incubated
for 3 h or 22 h at 37 ◦C in controlled atmosphere (8% CO2, 92% air, 100% HR) with 500 µL of
extract mixture or control sample. Exposure times (3 h or 22 h) were chosen on the basis of
previous experiments [22], and taking into account the open time necessary to prepare cell
series. All cell seeding and sample deposit experiments were carried in sterile conditions
under a laminar flow cabinet (PSM MSC Advantage, ThermoFisher Scientific, St-Herblain,
France), using 0.2 µm filtrated media, sterile solutions and sterile plastic material (pipets,
tips, flasks, plates, microplates, Eppendorf® and Falcon® tubes).

Ethanolic and aqueous extracts were assayed on TC7-cells for a range of lyophilized
extract concentrations in the cell deposit medium. For this, a 56.6 mg of lyophilized
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ethanolic extract (Me) was solubilized into 1 mL of 80% Ethanol (Ethanol/Water 80:20, v/v),
and 28.3 mg of lyophilized aqueous extract (Mac) into 1 mL of sterile distilled water, due
to its solubility. Various concentrations of lyophilized extracts were then prepared ranging
from 0.88 to 56.6 mg/mL in 80% Ethanol for Me, and ranging from 3.54 to 28.3 mg/mL
in sterile distilled water for Mac. In the case of HP extracts, samples were solubilized in
the range 0.88–14.2 mg/mL in 80% Ethanol for Me HP, and in the range 3.54–28.3 mg/mL
in sterile distilled water for Mac HP. Mixtures of 100 µL of the latter extract solutions and
1.9 mL of Phenol red-free DMEM were then prepared for cell deposit in 12-well plates. A
500 µL of mixture per well was deposed onto TC7-cells in triplicate. Control samples were
also prepared using Phenol red-free DMEM alone, or 1.9 mL Phenol red-free DMEM plus
100 µL of one of the following solutions: distilled water, 80% Ethanol, 0.1% Triton X100, or
purified quercetin at 0.156–0.625 mg/mL in 80% Ethanol.

2.3.7. Determination of In Vitro TC7-Cell Membrane Integrity and Cell Metabolic Activity

After 3 h or 22 h of exposure time with Me or Mac extracts, or control samples, the
apical TC7-culture supernatants were collected on ice to determine the lactate dehydroge-
nase (LDH) activity, i.e., LDH-release from cytosols in cellular apical media. TC7-cells were
recovered for the MTT colorimetric determination (i.e., evaluation of cellular metabolic
activity or cell viability), both as described by Benzaria et al. [22] with minor modifica-
tions. LDH-leakage outside TC7-cells was determined to evaluate cellular membrane
damage after exposure to extracts, as an indicative of further cell death. Apical TC7 media
were collected then four-fold diluted (1/4) in Phenol red-free DMEM. A 25 µL of the
latter solutions were added to 96-well plates (8 replicates for each apical diluted medium).
Then, 250 µL of pH 9.3 NAD reagent (1.65 mM NAD, 165 mM KCl, 54 mM L-lactic acid,
108 mM Tris, final) was added per well. LDH induced the lactate oxidation into pyruvate
with the simultaneous reduction of NAD to NADH. NADH absorbance was therefore
measured in plate wells at 340 nm and 37 ◦C over 10 min (Multiskan Spectrum microplate
reader, Thermo Electron, Vintaa, Finland). LDH activity was expressed as the difference
in absorbance values taken at 0 and 10 min. Results were the means of eight absorbance
determinations for each apical cell medium. A positive control was included in the series,
corresponding to high LDH release by exposure of TC7-cells to Triton® X-100 in Phenol
red-free DMEM (0.005% final, v/v).

TC7-cells in plate wells were then recovered for MTT-assay to evaluate cell viability
after 3 h or 22 h of exposure time to Me or Mac extracts at various concentrations, or to
control samples. After washing with Phenol red-free DMEM, cells were incubated for 3 h
with 500 µL/well of MTT reagent (0.15 mg/mL MTT in FBS-free Phenol red-free DMEM)
at 37 ◦C. MTT is reduced into Formazan® by a succinate dehydrogenase in living cells.
After removing MTT solution, Formazan® was recovered by cell-lysing for 30 min at
37 ◦C using 1000 µL DMSO per well. Amounts of 100 µL were then transferred into
96-well plates to measure Formazan® absorbance at 570 nm (Multiskan Spectrum mi-
croplate reader) (8 replicates for each apical cell lysate). The cell ability to reduce MTT
provides an indication of mitochondrial integrity, and therefore of cell metabolic activity
or cell viability. Results were expressed as the means of 8 absorbance determinations for
each apical cell lysate sample.

For each series (“3 h or 22 h of exposure time”), data were pooled from 4 independent
cell culture experiments involving different TC7-cell passages. For Me and Mac extracts,
3 to 4 independent cell culture experiments were carried out on different days, and 1 to
3 for Me HP and Mac HP, each with currently 2-3 apical cell media analyzed per studied
extract concentration.

