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Abstract

We investigate the approval mechanism (AM) for a common pool resource (CPR) game with three

players, underlining the role of unanimity and majority rules. The game involves two stages. In stage

1, players simultaneously and privately choose a proposed level of extraction from the CPR. In the

second stage, they simultaneously decide whether to approve or disapprove others’ choices. If the group

approves, players’ first stage proposed extractions are implemented. Otherwise, a uniform extraction

level, called disapproval benchmark (DB), is implemented onto each group member. We combine two

approval rules, majority and unanimity, with two DBs, the minimum extraction level (MIN DB) and

the Nash extraction level (NASH DB). These combinations offer four different treatments for testing

the approval mechanism (AM). Our experimental findings show that the AM reduces significantly over-

extraction in each treatment, and that the unanimity rule is more effective than the majority rule to

lower extractions. The MIN DB reduces more group extractions than the NASH DB. Finally, only the

MIN DB with unanimity implements the Pareto-efficient extraction level.
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1 Introduction

In the absence of regulation, self-interested agents will over-extract common pool resources (CPR),

(see e.g. Hardin (1968); Ostrom (1990); Walker et al. (1990)), a socially undesirable outcome which

leads to the so-called CPR dilemma. The CPR dilemma belongs to the wider class of social dilemmas,

i.e. a context in which private interests are conflicting with the collective interest.

The theoretical literature has proposed smart mechanisms designed to mitigate social dilemmas (e.g.

Clarke (1971); Groves (1973); Groves and Ledyard (1977); Green and Laffont (1979); Varian (1994)

or Falkinger (1996)). However, few of them are targeted towards CPR dilemmas, the compensation

mechanism (Varian (1994)) being a notable exception. In this paper we consider the approval

mechanism (AM thereafter) proposed by Masuda et al. (2014) and Saijo et al. (2015, 2018) as a

potential candidate that could help mitigating CPR over-extraction and guarantee its sustainability.

The AM was initially conceived as as solution for public good dilemmas. Its simplicity and parsimony

are attractive properties allowing to consider its application to other types of dilemmas. In addition

the AM can be carried out endogenously by the involved parties, i.e. it does not require a regulator

for its implementation1.

The AM is a two-stage mechanism that introduces a social approval stage before extraction decisions

are implemented. For instance, in the case of voluntary contributions to a public good, the individual

contributions of stage 1 are publicly revealed and submitted to collective approval in stage 2. In case

of approval the first stage decisions are implemented, otherwise some pre-announced benchmark

contribution is enforced onto each group member, the disapproval benchmark (DB thereafter).

Masuda et al. (2014) and Saijo et al. (2015, 2018) established, theoretically and experimentally, that

1Of course, its enforcement requires an intervention by a third party, as any other mechanism.
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the AM solves the social dilemma in the case of the prisoner’s dilemma game and in the two-player

linear public good game.

Yao et al. (2021) provided experimental evidence that the AM can also be effective in the case of a

two-player CPR dilemma. The CPR game with the AM proceeds alike the public good game: in the

approval stage players can reject the stage 1 extraction proposals in which case a uniform extraction

level is imposed onto each player. Otherwise the stage 1 proposals are simply implemented.

So far, the evidence about the effectiveness of the AM is restricted to the case of two-player games.

In this paper we propose an extension to the case of three players, theoretically and experimentally.

The effectiveness of AM in CPR with three players has never been assessed. The three-player

extension raises a non-trivial issue about the approval mechanism, as it allows for various approval

rules, e.g. unanimity, majority, consensus or dictatorship. In particular, the distinction between

majority and unanimity, which is irrelevant in the two player case, becomes meaningful in the three

player case. Each rule determines a different set of equilibria for the extraction game. In addition,

the possible equilibria depend also on the DB. In the case of voluntary contributions, the Nash

contributions and the minimum contribution were both considered by Masuda et al. (2014). Other

possibilities are the maximum, the mean or the median contribution. More generally, the DB is a

function of the vector of proposals. In this paper we consider the same rules as in Masuda et al.

(2014), i.e. the NASH DB and the MIN DB2.

We contribute to the literature in two ways. First, we study the effectiveness of the AM in the

context of a CPR dilemma with a non-linear payoff function. The latter property implies that both

the Nash extraction and the efficient extraction are in the interior of the players’ strategy sets3. In

contrast, in the linear public good game considered by Masuda et al. (2014), the Nash equilibrium is

the null contribution and the efficient outcome is the full contribution (each player contributes her

whole endowment at the social optimum). Second, we consider a three player game, which allows us

2Because of the quadratic form of the payoff function in the CPR game, one of the properties of the AM, ”vol-
untariness” discussed by Masuda et al. (2014), cannot always be satisfied. This issue is extensively discussed in Yao
et al. (2021)

3Saijo et al. (2017) showed that the non-linearity of the payoff function combined with a sufficient number of
players (n ≥ 4) can lead to fundamental instability of the Nash equilibrium and to a a worse outcome than the Nash
extraction level.
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to study two different approval rules: the majority rule and the unanimity rule. Because previous

investigations of the AM considered only two players, such distinction was irrelevant.

In the experiment, participants were randomly assigned to a group of three players for the whole

duration of a session. They received a uniform per period token endowment that they could use

to extract units of resource from a CPR. The extraction game was repeated over 10 rounds. Each

group played two sequences of 10 rounds. Sequence 1 corresponds to the baseline treatment without

the AM: each round consisted of a single extraction stage. In sequence 2 the AM was introduced,

i.e. each round had two stages: the proposal stage (stage 1) and the approval stage (stage 2). In

the proposal stage subjects had to choose their level of extraction. In the approval stage they were

asked to approve or disapprove the extraction vector. Four variants of the AM were considered as

test treatments: the NASH DB with unanimity, the NASH DB with majority, the MIN DB with

unanimity and the MIN DB with majority. Furthermore, in a fifth control treatment we simply

repeated the baseline sequence twice. We distinguish the proposed extractions (stage 1 decision)

from the realized extractions, i.e. the extractions implemented after the approval stage. Our empir-

ical strategy relies on a difference in difference setting based on the contrast between the baseline

treatment and the four test treatments, before and after the introduction of the AM.

Our main goal is to assess experimentally the effect of the majority and the unanimity rules on

the effectiveness of the AM in reducing group extractions. From a theoretical point of view, the

combination of the unanimity rule with the MIN DB achieves the optimum extraction level as an

equilibrium of the game. However, reaching the optimum extraction under the majority rule is

less likely because the two-thirds of the player approval rule allows for a larger set of equilibrium

extraction vectors. Multiplicity of equilibria may eventually lead to lower effectiveness compared

to the unanimity rule. Under the NASH DB with the unanimity rule, multiple equilibria are also

predicted, but the set of equilibria is narrower than under the majority rule. Our experimental in-

vestigation should allow us to better understand the effectiveness of the two approval rules combined

with each DB, and thereby identify the most efficient combination. We first investigate the extent

to which the AM reduces the level of group extraction in a three player game. Second, we compare
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the effectiveness of the majority rule versus the unanimity rule. Finally, we analyze whether and

how the disapproval benchmark affects the effectiveness of the reduction.

Overall, we find that the AM reduces the level of extractions in all test treatments. However, there

are some sharp differences according to the approval rule and the DB. First, with respect to the

approval rule we find that unanimity is more efficient to reduce extractions than majority. Second,

we find that the MIN DB reduces group extraction by a larger amount than the NASH DB.