2.3.8. Marcela Bioactive Compounds’ Uptake

Cellular uptake of marcela compounds was determined after TC7-cell exposure
to Me or Mac extracts for 3 h or 22 h, in triplicate, as described in Section 2.3.6. Me
and Me HP samples were deposed at 0.088–0.354 mg/mL extract onto TC7-cells; Mac
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and Mac HP samples, at 0.71–1.42 mg/mL extract. After cell incubation, the apical
culture media were taken off and the plate-wells washed with DPBS+. TC7-cells were
scratched with 500 µL of cold acidified methanol (methanol with 0.1% v/v acetic acid)
and transferred into Eppendorf tubes for centrifugation at 10,000 rpm and 4 ◦C for
5 min. Methanolic supernatants of centrifugation were kept in brown vials at 4 ◦C until
further analysis by RP-UHPLC as described in Section 2.3.3. Prior to sample injection
(20 µL) in RP-UHPLC, supernatants were dried at 40 ◦C in a conventional stove and
re-suspended in 250 µL of methanol.

2.3.9. Statistical Analysis

All experiments were performed in triplicate and cell studies were performed at least
in three different passages. The statistical analysis was established by analysis of variance
(ANOVA). Results were expressed as means ± standard deviation (SD) (n = 3). Tukey test
was applied to determine significant differences between values (p < 0.05) using Infostat v.
2015 program. Different letters state significant differences when p < 0.05.

In the case of cell studies, the statistical analysis was carried out using Sigma Plot vs.
11.0 program: the pooled data were analyzed by one-way analysis of variance (ANOVA)
with all pairwise multiple comparison procedure (Holm–Sidak test) and an overall signifi-
cance level of 0.05.

3. Results and Discussion
3.1. Chemical Composition

Aqueous and ethanolic extracts resulted in a yield of 6.9 and 3.1% w/w, respectively.
The results of the proximate analysis showed in marcela powder (raw material) high fiber
and carbohydrates contents. Marcela powder contained per 100 g: 4.77 ± 0.02 g proteins,
4.52 ± 0.18 g lipids, 21.01 ± 0.79 g carbohydrates (without fiber), 57.22 ± 0.73 g fiber,
4.94 ± 0.05 g ashes, and 7.54 ± 0.13 g moisture.

As to RP-HPLC (Figure 1A,B), and RP-UHPLC results (Figure 1C,D), the extracts
presented a typical chromatogram as previously reported by De Souza et al. [6] in Achyro-
cline satureioides preparations. According to De Souza et al. [6] the three prominent peaks
correspond to quercetin, luteolin and 3-O-methylquercetin, in order of appearance in the
chromatogram (Figure 1B). In the present study, retention times (RT) were lower because
of using a higher flow (1 mL/min) than 0.6 mL/min. Furthermore, the last prominent
peak at RT 19 min in Me chromatogram (Figure 1B) could correspond to achyrobichalcone
according to Zorzi et al. [23]. Polyphenol profile of marcela extracts in the current study
are also in agreement with those reported by Martínez-Busi et al. [24].

Chromatograms at 370 nm showed that Me extract presents mainly flavonoids such
as 3-O-methylquercetin (30% in the extract as stated in relative area, RA), being in a close
proportion to quercetin (22% RA) (Figure 1B). In contrast, Mac chromatogram at 290 nm
presented mainly phenolic acids (over 65% RA, Figure 1C) compared to flavonoids in which
quercetin (5% RA) is in lower proportion than 3-O-methylquercetin (7–8% RA) as shown
by Mac chromatogram at 370 nm (Figure 1A). These results agree with those reported
by Polydoro et al. [25] where the aqueous extract of Achyrocline satureioides presented the
lowest contents of quercetin, luteolin and 3-O-methylquercetin. Moreover, they found
higher concentrations of the latter compounds in the extract with higher proportion of
ethanol (80%) with similar ratio of quercetin to 3-O-methylquercetin. In the present study,
quercetin was quantified in Mac and Me extracts by RP-HPLC obtaining 1.98 ± 0.13 and
88.9 ± 6.36 mg of quercetin/g extract, respectively. Calculating from quercetin calibration
curve, 3-O-methylquercetin was estimated to 3.3 ± 0.3 mg and 127.1 ± 9.1 mg/g extract for
Mac and Me, respectively. The Me extract in the present study showed greater quercetin
content than the marcela aqueous extracts prepared by maceration and ultrasound-assisted
extraction reported by Guss et al. [26].
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Figure 1. RP-HPLC chromatogram at 370 nm of samples aqueous extract (Mac 10 mg/mL) (A) and
ethanolic extract (Me 1 mg/mL) (B). RP-UHPLC chromatogram at 290 nm of aqueous extract (Mac
2 mg/mL) (C) and at 370 nm of ethanolic extract (Me 1 mg/mL) (D). In order of appearance according
to the retention times: GA, gallic acid; Cl, chlorogenic acid; CA, caffeic acid; Q, quercetin; Lu, luteolin;
3-O-MQ, 3-O-methylquercetin.
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In parallel, Me and Mac extracts were eluted by RP-UHPLC method (Figure 1C,D)
in which, phenolic acids were identified and quantified. The composition in phenolic
compounds is associated with the type of solvent used. Mac was characterized by the
presence of gallic acid (RT 1.1 min), chlorogenic acid (RT 4.6 min) and caffeic acid (RT
5.4 min) with 11.9, 15.1 and 18.7% RA, respectively (Figure 1C) which corresponds to
3.76 ± 0.25 mg of gallic acid, 14.28 ± 0.01 mg of chlorogenic acid and 3.28 ± 0.62 mg of
caffeic acid per g of Mac extract, in agreement with previous reports [27,28].

3.2. Antioxidant Capacity

As to total polyphenol content, aqueous extracts (Mac, Mac HP BL and Mac HP)
presented lower content than ethanolic ones (Me, Me HP BL and Me HP) indicating ethanol
favors polyphenols extraction (Table 1). For ABTS antioxidant capacity (Table 1), the
tendency was different resulting Me as the best, followed by all the other extracts with
no significant differences (p > 0.05). For ORAC-FL antioxidant capacity (Table 1), the
highest antioxidant potential were Mac and Me, followed by ethanolic extracts Me HP
BL and Me HP. When analyzing HP-assisted extracts, both aqueous and ethanolic HP
extracts (Mac HP and Me HP) presented a lower polyphenol content by 3.2% and 7.6%,
respectively (although non-significant, Table 1) when compared to their respective blanks
(Mac HP BL and Me HP BL). Thus, high hydrostatic pressure did not significantly affect
total polyphenol content nor antioxidant capacity when applied at the tested conditions to
the crude extracts dispersed in phosphate buffer or 95% ethanol (Section 2.3.1).

Table 1. Results of total polyphenol content and antioxidant capacity by 2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS) and oxygen radical antioxidant capacity-fluorescein (ORAC-FL) methods of aqueous (Mac,
Mac HP BL and Mac HP) and ethanolic (Me, Me HP BL and Me HP) extracts.

Samples Total Polyphenol Content
(mg GAE/g Extract)

ABTS
(µmol TE/mg Extract)

ORAC-FL
(µmol TE/mg Extract)

Mac 83.36 ± 6.69 c 2.71 ± 0.27 a 2.17 ± 0.10 d

Me 108.79 ± 16.47 d 4.19 ± 0.43 b 2.30 ± 0.07 e

Mac HP BL 44.07 ± 1.97 a 2.06 ± 0.17 a 0.34 ± 0.08 a

Mac HP 42.68 ± 3.55 a 2.30 ± 0.18 a 0.54 ± 0.04 b

Me HP BL 63.00 ± 3.12 b 1.84 ± 0.20 a 1.11 ± 0.08 c

Me HP 58.23 ± 4.51 b 1.88 ± 0.13 a 1.08 ± 0.07 c

Results are expressed as mean values ± SD (n = 3). ANOVA analysis was performed by column using Tukey test to state significant
differences. Different letters indicate significant differences (p < 0.05) between values in the same column. Sample solutions were prepared
in triplicate and assayed in triplicate. Marcela aqueous (Mac) and marcela ethanolic (Me) extracts. Marcela aqueous high pressure-assisted
(Mac HP) and marcela ethanolic high pressure-assisted (Me HP) extracts. Blank of marcela aqueous HP (Mac HP BL) and marcela ethanolic
HP (Me HP BL) extracts (Section 2.3.1).

Compared to other studies, these extracts presented similar total polyphenol content
to the marcela extracts reported by Ferraro et al. [29] (23.0-112.6 mg GAE/g) with the
highest polyphenol content, observing a correlation with antioxidant capacity determined
by DPPH. In contrast, Guss et al. [26] reported greater polyphenol content and ABTS
antioxidant capacity (i.e., lower IC50 value) of marcela maceration and ultrasound-assisted
ethanolic extracts. In the current work, Me IC50 value was of 354 ± 25 µg/mL compared to
21.8 ± 0.8 and 21.3 ± 0.4 µg/mL for marcela maceration and ultrasound-assisted ethanolic
extracts [26]. Marcela ethanolic extract (Me) presented higher total polyphenol content
when compared to other medicinal herbs such as Mentha x piperita L., Peumus boldus Mol.
and Baccharis trimera Iless. aqueous and ethanolic extracts [30], as well as antioxidant
capacity. In contrast with Irazusta et al. [30] results, marcela aqueous extract showed
lower antioxidant capacity than ethanolic extract. Antioxidant capacity of crude methano-
lic extracts of native Australian mint and common spearmint showed 398.5 ± 19.3 and
403.5 ± 14.8 µmol TE/g extract for ABTS, and 1727.2 ± 183.5 and 1551.1 ± 137.4 µmol
TE/g extract for ORAC-FL, respectively [31], presenting lower antioxidant capacity than
Mac and Me extracts in the present study (Table 1).
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3.3. Antidiabetic Activities