Third, the combinations of approval rules and DBs have very heterogeneous outcomes. The opti-

mum extraction level is achieved only under the MIN DB with the unanimity rule. The MIN DB

with unanimity is more effective than the MIN DB with majority, which in turn is more effective

than the NASH DB with unanimity and the NASH DB with majority. Finally, unanimity and

majority lead to comparable extraction levels under the NASH DB. The MIN DB is more effec-

tive than the NASH DB because the implementation of the minimum promotes the sustainability

of the CPR. Moreover, the unanimity rule is more effective than the majority rule because, under

majority, some subjects are able to form successfully coalitions that over-exploit the CPR. Inequality

aversion explains to some extent the difference between the mechanisms.

The rest of the paper is organized as follows. Section 2 derives the theoretical predictions. Section 3

describes the experimental design. Section 4 presents the experimental results. Section 5 discusses

the results and section 6 concludes.

2 Theoretical predictions

We consider a symmetric n-player CPR game with n > 2. Each player i is endowed with w > 0,

which he has to allocate between a private activity and a CPR extraction activity. We adopt the pro-

cedure used in previous experiments on CPR games (Walker et al., 1990; Keser and Gardner, 1999;

Cardenas, 2004; Ostrom, 2006; Cárdenas et al., 2015), i.e. players decide about the fraction that

they want to invest in the CPR extraction activity. The complementary fraction is automatically

invested in their private activity. We equate player i’s investment in the CPR with his extraction
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level. Let xi denotes the extraction level of player i, with xi ∈ [0, w]. The group extraction is given

by: X =
∑n

j=1 xj = xi + x−i , and x ≡ (x1, , ..., xi, ..., xn) is the vector of extractions.

The payoff of player i from the CPR extraction activity is given by :

Ri(xi, x−i) =
xi

xi + x−i
[a(xi + x−i)− b(xi + x−i)

2] (1)

The expression in brackets corresponds to the group payoff from the CPR extraction activity. a

and b are positive constants. xi
xi+x−i

is the fraction of the group payoff that is captured by player i.

The group payoff can also be written R(X) =
∑n

i=1Ri(xi, x−i). R(X) is a concave function with a

unique maximum. Therefore, R(X) is increasing when group extraction is low and decreasing when

group extraction if high.

Player i’s payoff from his private activity, Zi(xi), depends only on his own investment in that activity.

We assume a linear payoff function i.e.:

Zi(xi) = p(w − xi), (2)

where p > 0 is an opportunity cost. The total payoff generated by the combination of the two

activities is given by πi(xi, x−i) = Ri(xi, x−i) + Zi(xi).

Let us denote π ≡ (π1, ..., πi, ..., πn) the payoff vector corresponding to the extraction vector of the

group members.

We first state our two benchmark predictions (subsection 3.2.1): the unregulated, i.e. free access

(FA), Nash extraction level, and the Pareto efficient level of extraction. Second (subsection 3.2.2),

we state 5 propositions about the impact of variants of the approval mechanisms on the levels of

extractions.
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2.1 Free access and efficient extractions

Under FA a selfish rational player i chooses xi to maximize his total payoff πi(xi, x−i) given others’

extractions x−i. We consider only the symmetric case.

Proposition 1 (Nash equilibrium): Under FA, the symmetric Nash Equilibrium is given by X∗

and by the vectors xNE and πNE, such that: x∗ = 1
n+1

a−p
b

is the common component of the vector

xNE, π∗ = (a−p)2
b(n+1)2

+ pw is the common component of πNE, and group extraction is X∗ = nx∗.

Proposition 2 (Social optimum): The Efficient extraction, defined by X̂ and the vectors xE and

πE, is given by x̂ = a−p
2bn

, π̂ = (a−p)2
4bn

+ pw and X̂ = a−p
2b

.

Proofs of propositions 1 and 2 are provided in the appendix. Note that the efficient individual ex-

traction and the efficient individual payoff both decrease as the size of the group increases ( ∂x̂
∂n
< 0

and ∂π̂
∂n
< 0) but X̂ does not depend on the group size n .

We next introduce the approval mechanisms. The AM is characterized by a disapproval bench-

mark and an approval rule. We consider two benchmarks: the Nash extraction vector, xNE, and

the minimum extraction vector xmin = (x, ..., x, ..., x), where x= min(x1, ..., xi, ..., xn). We refer to

these benchmarks as the NASH DB and the MIN DB, respectively. We also consider two approval

rules: the unanimity rule and the majority rule. In the CPR extraction game, the AM introduces

a second stage following the first stage extraction proposal, which involves an approval/disapproval

decision. Player i approves in stage 2 if and only if πi(xi, x−i) ≥ πDB, where πDB is his disapproval

benchmark payoff. Under the NASH DB, πDB = π∗ and under the MIN DB, πDB = πmin, where

πmin = πi(x, x). Note that there is an important difference between the two benchmarks: under

the NASH DB players know ex ante the level of the imposed extraction in case of disapproval. In

contrast, under the MIN DB this level is endogenous, and becomes only known ex post at the end

of stage 1.

The inequality πi(xi, x−i) ≥ πDB is satisfied if and only if xi ∈ I = ]xi, x̄i[ where the upper and
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lower bounds, x̄i and xi depend on the type of disapproval benchmark (NASH DB or MIN DB)

and the type of rule (unanimity or majority). The set of equilibria belong to In, the Cartesian

product of I for the n players. We adopt the notation InDB AR to designate the set of equilibria for a

disapproval benchmark DB ∈ {NASH,MIN} and an approval rule AR ∈ {U,M}, where U stands

for unanimity and M for majority.

2.2 Equilibrium extractions under MIN DB

Under the MIN DB the minimum of stage 1’s proposed extractions is implemented in case of

disapproval. Consider the levels of extraction in the set S = [0, w]. Note xi, xj and xk the proposed

extraction by player i, j and k, respectively. The corresponding payoffs are: πl(xi, xj, xk) = axl −

bxl(xi + xj + xk) + p(w− xl), with l ∈ {i, j, k}. Assume that xi = min(xi, xj, xk), such that πmin =

π(xi, xi, xi) = axi − 3bx2
i + p(w − xi). In stage 2 of the MIN DB, player l compares πl(xi, xj, xk) to

π(xi, xi, xi). Thus, player l approves if πl(xi, xj, xk) ≥ π(xi, xi, xi)
4 and disapproves if πl(xi, xj, xk) <

π(xi, xi, xi). We first consider the MIN DB under unanimity and majority, before analyzing the

NASH DB. All proofs are relegated to appendix 1.

2.2.1 MIN DB with unanimity

Under the unanimity rule, a single disapproval by one player is sufficient to achieve group disap-

proval. We rely on backward elimination of weakly dominated strategies (BEWDS) to determine

the equilibrium strategies under the MIN DB.

Proposition 3: The MIN DB with unanimity implements the symmetric Pareto-efficient outcome

in backward elimination of weakly dominated strategies (BEWDS).

The proof of proposition 3 is provided in appendix 1. It proceeds in two steps. In step 1 it shows

that only symmetric extractions vectors are approved, because the player who proposes to extract

the minimum is always better of if he disapproves. Step 2 consists in showing that the symmetric

optimum vector weakly dominates any other symmetric vector.