α-amylase and α-glucosidase inhibition capacities were assessed (Figure 2A,B) as a
strategy for post-prandial plasma glucose level regulation through delay/inhibition of
complex carbohydrates hydrolysis during digestion, such as starch, causing lower glucose
absorption [14]. For α-amylase inhibition (Figure 2A), acarbose and quercetin presented
the highest inhibitions with IC50 values of 34.1 ± 0.8 and 2.4 ± 0.2 µg/mL, respectively. As
to the extracts, aqueous extracts presented very low inhibition at the tested concentrations
(up to 25 mg/mL, data not shown), in contrast with ethanolic extracts which showed
IC50 values of 515 ± 44 (Me), 2900 ± 51 (Me HP BL) and 7974 ± 422 µg/mL (Me HP),
demonstrating HP negatively affects α-amylase inhibition capacity. Moreover, quercetin
seems to be one of the responsible for ethanolic extracts inhibition capacity, because of
being one of the main compounds present in the latter extracts.
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Figure 2. (A,B) Dose-response curves of α-amylase (A) and α-glucosidase (B) inhibition capacities expressed as % inhibition
vs. sample concentration (mg/mL). (C) Inhibition capacity (%) of fluorescent AGEs formation with methylglyoxal (MGO) at
5 or 10 mM by different sample concentrations (mg/mL). (D) Dose-response curves of pancreatic lipase inhibition capacity
expressed as % inhibition vs. sample concentration (mg/mL). Samples are: marcela aqueous (Mac) and ethanolic (Me)
extracts, marcela aqueous HP (Mac HP) and ethanolic HP (Me HP) extracts. Blank of marcela aqueous HP (Mac HP BL) and
ethanolic HP (Me HP BL) extracts. Acarbose was used as α-amylase and α-glucosidase inhibitory agent (A,B). Orlistat was
used as lipase inhibitory agent (D). Quercetin, caffeic acid, gallic acid and chlorogenic acid were used as standards (A,B,D).

For α-glucosidase inhibition (Figure 2B), acarbose (IC50 = 4.0 ± 0.3 µg/mL) and
chlorogenic acid (IC50 = 69.1 ± 1.6 µg/mL) presented the highest inhibition capacity
(lowest IC50 value). Mac extract presented an IC50 value of 150.8 ± 54.0 µg/mL, and
157.6 ± 23.3 µg/mL was found for Me extract with no significant differences (p > 0.05). For
Mac HP and its blank (Mac HP BL), IC50 values were 2973.1 ± 403.2 and
5392.0 ± 437.1 µg/mL respectively (significant difference for p < 0.05), stating bioactive
compound extraction was favored by high hydrostatic pressure. In the case of Me HP
and its blank (Me HP BL), IC50 values were 2587.3 ± 214.5 and 2211.1 ± 196.0 µg/mL,
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respectively, negatively affecting bioactivity by HP but with no significant differences
(p > 0.05).

In accordance with the present work, quercetin has shown to possess more α-amylase
inhibition capacity than acarbose [32]. Furthermore, other extracts from medicinal
plants/herbs (Vietnamese and Amazonian plants, Agrimonia asiatica, species of Myrcia
genus and Euphorbia hirta herbs) possessing phenolic acids (e.g., gallic acid) and flavonoids
(quercetin and/or quercetin derivatives, and luteolin) like marcela extracts, have shown
antidiabetic properties (α-amylase and α-glucosidase inhibition capacity) [33–36]. Particu-
larly, Euphorbia hirta L. extract has shown to lower fast blood glucose level after 4 h and a
significant reduction after 15 days treatment in streptozotocin-diabetic mice [36]. Guava
(Psidium guajava L.) leaves possessing gallic, caffeic and chlorogenic acids, and quercetin,
among others, have also shown antidiabetic properties [37]. The latter reports show the
potential that marcela extracts could have as functional ingredients.

As another strategy for diabetes complications prevention/treatment, there is the
inhibition of AGEs formation. Figure 2C showed maximum inhibition (close to 100%) of
AGEs formation for Me extract at all the concentrations tested (0.1–5 mg/mL) in contrast
with Mac extract that presented an increased inhibition trend with increasing concentration,
although not significant (p > 0.05). This indicates that Me presents higher antiglycant
capacity than Mac. Moreover, extracts did not present any differences when compared
to methylglyoxal (MGO) at 5 and 10 mM. Inhibition capacity was not affected by MGO
concentration at the tested concentrations (5 and 10 mM). Other medicinal herbs used as
infusions, like marcela, have shown to inhibit AGEs formation such as Mentha x piperita
L., Peumus boldus Mol. and Baccharis trimera Iless. [30] in a similar level as marcela extracts.
Ethanolic extracts of ten common household condiments/herbs (Allium sativum, Zingiber
officinale, Thymus vulgaris, Petroselinum crispum, Murraya koenigii Spreng, Mentha piperita
L., Curcuma longa L., Allium cepa L., Allium fistulosum and Coriandrum sativum L.) showed
correlation between total polyphenol content, antioxidant capacity and anti-glycant ca-
pacity [38], showing the same tendency when comparing marcela aqueous and ethanolic
conventional extracts. Ethanolic extract (Me) showed higher total polyphenol content,
antioxidant and anti-glycant capacity than aqueous extract (Mac).

3.4. Antiobesity Activity

Lipase inhibition capacity was determined (Figure 2D) as a strategy for post-prandial
fat absorption control during digestion by delay/inhibition of triglycerides hydrolysis
into free fatty acids, leading to lower fat absorption [14]. Mac extract presented an IC50
value of 1.471 ± 0.103 mg/mL and ethanolic extract (Me) 0.219 ± 0.028 mg/mL, the latter
having no significant difference (p > 0.05) with Orlistat IC50 value (1.9 ± 0.2 µg/mL). Mac
HP extract presented very little inhibition at the tested concentrations (0.1–10 mg/mL)
and lower for its blank without pressure (Mac HP BL) (data not shown). Me HP extract
presented an IC50 value of 2.025 ± 0.053 mg/mL and its blank without HP (Me HP BL) of
1.634 ± 0.038 mg/mL, the latter having no significant differences with Mac (p > 0.05).
Considering all extracts, ethanolic extracts presented the best inhibition capacity, although
HP negatively affected the inhibition capacity when compared to the blank (increased IC50
value of Me HP compared to Me HP BL) with significant differences (p < 0.05). Aqueous
extracts seems to be more bioactive with applied high temperature (boiling extraction,
Section 2.3.1) and for ethanolic extracts, it seems as if time was a key factor for bioactive
compounds solvent extraction.

In parallel, polyphenol standards were tested finding IC50 values of 4.566 ± 0.231,
0.332 ± 0.032 and 0.012 ± 0.001 mg/mL for caffeic, gallic and chlorogenic acids, respectively,
stating gallic and chlorogenic acids as the main responsible for Mac antiobesity activity.
Chlorogenic acid presented no significant differences with Orlistat (p > 0.05), followed by
gallic acid, with no significant differences with Me (p > 0.05), and by quercetin with an
IC50 value of 1.105 ± 0.065 mg/mL (data not shown). In accordance with the present work,
quercetin (25 µg/mL) has already been reported for inhibiting porcine pancreatic lipase by
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a 27.4% [39]. Caffeic acid presented the lowest inhibition capacity of the samples tested in
the current work (p < 0.05).

3.5. Cell Studies

Results of cell membrane integrity through LDH-assay after 3 h of exposure time to Me
extract (Figure 3A) showed a significant increase in LDH activity up to a maximum being
of Triton level (positive control for cell membrane disruption), for 0.35 and 0.71 mg/mL of
final extract in cell deposit media, which corresponds to 0.104 and 0.208 µM/mL quercetin
in Me, respectively. From 0.71 to 2.83 mg/mL of final Me extract in cell deposit media,
LDH activity decreased down to DMEM value (negative control) which could be explained
by a solubility loss of Me constituents (initially soluble in 80% Ethanol) at the highest
concentrations in the cell deposit medium (i.e., in DMEM) during incubation. Indeed, it
was checked by absorbance measurement at 370 nm of Me deposit mixtures, as carried
out before and after centrifugation (1200 rpm for 4 min, 30 ◦C), a decrease in absorbance
by 13.6%, 21.4% and 39.4%, for the 0.71, 1.42 and 2.83 mg/mL extract concentrations,
respectively, due to some precipitate formation. Such precipitate could correspond to the
most hydrophobic compounds and/or marcela fibers contained in Me extract (initially
soluble in 80% ethanol, but no more in DMEM, i.e., an aqueous dispersion of amino-acids,
vitamins, salts and glucose). Such precipitate on cell monolayers could limit the access of
harmful compounds to the cell membrane, and therefore membrane damage. We have
checked that the deposit of Me extract at the highest concentrations after centrifugation
to exclude insoluble compounds displayed similar LDH activity values (data not shown)
than that obtained without centrifugation (Figure 3). Such precipitate was not observed for
Mac extract at the studied concentrations.

For Mac extract, values of LDH activity after 3 h incubation at the tested concentra-
tions (0.177–1.42 mg/mL in cell deposit media) were maintained below 25% of Triton®

value indicating no noticeable cell-membrane damage compared to control samples
(DMEM ± water or ethanol) (Figure 3A).

For Me HP sample, LDH activity increased with the extract concentration as for
the non-HP processed sample but significantly less steeply, presenting a maximum at
0.71 mg/mL, close to Triton level, as for the non-HP processed Me. In contrast, Mac HP
sample maintained cell membrane integrity at all tested concentrations (0.177–1.42 mg/mL
in cell deposit media) such as quercetin solutions (0.026–103 µM/mL), and close to DMEM
level (negative control). A lower extraction of polyphenols during HP aqueous extraction
might be the reason for the maintenance of cell membrane integrity, supported by total
polyphenol content and bioactivity results shown above.

Generally speaking, LDH activity was higher after 22 h than 3 h of exposure time to
all extract samples, and especially in the case of Me and Me HP samples (Figure 3A,B). Me
induced a marked increase in LDH activity being of Triton level from lower concentrations
(0.088–0.35 mg/mL in the cell deposit medium) than after 3 h incubation, followed by a
significant decrease in LDH activity at ≥1.42 mg/mL extract. As previously explained for
3 h incubation, a decrease in Me constituent solubility at the highest studied concentrations
(1.42–2.83 mg/mL) in cell deposit media probably explained the observed decrease in LDH
activity. Such decrease in LDH activity was associated to a positive level of cell metabolic
activity as evaluated by MTT-assay (Figure 3C,D).