4In case of indifference we assume that player i approves.
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2.2.2 MIN DB with majority

Let us assume x1 ≤ x2 ≤ x3, with at least one strict inequality, and let Xmin = 3x1 designate the

outcome of the MIN DB.Proposition 4 below applies to any permutation of the extraction vector

among the three players.

Proposition 4: Under the MIN DB with majority, players following BEWDS reject any subgame

if X ≥ α, and accept any subgame that satisfies x2 > x1
α−Xmin

α−X if X < α.

According to proposition 4, asymmetric proposal vectors may be approved by two players, and

therefore constitute equilibria. Such equilibria are possible when the minimum winning coalition

(MWC thereafter) is smaller than the number of players. This is the case in our three player game,

where the MWC consists of two players. Consider the following example: player 1 proposes x̂ while

players 2 and 3 both propose larger extractions. Provided that the upwards deviation from the

optimum extraction is not ”too large” (i.e. above twice the optimum extraction level (α
2
)), players

2 and 3 will both make larger profits if they approve, i.e. πj(x̂, x2, x3) > π̂ for j ∈ {2, 3}. However,

player 1 disapproves because π1(x̂, x2, x3) < π̂. The implication is that players 2 and 3 approve while

player 1 disapproves.

Proof (see appendix 1)

According to proposition 3, the MIN DB with unanimity implements the socially optimum level of

extraction. In contrast, the MIN DB with the majority rule is more permissive because it requires

approval by only 2 players. When MWC = n, we cannot distinguish majority and unanimity,

both give the same outcomes. However, when MWC < n, the majority rule can lead to additional

extraction vectors that would be disapproved under unanimity. For example, under the MIN rule,

the sub-game (x, x + 1, x + 1) is disapproved under unanimity but approved under majority for

x < 2
5
(X̂ − 1). If x < 2

5
(X̂ − 1), player 2 and player 3 (i.e. 2

3
of the players) obtain a larger payoff

by approving than by disapproving.

9



2.3 Equilibrium extractions under the NASH DB

Under the NASH DB the disapproval benchmark is given by the vectors xNE and πNE. In stage 2,

player i approves if and only if πi(xi, x−i) > π∗.

2.3.1 NASH DB with unanimity

Proposition 5: Under the NASH DB with unanimity, players following BEWDS approve all

sub-games in InNASH−U with INASH−U =] 1
n
x∗, x∗[.

The proof of proposition 5 is reported in appendix 1. Intuitively, each player has an incentive to

propose to extract less than the Nash level x∗. Above the optimum extraction level, x̂, a player who

extracts less than x∗ increases both his own and others’ profit. By symmetry of the payoff function,

above x∗

n
extracting more, increases also ones own and the others’ profit. On the other hand, if one

of the players’ proposed extraction falls outside this range, a single disapproval guarantees the Nash

payoff to each one.

2.3.2 NASH DB with majority

Proposition 6:U nder the NASH DB with majority, players following BEWDS approve all sub-

games in InNASH−M with INASH−M =]xi, x̄i[ such that x̄i > x∗ and xi <
x∗

n
.

The proof of proposition 6 can be found in appendix 1. First note that any vector belonging to

INASH−U is also approved when the majority rule prevails. As shown for the unanimity rule, these

extraction vectors lead to higher payoffs for every player compared to the Nash payoff. In addition,

there are some vectors whose components fall outside the INASH−U set that are approved by a MWC

under the majority rule.

In the next section, we design the mechanisms in order to test propositions (3-6) and to assess the

effectiveness of each AM.
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3 Experimental design

The experiment involves 5 treatments which are summarized in table 1. Besides the baseline treat-

ment, we test the impact of four variants of the AM for mitigating over-extraction: the NASH DB

with unanimity, the NASH DB with majority, the MIN DB with unanimity and the MIN DB with

majority. Our CPR game relies on the same calibration as in Walker et al. (1990). Given that

a = 23, b = 0.25 and p = 5, we have x∗ = 6 tokens, x̂ = 4 tokens, X∗ = 18 tokens, X̂ = 12 Tokens,

π∗ = 6 ecus, π̂ = 4 ecus. Each period, each player was endowed with 10 tokens that he had to

allocate between the CPR extraction and the private activity. Note that we reason in terms of token

units rather than in terms of resource units. We made this choice of measurement units in order to

simplify the presentation of the payoff table that was provided in the instructions. The following

conversion rule applies: 1 token = 3 resource units. Walker et al. (1990)’s findings are robust to

our change in units and group size. Our baseline treatment replicates their main result: groups’

extraction efforts are above the Nash extraction level of 18 tokens.

In each test treatment, participants played the CPR game under FA in sequence 1, before playing

the CPR game under the AM in sequence 2. In the baseline the FA was repeated in both sequences.

Each sequence consisted of a repeated extraction game over 10 rounds. All extraction decisions were

made simultaneously and independently without communication5. Each subject participated only

in one treatment. Participants were randomly selected from a large pool of volunteers registered at

the Laboratory of Experimental Economics of Montpellier (LEEM), with no prior participation in

the CPR extraction game. Selected participants were randomly assigned to a session.

The sessions were conducted at the LEEM of the University of Montpellier and programmed with

the z-Tree software (Fischbacher, 2007). 252 participants, split into 84 groups of 3 players, were

involved in the experiment (see table 1). At the beginning of each session, subjects were randomly

assigned to a group of three players. Once constituted, each group remained unchanged until the

end. A session lasted on average one hour and forty-five minutes. Each participant received written

instructions describing the game and the tasks to be performed. The instructions presented the

5Communication was forbidden in the experiment
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extraction possibilities of each group member and his payoff according to his own extraction and the

extraction of the two other group members. The payoff table displayed the total payoff, i.e. the sum

of the payoffs of the extraction activity and of the private activity.6 Several examples were provided

as illustrations to facilitate subjects’ understanding and reading of the payoff table. After a first

reading, the experimenter performed a second reading aloud to implement common knowledge of

the game. After that, subjects were requested to answer a short questionnaire to check their under-

standing of the instructions. At the end of sequence 1, subjects received new instructions. These

instructions detailed the stage 2 decisions that were added to the description of the stage 1 decisions

(except for the baseline). For each version of the AM, the instructions described the consequences

of approval and disapproval, as well as the approval rule (unanimity or majority).

Table 1: Experimental design

AM Treatments
BaselineNASH DB MIN DB

Majority Unanimity Majority Unanimity

Sequence 1: Periods 1-10 FA FA FA FA FA

Sequence 2: Periods 11-20 AM AM AM AM FA

Number of groups
and subjects

17 groups
51 subjects

18 groups
54 subjects

15 groups
45 subjects

19 groups
57 subjects

15 groups
45 subjects

In each period of the CPR game under FA, participants had to decide simultaneously about their

extraction level. At the end of each round, the level of extraction and the corresponding total payoff

of each group member was displayed on the screen of each member of the group. For the CPR game

under AM, each period had 2 stages. In stage 1, each participant proposed an extraction level.