For Mac extract, LDH activity after 22 h incubation was ≥ to that observed after
3 h, remaining ≤31% of Triton level and showing no noticeable or little cell membrane
damage. For Me HP, the cell membrane integrity loss was significantly higher than after
3 h incubation and close to that observed for the non-HP processed sample. Mac HP and
quercetin standard showed low LDH activity, ≤29% of Triton level indicating no or little
cell membrane damage.
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Figure 3. TC7-cell membrane integrity determined by LDH activity after 3 h (A) or 22 h (B) incubation, and TC7-cell
viability assessed by MTT-assay after 3 h (C) or 22 h (D) incubation. Incubation of TC7-cells in the presence of marcela
ethanolic extract (Me) or marcela aqueous extract (Mac) with or without HP-processing (HP), or purified quercetin (Q).
Concentrations are expressed in mg/mL of marcela extracts or purified quercetin in the apical cell medium. Dulbecco’s
modified Eagle medium (DMEM) (±water or ethanol) was used as negative control and Triton as positive control. Bars and
error bars represent the mean values and standard deviation, respectively. For each figure, the different letters on bars state
significant differences for p < 0.05.

As for cell metabolic activity, MTT-assay after 3 h of exposure time (Figure 3C) showed
significant increases in cell viability for Me and Mac samples comparing with control
samples (DMEM ± water or ethanol), indicating some benefit effect of both extracts on
TC7-cells. For Me extract, a high metabolic activity was maintained with increasing concen-
tration with a maximum at 0.177 mg/mL extract in the cell deposit medium, corresponding
to 0.052 µM/mL quercetin. For Mac extract, cell viability progressively increased with
the extract concentration in cell deposit media reaching a maximal value for a higher con-
centration (1.42 mg/mL) compared to Me (0.177 mg/mL), suggesting different metabolic
mechanisms for both extracts due to their composition. In contrast, purified quercetin
deposed at 0.026 to 0.103 µM/mL (i.e., 0.0078 to 0.031 mg/mL) in apical cell media did
not induced some significant improvement in cell viability compared to control samples
(DMEM ± water or ethanol), and remained well below Me extract deposits containing simi-
lar quercetin amounts (0.088–0.354 mg/mL Me extract with 0.026–0.104 µM/mL quercetin).
Me and Me HP extracts displayed similar MTT-profiles as a function of extract concentra-
tion, indicating no particular benefit or detrimental effect from HP-process. In the opposite,
Mac HP presented the same tendency as Mac but with lower values remaining at the
quercetin or DMEM level, possibly due to lower total polyphenol content (Table 1).
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Higher increases in cell metabolic activity was observed (Figure 3D) after 22 h than
3 h of exposure to Me extract at its lowest studied concentrations (0.044–0.088 mg/mL in
cell deposit media), but not at higher concentrations (namely 0.177–0.71 mg/mL) prob-
ably due to an excessive cell membrane damage as assessed by cellular LDH-leakage
(Figure 3B). Figure 3D shows similar viability profiles for Me and Me HP samples after
22 h than 3 h of exposure, suggesting no detrimental effect from HP-process on ethano-
lic extraction. Higher increase in cell metabolic activity was observed after 22 h than
3 h of incubation with Mac extract in the range 0.354–1.42 mg/mL in apical cell media,
due to the longer exposure time without noticeable cell membrane damage. In the case
of Mac HP, the longer incubation time (22 h) did not improve the observed cell metabolic
activity comparing with DMEM controls, possibly due to low polyphenolic content shown
in Table 1.

Taking into account the whole results, the ethanolic extract displayed higher effects
on TC7-cells than the aqueous extract at similar tested concentrations, with a dose-time
dependence coupling mechanisms both inside the cells after constituent uptake (i.e., cell vi-
ability) and at the cell membrane surface (i.e., membrane integrity). It would be interesting
to identify both kinds of active constituents.

Me and Me HP appears beneficial to TC7-cell metabolic activity at the lowest tested
concentrations (0.044–0.177 mg/mL extract) and exposure time (3 h). However, higher
concentrations (0.35–0.71 mg/mL extract) and exposure time (22 h) induced dramatic LDH-
leakage. Indeed, a loss of cell-membrane integrity leads to further cell dysfunction then
death. In contrast, Mac extract induced increased cell metabolic activity with increasing
extract concentrations and exposure time, without noticeable loss of membrane integrity.
However, the HP process led to a significant loss of its beneficial bioactive properties.

The fact that Me induced high levels of membrane damage and, simultaneously a
high metabolic activity could result from a lag time between both mechanisms: membrane
damage and decrease in mitochondrial activity; mitochondrial activity was still operating
while the membrane started to be significantly damaged.

Purified quercetin deposed on TC7-cells at 0.026 to 0.103 µM/mL did not significantly
increase cell metabolic activity as evaluated by MTT-assay, which does not highlight some
prominent role of aglycone quercetin.

Previous reports of Polydoro et al. [25] showed ethanolic extracts (40 and 80% of
ethanol) cytotoxicity assessed on Sertoli cells from Wistar rats at a concentration of
0.125 mg/mL with less than 80% of cell viability. Quercetin showed cytotoxicity [25]
at high concentration (0.25 mg/mL or 0.827 µM/mL) which is higher than in the current
study (0.026–0.103 µM/mL). Hence, the cytotoxicity observed by cell membrane disruption
(LDH-assay) induced by ethanolic extracts in the present study might be displayed by
other bioactive compounds than aglycone quercetin.

The RP-UHPLC analysis of TC7-cell methanolic extracts (Section 2.3.8) was carried
out to detect the possible compound uptake by TC7-cells through their exposure to Me or
Mac extracts compared to control DMEM. What was shown by RP-UHPLC chromatograms
at 290 nm and/or 370 nm (Figure 4A–J) is outlined below.

A marked peak clearly appeared at 5.3 min on chromatograms at 290 nm, for most cell-
extract samples after 3 h or 22 h incubation, included DMEM control samples. The latter
peak detected at 290 nm but not at 370 nm, and that absorb in the UV 200–295 nm range
with a maximum at 285 nm (Figure 4E), could correspond to aromatic aminoacids/peptides
and protein material present in the living cells. A set of 5 to 6 ‘intermediate peaks’ that
could be also interpreted as cellular metabolites were detected in the 11.6–17.4 min range
at 290 nm but not at 370 nm (Figure 4E,F,I,J) for some cell-extract samples included the
DMEM control sample after 22 h. Consequently, looking at the chromatograms at 370 nm
that exclude the latter peaks highlights the possible presence of flavonoids that absorb at
370 nm.
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Figure 4. TC7-Cell uptake of marcela aqueous (Mac) and ethanolic (Me) extracts’ compounds after 3 or 22 h of incubation.
(A) TC7-cell methanolic extract (Section 2.3.8) for control DMEM. (B) Crude marcela aqueous extract (2 mg/mL) given
for comparison. (C–J) TC7-cell methanolic extracts (Section 2.3.8) for Mac 1.42 mg/mL (C), Mac HP 1.42 mg/mL (D), Me
0.177 mg/mL and UV 200-295 nm spectrum for the 5.3 min peak allegedly amino-acids/protein material (E), Me
0.177 mg/mL (F), Me HP 0.177 mg/mL (G), Me 0.354 mg/mL (H), Me 0.088 mg/mL (I,J). Mac and Me concentrations in
TC7-Cell apical media, incubation times, and elution wavelength are indicated. Figures can be amplified on the screen.
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Chromatograms of Mac TC7-cell-methanolic extracts at 370 nm (Figure 4C,D) did not
show the typical peaks corresponding to standards of gallic, chlorogenic and caffeic acids
(visible at 290 nm, Figure 1C and 370 nm Figure 4B) which presented retention times of
1.1 min, 4.6 min, 5.4 min, respectively, nor the set of specific peaks visible in the crude
aqueous extract in the 12-16.4 min RT range (Figure 4B).

In the opposite, the 3 peaks of Quercetin (18.0 min), Luteolin (18.3 min) and 3-O-
methylquercetin (19.4 min) detected in Me crude extract at 290 nm (not shown) and
more strongly at 370 nm (Figure 1D), were revealed in Me and Me HP cell-methanolic
extracts analyzed at 370 nm comparing with the flat DMEM chromatogram (Figure 4A):
indeed, traces for quercetin and luteolin at 18.1–18.4 min, plus a clear emerging peak at
19.4 min attributed to 3-O-methylquercetin were visible on Figure 4F–H,J. The lower ratio
of quercetin to 3-O-methylquercetin found in Me TC7-cell-methanolic extracts comparing
with the crude Me (Figure 1D) suggested that quercetin was poorly absorbed into TC7-cells,
or further degraded/excreted in cell supernatants. Such a result was in accordance with
the absence of visible peak on chromatograms at 370 nm, in the case of cell exposure to
purified aglycone quercetin for 3 h or 22 h (not shown). It has been demonstrated that
methylated flavonoids are better absorbed into Caco-2 cells and present a higher resistance
to microsomal oxidation than their corresponding non-methylated aglycone forms [40,41]
which could simply explain the present results. As indicative of the compound uptake
by TC7-cells shown in Figure 4, and as estimated on the basis of chromatogram peak
areas, the retained quercetin represented 0.44 ± 0.08%, 0.24 ± 0.01% and 0.16 ± 0.03% of
the quercetin present in Me deposits in the case of Figure 4F,H,J, respectively. Similarly
estimated, the uptake of 3-O-methylquecetin represented 6.86 ± 0.72%, 1.91 ± 0.15%
and 4.91 ± 0.43% of the 3-O-methylquecetin contained in Me deposits in the case of
Figure 4F,H,J, respectively. Small peaks at 22.5 and 23.5 min were also noticed after 3 h
incubation (Figure 4F,G,J) suggesting the presence of newly formed derivatives at higher
RT values (Figure 1B,D). More experiments are needed to achieve a quantitative evaluation
of cellular uptake and thorough identification of the retained molecules.