In stage 2, each group member’s extraction level and its associated payoff were displayed on the

screen of every group member. They were reminded of the DB that would be implemented in case

of disapproval: the minimum of all members’ proposals (MIN DB) or the FA Nash contribution

(NASH DB). After that, the computer asked each one to approve [yes] or to disapprove [no], others’

6In a preliminary pilot study of a two-player game experiment, Yao et al. (2021) observed that several subjects
omitted to add the payoffs of the two activities, and therefore reasoned only on the payoff table that corresponded to
the extraction activity.
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proposals. Following this stage, each player in the group was informed about the issue of the approval

stage, the final realized extractions and his total payoff. This information was publicly displayed.

4 Results

This section is organized as follows. In the first subsection we provide descriptive results, in the

second one we introduce our empirical strategy, and in the third subsection we state our main results.

4.1 Summary statistics

Our main objective is to analyze the general relevance of the AM for reducing group extraction. We

therefore concentrate on the two key dimensions of the AM: the approval rule, i.e. the aggregation of

individual approval/disapproval decisions, and the benchmark disapproval outcome, i.e. the default

extraction level in case of disapproval. We compare two approval rules, the unanimity rule and the

majority rule, and two disapproval benchmarks, the NASH DB and the MIN DB (see table 1). By

combining approval rules and disapproval benchmarks, we consider four variants of the AM.

For analyzing the relevance of the AM, we compare the level of group extraction with and without

the AM. Let us remind that all treatments involve two sequences of 10 rounds. The AM is always

introduced in the second sequence (rounds 11-20). We can therefore compare the group extractions

in sequence 1 to those of sequence 2, and contrast the groups in which the AM was implemented

to groups where FA continues to prevail in sequence 2. Furthermore, we analyze the impact of the

approval rule, the disapproval benchmark and their interactions, on group extraction. The sum-

mary statistics presented in table 2 details the average levels of group extraction by sequence and by

treatment. In sequence 1 the level of extraction is above the FA Nash extraction level (18 tokens) in

all treatments and significantly larger (rank-sum test, p = 0.000). This corresponds to severe over-

extraction according to Lindahl et al. (2016), i.e. a level of over-extraction with respect to the social

optimum (i.e. 12 tokens) that is larger than the Nash extraction level (18 tokens), in accordance

with Walker et al. (1990). Besides, the average extraction in the control group is stable in sequence
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1 and in sequence 2.7 After implementing the AM in sequence 2, we observe a sharp drop of the

average extraction level in all treatments. On average, the implementation of the AM reduces the

proposed extraction level by 1.85 and the realized extraction level by 3.87 tokens (rank-sum test,

p = 0.000).

Table 2 also summarizes the data according to the aggregation rule and the type of DB. In fact,

we can also see that the unanimity rule performs better than the majority rule and that the MIN

DB leads to a sharper reduction than the NASH DB.

Table 2: Average group extraction by sequence and the effect of the AM

Sequence 1
Periods 1 – 10

Sequence 2
Periods 11 – 20

Within-group difference

(1)
(2)

proposed
(3)

realized
(4) (5) (6)

Baseline 19.22 19.92 19.92 +0.70 +0.70 0

AM 19.43 17.58 15.56 -1.85 -3.87 -2.02

AM with
Approval Unanimity 19.26 16.59 14.93 -2.67 -4.33 -1.66

Rule Majority 19.63 18.58 16.3 -1.05 -3.33 -2.26

AM with
Disapproval MIN DB 19.33 17.26 13.80 -2.07 -5.53 -3.46
Benchmark NASH DB 19.53 17.89 17.27 -1.64 -2.26 -0.62

Note : AM treatments are in bold. The first three columns show the average extractions by sequence. The last

three columns display the effect of the AM on the reduction of group extraction. (4) = (2)− (1); (5) = (3)− (1) and

(6) = (3)− (2). In sequence 2, the proposed and the realized extractions are distinguished except for the baseline.

We first observe a larger average reduction of the proposed extraction, under unanimity (2.67) than

under majority (1.65). This difference persists for realized extractions: under unanimity the average

reduction is 4.33 and under majority it is only 3.33. To sum up, both aggregation rules lead to

significant reductions of extractions, but the effect is stronger for the unanimity rule than for the

majority rule (rank-sum test, p = 0.000). 8 Second, we observe a similar reduction in the proposed

extraction levels (rank-sum test, p = 0.2265) for the MIN DB and the NASH DB (2.07 and 1.64,

7A small, insignificant (sign-rank test, p = 0.153), increase is however observed, probably generated by the
combination of a restart effect and a learning effect .

8These results also highlight differences between proposed and realized extraction but we only focus on realized
extraction in the following section. Nevertheless, proposed extraction is analyzed in the discussion section.

14



respectively). Concerning realized extractions, the reduction is larger (rank-sum test, p = 0.001) for

the MIN DB than for the NASH DB (5.53 and 2.26 respectively).

Table 3 summarizes the data by combining the aggregation rule and the DB. With the MIN DB, the

average reduction of the proposed extractions is 3.0 tokens under the unanimity rule and 0.89 tokens

under the majority rule, respectively. With the NASH DB the corresponding average reduction is

2.32 tokens under unanimity and 0.92 tokens under majority. Turning to realized extraction, with

the MIN DB the average reduction is 6.09 tokens under unanimity and 4.83 tokens under majority.

The corresponding reductions with the NASH DB are 2.49 tokens and 2.02 tokens, respectively.

Table 3: The combined effect of the disapproval benchmark and the approval rule

Sequence 1
Periods 1 – 10

Sequence 2
Periods 11 – 20

Within-group difference

(1)
(2)

proposed
(3)

realized
(4) (5) (6)

MIN DB with unanimity 18.80 15.80 12.71 -3.00 -6.09 -3.09

NASH DB with unanimity 19.75 17.43 17.26 -2.32 -2.49 -0.17

MIN DB with majority 20.01 19.12 15.18 -0.89 -4.83 -3.94

NASH DB with majority 19.30 18.38 17.28 -0.92 -2.02 -1.10

Note : The first three columns show the average extractions by sequence. The last three columns display the effect

of the AM on the reduction of group extraction. (4) = (2)− (1); (5) = (3)− (1) and (6) = (3)− (2). In sequence 2,

the proposed and the realized extractions are distinguished.

In the next section we will confirm these differences relying on the difference in differences estimation

approach.

4.2 Empirical strategy

We rely on a difference in differences (DiD) specification to obtain an exact identification of the effect

of the implementation of the AM on the level of extraction. The identification strategy is based

on groups and over time variation. To mitigate endogeneity issues, and to infer the causal impact

of the AM on group extraction, we use the implementation of the AM as an exogenous controlled

change. We compare the level of group extraction, before and after the implementation period of
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the AM, in groups where the AM was implemented and in baseline groups (without the AM). We

estimate the parameters of equation:

Yit = α0 + α1(Seq × AM)it + σt + ωi + εit. (3)

Yit is the extraction level of group i in period t, Seq is a dummy variable which is equal to 1 for

t > 10 (sequence 2) and 0 otherwise and AM is a dummy variable that takes value 1 if the AM is

implemented in the group and 0 otherwise. The coefficient of the interaction variable, α1, is the DiD

parameter, which captures the direct marginal effect of the implementation of the AM (in sequence

2 in treated groups). We control for temporal patterns by including period dummies as well as a

sequence dummy variable in σt.
9 We also control for unobserved time-invariant characteristics at

the group level, ωi, acting as group fixed effect. εit corresponds to the error term.