By comparison, Mac and Mac HP samples, although deposed onto TC7-cells
at higher extract concentrations (0.71–1.42 mg/mL) than Me and Me HP samples
(0.088–0.354 mg/mL), revealed no peak or non-quantifiable traces on chromatograms
at 370 nm in the RT range characteristic of flavonols (Figure 4C,D). These findings were
in accordance with UV-Vis spectra of marcela crude extracts and TC7-cell methanolic
extracts (Figure 5A,B). Indeed, while a main band (band 1) characteristic of flavonols
[6,24,42] was observed at 350–365 nm in both crude Me (Figure 5A) and Me TC7-cell-
methanolic extracts (Figure 5B), such a band was not found in crude Mac and Mac
TC7-cell-methanolic extracts. This agrees with the fact that Mac contains low amounts
of quercetin (2 mg/g aqueous extract) compared to Me (89 mg/g ethanolic extract),
as well as much lower amounts of 3-O-methylquercetin (Figure 1). Mac TC7-cell-
methanolic extracts displayed high UV absorption at 220 nm plus a broad peak with a
maximum at 260–263 nm (Figure 5B). Such UV-bands also present for control DMEM
could correspond to cellular material (hydrophobic amino acids/nucleic acids) solubi-
lized by methanol during the cell-extraction step. The higher UV-light absorption in the
220–280 nm range observed for Mac and Me TC7-cell-methanolic extracts compared to
control DMEM (Figure 5B) may be an indicative of enhanced TC7-cell metabolic activity
induced by marcela extracts as demonstrated by MTT-assay (Figure 3C).
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Figure 5. (A) UV-Vis spectra of crude aqueous extract (Mac), crude ethanolic extract (Me) and purified aglycone quercetin
from Sigma, diluted in methanol at the indicated concentrations for absorbance measurement. Absorption maxima
characteristic of: (1) B-ring absorption (band I) of flavonols (glycosylated Q, 3-O-MQ) and flavones (Lu); (2) hydroxycinnamic
acid shoulder, flavanones, all phenolic compounds; (3) shoulder for most flavonols and flavones; (4) A-ring absorption
(Band II) of flavonols, flavones; (5) hydroxycinnamic acids; (6) hydroxybenzoic acids and flavanols. (B) UV-Vis spectra
of TC7-cell methanolic extracts after 3 h incubation with control DMEM, Mac or Me mixtures deposed at the indicated
concentrations in TC7-cell apical media.
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It is known that quercetin has highly variable and poor bioavailability, still quercetin
aglycone intestinal absorption in Caco-2 cells occurs by passive diffusion and organic anion
transporting polypeptide. In contrast, glycosylated form of quercetin are deglycosylated at
the small intestine prior to absorption followed by quercetin metabolization through Phase
II conjugation at the small intestine involving methylation, glucuronidation, and sulfation.
Moreover, quercetin glucoside has been found to possess greater bioavailability due to the
presence of the glucoside moiety when compared to quercetin aglycone [43].

Small intestine cell permeability for quercetin and luteolin has already been re-
ported [40], making marcela extracts, mainly ethanolic extracts, rich in potentially bioavail-
able compounds. In addition, methylated flavones that show improved transport through
biological membranes and increased metabolic stability compared to unmethylated flavones
could present a greater oral bioavailability [40,41].

Still, bioaccessibility studies should be assessed in order to determine the stabil-
ity/bioactivity of marcela bioactive compounds after digestion conditions and whether
quercetin is still present in the bioaccessible fraction to be absorbed in the small intestine.
Should this be the case, it would be reasonable to encapsulate the bioactive compounds into
delivery systems such as liposomes or food emulsions to protect them from the extreme
conditions of the gastro-intestinal tract and assess both delivery efficiency and cytotoxicity.

The incorporation of herbal extracts into traditional foods such as yogurts, cookies
and meat sausages has been previously studied [44–47]; evidence suggests that food matrix
and processing conditions must also be taken into account as factors that may influence
bioaccessibility of the polyphenol compounds [48].

4. Conclusions

Achyrocline satureioides aqueous and ethanolic extracts presented different polypheno-
lic composition being characterized by phenolic acids and flavonoids, respectively. The
extracts presented high polyphenol content and great antioxidant capacity determined
by ABTS and ORAC-FL when compared to other medicinal plants, as well as antidia-
betic (α-amylase, α-glucosidase and AGEs formation inhibition capacity) and antiobesity
(pancreatic lipase inhibition capacity) activities. High hydrostatic pressure applied in the
experimented conditions of pressure, pressurization duration and temperature did not
prove to enhance marcela bioactive compounds extraction. Moreover, high hydrostatic
pressure resulted in negative effects on some marcela bioactive properties. TC7-cell studies
showed different tendencies for aqueous and ethanolic extracts as determined by LDH
and MTT-assays, finding no cytotoxicity for Mac extracts at the tested concentrations
(0.177–1.42 mg/mL of extract in apical cell media) compared to conventional ethanolic
extracts that presented increased cell membrane disruption with increasing extract concen-
tration. However, the lowest tested Me concentrations (0.044–0.177 mg/mL of extract in
apical cell media) allowed high TC7-cell metabolic activity with limited cellular membrane
damage. Cellular uptake studies revealed the presence of mainly 3-O-methylquercetin in
Me and Me HP TC7-cell-methanolic extracts analyzed by RP-UHPLC at 370 nm, demon-
strating the uptake of marcela bioactive flavonoids (mainly flavonols) into intestinal cell
monolayers, in the particular case of ethanolic extracts. This suggests that marcela extracts
present great potential as functional food ingredients for the prevention and/or treatment
of chronic diseases.
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