Equation 4 allows to identify the additional effect on group extraction of the majority rule versus

the unanimity rule with respect to the implementation of the AM. The coefficient γ2 of the dummy

variable (Seq×AM×Maj) captures the additional effect in sequence 2 when the AM is implemented

under the majority rule.

Yit = γ0 + γ2(Seq × AM ×Maj)it + γ1(Seq × AM)it + σt + ωi + εit (4)

Finally, Equation 5 captures the additional effect of the disapproval benchmark on the level of group

extraction. This effect is measured by the parameter β2 which corresponds to the interaction variable

(Seq × AM ×MIN) in equation 5.10 β2 measures the additional marginal effect of the MIN DB

with respect to the NASH DB, on top of the effect of the AM which is measured by β1.

Yit = β0 + β2(Seq × AM ×MIN)it + β1(Seq × AM)it + σt + ωi + εit (5)

In the results section, we also measure the combined effect of the approval rule and the disapproval

9The period dummy corresponds to twice 10 periods in order to take into account the 10 periods timing of the
game acting as temporal fixed effects.

10All interactions variables are not displayed in equations 4 and 5 due to exact colinearity. For example, SEQ*MIN
corresponds exactly to Seq*AM*MIN and Seq*MAJ corresponds exactly to Seq*AM*MAJ. )
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benchmark. We do this by measuring the additional marginal effect of the majority rule with respect

to unanimity rule, not only on top of the effect of the AM, but also on top of the combined effect of

the AM with the MIN DB versus the NASH DB.

4.3 Estimation results

We start by examining the effect of different variants of the AM on the level of group extraction.

Figure 1: Average extraction by period

Analogous to table 2, figure 1 displays the evolution of the average group extraction for each treat-

ment by period. As with any difference-in-difference design, the key underlying assumption for

identification is that the control group serves as a valid counterfactual for the treatment group with

parallel trends. Although we cannot explicitly verify this assumption, figure 1 provides some support

by showing that in sequence 1 groups followed a similar pattern of extraction across treatments. In

sequence 1, before the implementation of the AM, the average level of group extraction is similar

across treatments. According to the Kruskal-Wallis test, the average level of group extractions be-

tween baseline and treatment groups do not significantly differ from zero (p = 0.1537). In sequence
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2, however, there is a significantly lower group extraction (rank-sum test, p = 0.000) in treatments

where a variant of the AM is implemented compared to the baseline condition.

We summarize this observation as result 1.

Result 1: The implementation of the AM reduces significantly the level of group extraction.

Support for result 1: Column 1 of table 4 summarizes the estimates of a difference-in-differences

specification of equation 3. The direct impact of the introduction of the AM is a reduction of 4.78

units of the level of realized extraction.11 This result is highly significant.

Table 4: Overall regression results for realized extractions

Realized extractions
Variables (1) (2) (3) (4)

Seq ×AM -4.78*** -5.042*** -2.964*** -2.964***
(0.363) (0.384) (0.376) (0.376)

Seq ×AM ×Maj 1.001***
(0.332)

Seq ×AM ×MIN -3.275*** -3.832***
(0.317) (0.350)

Seq ×AM ×MIN ×Maj 1.263**
(0.523)

Constant 19.27*** 19.27*** 19.27*** 19.27***
(0.248) (0.241) (0.247) (0.241)

Seq − FE yes yes yes yes
Group− FE yes yes yes yes
Period− FE yes yes yes yes
Observations 1,680 1,680 1,680 1,680
R− squared 0.428 0.432 0.465 0.468
F 52.66 52.40 53.65 55.87

Note: Table 4 shows the effect of several variants of the AM on realized group extractions, using DiD estimation.
We account for period fixed effects (Period− FE), group fixed effects (Group− FE) and sequence fixed effect
(Seq − FE). All variables are binary. Robust standard errors are in parentheses. ∗ denotes significance at the
10-percent level, ∗∗ at the 5-percent level and ∗ ∗ ∗ at the 1-percent level.

The overall strong impact of the AM may hide differences across treatments. We therefore address

11It turns to 2.55 tokens when the outcome corresponds to the proposed extraction level as shown in table 7
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the impact of the approval rule on extractions.

Result 2: The reduction in the level of group extraction is lower under the majority rule than under

the unanimity rule.

Support for result 2: We observe that the reduction effect on group extractions is mitigated

under the majority rule with respect to the unanimity rule (see figure 2 and column 2 of table 4).

Column 2 of table 4 details the results of the double difference specification of equation 4. While

the introduction of the AM reduces the level of extraction by 5 units on average, there is a 1 token

attenuation effect under the majority rule. The latter result is once again reinforced by considering

separately the disapproval benchmarks (see figure 2, (KS, p < 5%).

Figure 2: CDF for approval rules

After comparing the effectiveness of the majority rule versus the unanimity rule, we analyze whether

and how the disapproval benchmark affects the effectiveness of the reduction.

Result 3: The MIN DB is more effective than the NASH DB in reducing the level of realized group

extraction.

19



Support for result 3: Figure 3 displays the cumulative distributions of extractions for the MIN

DB and the NASH DB. It seems graphically that the MIN DB second order dominates the NASH

DB. By analogy to figure 3 , column 3 of table 4 presents the results of the double difference

specification of equation 5. The difference with column 1 is that we use additional information on

disapproval benchmarks of a group, in addition to the general AM. While the introduction of the

AM reduces the level of extraction by 2.96 units on average whatever the disapproval benchmark,

there is an additional reduction of 3.27 units when the AM involves the MIN DB rather than the

NASH DB12. The coefficient of Seq × AM ×MIN is negative and significant. It also emphasizes

strong differences between the MIN DB and the NASH DB13.

Figure 3: CDF for disapproval benchmarks

Up to now we considered separately the effectiveness of the AM, either with respect to the approval

rule (unanimity versus majority) or with respect to the disapproval benchmark (NASH DB versus

MIN DB). However, we do not know whether the effectiveness of a given approval rule is affected

or not by the type of disapproval benchmark. As previously underlined, one can observe from figure

12The estimation shows that the outcome of the combination of the effects of AM (2.77) and AM ×MIN (3.3) is
not significant.

13This result is not significant under proposed extraction as shown in column 2 of table 7 (see appendix). The
reduction in the group’s level of proposed extraction does not differ for the MIN DB and the NASH DB
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1 that the introduction of the AM in period 11 reduces the level of group extraction, but also that

this reduction varies strongly across conditions. In addition, after the implementation of the AM,

we observe a continuous decline of the level of extraction with the repetition of the CPR game,

except for the MIN DB with unanimity where we observe a sharp drop in period 11 followed by an

extraction path that converges towards the optimum extraction level.

Column 4 of table 4 shows the additional effect of Maj combined with Seq × AM ×MIN on the

level of group extraction. While the introduction of the AM with the MIN DB reduces the level

of extraction by 6.8 units on average (2.96 + 3.83), there is a one token attenuation effect when

the AM with the MIN DB involves the majority rule rather than the unanimity rule. By anal-

ogy, figure 4 shows that whatever the approval rule, the cumulative distribution of extractions under

the MIN DB first-order dominates the distribution of extractions under the NASH DB (KS, p < 5%)

Figure 4: CDF for the AM treatments

We next analyze separately the effectiveness of the approval rules for each disapproval benchmark

in table 5 in order to underline potential differences with sub-samples. In panel A (columns (1) and

(2)) of table 514 we report test results for the majority and the unanimity rules under the NASH

14In the appendix, table 8 repeats the exercise for proposed extraction.
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DB. Panel B (columns (3) and (4)) displays the test results for the two rules under the MIN DB.

Note that column (1) and column (3) replicate the estimation of equation 3 for each sub-sample as

a robustness test. Similarly, column (2) and column (4) replicate the estimation of equation 4 for

each sub-sample.

Result 4: Under the MIN DB, the majority rule mitigates the reduction of group extraction in-

duced by the AM.

Support for result 4: (see figure 4 and column 4 of table 5). Figure 4 shows that the cumulative

distribution of extractions under the MIN DB with unanimity first-order dominates the distribu-

tion of extractions under the MIN DB with majority (KS, p < 5%). Thus, Figure 4 shows lower

extractions for the MIN DB with unanimity. The visual impression is confirmed by the regression

of column 4 of table 5. It shows that the AM with majority attenuates the reduction in the level

of group extraction under MIN DB. In fact the coefficient for Seq × AM ×Maj is positive and

significant for the sub-sample where the MIN DB was implemented.

Result 5: Under the NASH DB, the approval rule does not affect the level of group extraction.

Support for result 5: (see figure 4 and column 2 of table 5). The coefficient of Seq×AM ×Maj

in column of table 5 is not significant. We see the same effect on figure 4 which shows that the

cumulative distribution of extractions under the NASH DB with unanimity does not first-order

dominate the cumulative distribution of extractions under the NASH DB with majority (KS, p >

10%). We therefore conclude that the majority rule and the unanimity rule affect extractions equally

under the NASH DB.

5 Discussion

Our experimental results support the prediction that the approval mechanism can be effective at

reducing extractions from a common pool resource (Result 1 ). However, we also found that the
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Table 5: Impact of approval rules on realized extractions (by disapproval benchmark)

Panel A : NASH DB Panel B : MIN DB
(Unanimity vs Majority) (Unanimity vs Majority)

Variables (1) (2) (3) (4)

Seq ×AM -2.964*** -3.190*** -6.239*** -6.796***
(0.375) (0.414) (0.411) (0.437)

Seq ×AM ×Maj 0.466 1.263**
(0.386) (0.524)

Constant 19.10*** 19.10*** 19.14*** 19.14***
(0.278) (0.276) (0.345) (0.345)

Seq − FE yes yes yes yes
Group− FE yes yes yes yes
Period− FE yes yes yes yes
Observations 1,000 1,000 980 980
R− squared 0.306 0.307 0.507 0.510
F 14.34 13.49 45.99 48.86

Note: Table 5 shows the effect of the approval rules on the realized group extractions for each disapproval
benchmark separately, using DiD estimation. The treatments, NASH DB with majority and NASH DB with
unanimity, are pooled in Panel A, while the treatments, MIN DB with unanimity and MIN DB with majority, are
pooled in Panel B. We account for period fixed effects (Period− FE), group fixed effects (Group− FE) and
sequence fixed effect (Seq − FE). All variables are binary. Robust standard errors are in parentheses. ∗ denotes
significance at the 10-percent level, ∗∗ at the 5-percent level and ∗ ∗ ∗ at the 1-percent level.

effectiveness of the approval mechanism depends on the type of approval rule (Result 2 ) and the

type of disapproval benchmark (Result 3 ) that are implemented.

First, we found that the AM is more effective in achieving Pareto-improving levels of group extrac-

tions under the unanimity rule than under the majority rule. The regressions reported in table 4

show that when the majority dummy is interacted with the AM in sequence 2, there is a positive

impact on extractions: while the AM lowers group extractions overall by 5 tokens on average, un-

der the majority rule this effect is attenuated by 1 token on average. We therefore conclude that

the majority rule is counterproductive for the effectiveness of the AM to solve CPR dilemmas. The

main reason for such effectiveness is that the majority rule allows for winning coalitions that have an

incentive to counteract the AM’s target to reduce extractions. Another advantage of the unanimity

rule is that it leads to fairer outcomes than the majority rule. We observe a lower average Gini index
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under unanimity (Giniuna = 0.084) than under majority (Ginimaj = 0.111), a significant difference

(rank-sum, p = 0.0228)15. If we had to advise a policy designer, we would recommend that he

preferably rely on the unanimity rule, although this rule entails also a drawback because of the veto

power that is embodied in it. The latter drawback however, can be mostly circumvented by choosing

appropriately the disapproval benchmark (DB). The disadvantage of the veto power seems therefore

less prohibitive than the possibility, under the majority rule, of forming counterproductive coalitions.

Second, we found that the reduction of extractions is significantly larger under the MIN DB than

under the NASH DB. This result holds at the aggregate level, but also separately, for the majority

and the unanimity treatments16. The larger effectiveness of the MIN DB compared to the NASH

DB was observed by Masuda et al. (2014) in the context of a two-player voluntary contribution

mechanism (VCM). They justify their result on theoretical grounds: the full contribution of both

players under the MIN DB is supported by five different equilibrium concepts or heuristics: (i)

backward elimination of weakly dominated strategies (BEWDS, Masuda et al. (2013, 2014)), (ii)

limit logit agent quantal response equilibrium (limit LAQRE; McKelvey and Palfrey (1995, 1998)),

(iii) sub-game perfect minimax regret equilibrium (SPMRE; Renou and Schlag (2011)), (iv) level-k

thinking (Costa-Gomes and Crawford (2006)), and (v) diagonalization heuristics (see proposition 3

in Masuda et al. (2014)). In contrast, except for the prisoner’s dilemma game, the NASH DB does

not lead to full contributions according to the same five equilibrium concepts or heuristics. Inter-

estingly however, our results agree with those of Masuda et al. (2014) despite the many distinctive

features of our CPR game compared to their voluntary contribution game. Our CPR game involves

three players and allows for two different approval rules: majority and unanimity. Furthermore

it has a non-linear payoff function which implies that both the Nash extraction and the optimum

extraction vectors are interior. In contrast, the linear public good game studied in Masuda et al.

(2014), involves two players and admits corner outcomes: zero group contribution at the Nash equi-

15The difference is mainly due to the MIN DB for which we observe that Giniuna = 0.079 and Ginimaj = 0.121,
a significant difference (rank-sum, p = 0.0122), whereas for the NASH DB we have Giniuna = 0.084 and Ginimaj =
0.101, respectively, an insignificant difference (rank-sum, p = 0.2296).

16The reduction of extractions is largest under the MIN DB with unanimity, followed by the MIN DB with
majority, the NASH DB with unanimity and majority (under the NASH DB unanimity and majority reduce
equally the level of extractions).
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librium and full group contribution at the Pareto optimum.

A possible reason for result 3 is that the MIN DB provides stronger incentives to reduce extractions.

If it were the case, it would imply that subjects make lower extraction proposals in stage 1 of the game

under the MIN DB. However, according to the estimates reported in table 8 (see appendix), the

effect size for the reduction of proposed extractions is comparable for the MIN DB and the NASH

DB. This observation suggests that the MIN DB and the NASH DB provide similar incentives

to reduce proposed extractions in stage 1. We need therefore to explain the higher effectiveness, as

measured by the realized extractions, by relying on the success of the approval stage. Does approval

success depend on the approval rule? Let us consider first the unanimity rule: on average, only

20% of the proposals were positively approved, both under the NASH DB and the MIN DB.

Although the rates of approval success are equal under both benchmarks, the consequences of a

disapproval are quite different. By definition MIN DB favors lower extractions. Therefore, given

that the disapproval rates are equal for the two benchmarks, the MIN DB mechanically leads to

lower realized extraction levels. A similar interpretation applies to the majority rule. Disapproval

is more frequent under the MIN DB (66%) than under the NASH DB (50%), a fact that also

mechanically leads to lower realized extractions under the MIN DB. Support for this interpretation

is provided by table 6 which shows that the interaction variable Seq × AM × Success has a clear

negative impact on realized extractions under the NASH DB and a positive impact under the MIN

DB. This is not observed with proposed extraction where the reduction of the (stage 1) proposed

extractions do not differ between the MIN DB and the NASH DB as underlined in Table 9 of

the annex due to the mechanical effect of the MIN DB in case of disapproval. Since the variable

Seq ×AM × Success is equal to 1 if the group approves the proposed extraction vector, this result

is true whatever the approval rule. Our main result seems therefore driven by a differential outcome

of disapproval. The realized reduction in group extraction is larger under the MIN DB when the

group disapproves the extraction vector than when it approves it. Note also that whenever success is

obtained under the majority rule, the reduction of group extraction is attenuated for both disapproval

benchmarks (see columns (2) and (5) of table 6 for the impact of Seq × AM × Success×Maj).
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Table 6: Effect of group approval on the realized extraction (by disapproval benchmark)

Panel A : NASH DB Panel B : MIN DB
(Unanimity vs Majority) (Unanimity vs Majority)

Variables (1) (2) (3) (4) (5) (6)

Seq ×AM -2.814*** -2.647*** -2.644*** -7.397*** -7.092*** -7.092***
(0.411) (0.415) (0.415) (0.446) (0.450) (0.450)

Seq ×AM ×Maj 1.030*** 0.614 0.629 0.843* 0.0288 0.0218
(0.372) (0.383) (0.382) (0.508) (0.573) (0.574)

Seq ×AM × Success -1.881*** -2.715*** -2.728*** 3.002*** 1.478*** 1.478***
(0.272) (0.430) (0.430) (0.448) (0.567) (0.567)

Seq ×AM × Success×Maj 1.333** 0.362 3.021*** 3.368***
(0.555) (0.580) (0.919) (1.147)

Seq ×AM × Success×MWC 1.717*** -0.575
(0.522) (1.031)

Constant 19.16*** 19.19*** 19.18*** 19.17*** 19.15*** 19.15***
(0.266) (0.266) (0.264) (0.338) (0.337) (0.337)

Seq − FE yes yes yes yes yes yes
Group− FE yes yes yes yes yes yes
Period− FE yes yes yes yes yes yes
Observations 1,000 1,000 1,000 980 980 980
R− squared 0.329 0.332 0.338 0.536 0.542 0.543
F 15.13 15.02 15.91 50.29 47.42 44.27

Note: Robust standard errors are in parentheses. ∗ denotes significance at the 10-percent level, ∗∗ at the 5-percent
level and ∗ ∗ ∗ at the 1-percent level. We account for period fixed effects (Period− FE), group fixed effects
(Group− FE) and sequence fixed effect (Seq − FE). The first column shows the variables names. All variables are
binary. Treatments MIN DB with majority and MIN DB with unanimity are pooled in AM of Panel A while
treatments NASH DB with unanimity and NASH DB with majority are pooled in AM of Panel B. The variable
Seq equals 1 for sequence 2 and 0 for sequence 1. Seq ×AM is the interaction between the variables Seq and AM.
Seq ×AM is 1 for the CPR game with AM in sequence 2 and 0 otherwise. Seq ×AM × Success is the interaction
variable between Seq ×AM and Success, where Success is 1 when the group approved unanimously (for unanimity
rule) or mostly (for majority rule) in the current period and 0 otherwise. Seq ×AM × Success×Maj is the
interaction variable between Success and Maj. Finally, Seq ×AM × Success×Maj ×MWC is the interaction
variable between Seq×AM × Success×Maj and MWC. MWC equals 1 for 2/3 approval under majority rule and
0 otherwise. We perform DiD regression using proposed extractions.

6 Conclusion

We analyzed the outcomes of a common pool resource extraction game regulated by the approval

mechanism (AM) with three-player allowing us to compare two approval rules, the unanimity rule

and the majority rule. We further aim to assess the effectiveness of the two approval rules combined

with two approval or disapproval benchmarks, the NASH DB or the MIN DB. Hence we specifically
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studied four variants of the AM: the MIN DB under unanimity, the MIN DB under majority, the

NASH DB under unanimity and the NASH DB under majority. Theoretically the efficient level

of extraction is implemented only under the MIN DB with unanimity in BEWDS. The other AM

implement multiple equilibria in BEWDS.

We also tested experimentally the effectiveness of the AM in groups of 3 participants. First, we

observed that the implementation of the AM always reduces the level of group over-extraction. We

also emphasize that the unanimity rule is more effective than the majority rule while the MIN DB

is more effective at reducing extractions than the NASH DB whatever the approval rule.

We confirm experimentally that the optimum extraction level is achieved only if the MIN DB is

combined with the unanimity rule. This result is driven by a narrower set of equilibria with the

unanimity rule that lead to higher effectiveness compared to the majority rule as it leads to fairer

payoff and prevents coalitions.

While this paper argues the AM can be a powerful mechanism that can help mitigating CPR over-

extraction, we acknowledge several limitations of our experiment: first, we considered a single para-

metric setting (the one proposed by Walker et al. (1990)): allowing a sharper or weaker curvature of

the payoff function could affect the effectiveness of the AM. Second, our sequences contained only 10

periods and we observed high variability across rounds in all treatments: this could indicate a lack

of convergence due to a small number of periods. Longer sequences could lead to the stabilization

of extractions over time and allow for a more robust comparison of treatments.

Besides, several extensions are of particular interest. First,does the AM remain effective in large

populations, e.g. 10 or more players? Second, some alternative disapproval rules would be worth

investigating, such as the median extraction or dictatorship (i.e. one player is randomly selected

to decide for the group in case of disapproval). Finally, the external validity of the AM is not

warranted. It would therefore be wise to test it in a field setting, with subjects that are involved in

a real CPR exploitation dilemma. Demonstrating that the AM can be implemented in practice and
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that it curbs downwards extractions in a real situation, would open the door to the design of new

policies for CPR regulation.
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7 Appendix 1: proofs

Proof of proposition 1. Under the assumption of selfish rational agents, each player i chooses

xi to maximize his total payoff. The FOC for an interior solution is given by ∂πi(xi;x−i)
∂xi

= 0,

which leads to a− p− b(xi + x−i)− bxi = 0. Assuming symmetric extractions, i.e. x∗i = x∗j , for all

i, j, X∗ = xi+x−i = nx∗ and x∗ = 1
n+1

a−p
b

. It is easy to see that ∂πi(xi;x−i)
∂n

< 0, ∂x
∗

∂n
< 0 and ∂X∗

∂n
> 0.

Proof of proposition 2. The social optimum level of extraction is reached if each player maximizes

the group payoff. Let Π(X) =
∑n

i=1 πi(xi;x−i) = −bX2 + (a− p)X + p
∑n

i=1w . The FOC is such

as ∂Π(X)
∂X

= 0, which is equivalent to a − p − 2bX = 0. The optimum extraction level is therefore

X̂ = a−p
2b

and each player extracts x̂ = X̂
n

= a−p
2nb

.

Proof of proposition 3: The proof is divided into 2 parts.

• Firstly, we show that only symmetric sub-games survive to BEWDS in stage 2. Consider

the following subgame for which xi = min(xi, xj, xk). Thus, π(xi, xi, xi) − πi(xi, xj, xk) =

bxi(xj +xk− 2xi) ≥ 0. Therefore player i who proposed the minimum (xi) always disapproves

asymmetrical proposals. For this reason, proposed extractions (xi, xj, xj) such that xi =

min(xi, xj, xk) lead to the same payoff for each player than the symmetric proposal vector

(xi, xi, xi). Consequently, only the sub-games for which the three players propose the same

extraction level survive to BEWDS in stage 2.

• Second, following Masuda et al. (2014, p. 76), we show that strategy x̂ weakly dominates any

strategy x1 such that x1 ∈ [0, x̂) ∪ (x̂, x̄].

a) Define x = min(x2, x3) and suppose x = x3 (i.e. x3 ≤ x2). Consider the case x ∈ [0, x1]

and x1 < x̂. Thus, we have π1(x1, x2, x3) = π1(x, x, x) < π1(x1, x1, x1). Consider now the case

x ∈ (x1, x̂]. Thus, π1(x1, x2, x3) = π1(x1, x1, x1) < π1(x, x, x) = π1(x̂, x2, x3) < π1(x̂, x̂, x̂). It

proves that x̂ weakly dominates all strategies x1 ∈ [0, x̂).

b) Consider x1 > x2 > x3 > x̂. Thus, π1(x1, x1, x1) < π1(x1, x2, x3) = π1(x3, x3, x3). Moreover,

consider that x ∈ (x̂, x1], π1(x1, x2, x3) = π1(x, x, x) < π1(x̂, x2, x3) = π1(x̂, x̂, x̂). Therefore, x̂

weakly dominates all strategies x ∈ (x̂, x̄], where x̄ is the highest extraction level.
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Proof of proposition 4:

Consider the first case, i.e. X > α. We show that πj < πmin for each player j ∈ {1, 2, 3}. The

case of player 1 has already been discussed, he always rejects. It is sufficient therefore to show that

player 2 also rejects. Let us determine the sign of π2−πmin. π2−πmin = α (x2 − x1)− (x2X−3x2
1) =

x1(Xmin − α) − x2(X − α) < 0 because x1 < x2 and X > Xmin. Therefore player 2 always rejects.

The same argument applies to player 3. We conclude that all players reject any subgame for which

X > α.

Consider now the case: X < α. First, note that π3 > π2 if x3 > x2. Indeed, π3 − π2 =

(a− p) (x3 − x2) − bX(x3 − x2). Dividing by b (x3 − x2) leads to α − X > 0 which is satisfied by

assumption. Since player 1 always disapproves, it suffices to consider player 2’s decision. Player 2

approves if π2− πmin > 0. π2− πmin = x1(Xmin−α)− x2(X −α) > 0⇔ x2(α−X) > x1(α−Xmin).

Proof of proposition 5. Under the NASH DB, the disapproval benchmark is given by the vec-

tors xNE and πNE. In stage 2, player i approves if and only if πi(xi, x−i) > π∗. If any player j

disapproves, the FA Nash payoff vector πNE is implemented. Each player has therefore an incentive

to choose xai such that πi(x
a
i , x

a
−i) > π∗. Since for any xa−i, choosing xai < x∗ is Pareto-improving

and is non-binding, each player i chooses his/her extraction level accordingly. Therefore, x∗ is the

upper-bound of the set of Pareto-improving extraction level. By symmetry of the payoff function,

x∗∗ = x∗

n
,is the lower bound of the set of Pareto-improving extractions. It implies x∗∗ < xai < x∗, for

all i.

Proof of proposition 6. Approval under the majority rule arises if a MWC approves. If the

MWC contains all players, approval under the majority rule is consistent with approval under the

unanimity rule. In both cases all members of the group receive a higher payoff than the NASH

DB payoff. Therefore, the predictions under the unanimity rule are exactly the same as under the

majority rule when all players approve. However, under majority, additional sub-games are approved

by a MWC that is smaller than n. Consider the interval [ x∗, x̄i) (a symmetric reasoning applies to

the interval (xi, x
∗/n]). Assume that there are two types of players, i and j, who propose to extract

xi = x̂ and xj = x∗, respectively. In other words, the j-types play Nash while the i-types choose
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optimum extraction. If the j-types belong to the MWC they approve the extraction vector while

the i-types disapprove. This extraction vector is therefore an equilibrium under majority according

to BEWDS. We conclude that under the NASH DB, the set of approved sub-games with unanimity

is included in the set of approved sub-games under majority.

8 Appendix 2: Instructions

Welcome

We thank you for agreeing to participate in this decision-making experiment. This experiment will

be paid. Your earnings will depend on your decisions as well as those of the other participants in

this experiment. Your identity and decisions will be kept anonymous. You will have to indicate

your choices on the computer in front of which you are seated, and the computer will notify your

earnings (in points) as the experiment progresses.

From now until the end of the experiment we ask you to stop all communication. If you have any

questions, please raise your hand, an instructor will answer you privately.

General procedure

At the beginning of the experiment you will be randomly assigned to a group of three players. The

composition of your group remains unchanged until the end of the experiment. Each member of

your group (including you) will have an ID 1 or 2 or 3.

The experiment is divided into 2 parts. Each part consists of a series of ten periods. The rest of

the instructions concern only part 1. At the end of part 1, you will receive new specific instructions

for part 2. At the end of the experiment, one of the 20 periods will be drawn and your earnings

(in points) for that period will be converted into euros according to a rule defined at the end of the
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instructions.

Once all participants have read the instructions, an experimenter will read them out loud again. After

reading the instructions, you will be asked to complete a questionnaire to verify your understanding

of the experiment. When all participants have completed this questionnaire, the experiment will

begin.

Types of investments

In each period, each player of your group has 10 tokens, which he has to split between two activities:

activity A and activity B. Activity A is common to all the three players in your group. Activity B is

specific to each player. Each token must be invested, either in activity A or in activity B. Earnings

associated with your investment in each activity and the total earnings are described as follows.

Earnings activity A

Your earnings from activity A depend on your investment in activity A and the investment in the

activity A of the other players in your group.

Earnings from the investment in activity B

Your earnings from activity B depend solely on your own investment in that activity. Each token

invested in activity B earns you 15 points. Similarly, each token that the other player invests in his

activity B earns him 15 points.

Total earnings

Your total earnings in each period are equal to your earnings from activity A + your earnings from

activity B.

We present the different possibilities of total earnings. They are described in the earnings table (see

sheet ”Table of total earnings”)(see figure ??). The first column corresponds to your investment in

35



activity A (between 0 and 10). The other columns correspond to the sum of the investments of the

other players in your group in activity A (between 0 and 20). Both your earnings and those of the

other players are measured in points. Your own total earnings in points are displayed in each cell of

the table. These values also apply to the other players in your group. For example, you are Player 1

and the other two players are Player 2 and Player 3. You decide to invest 8 tokens in activity A and

therefore 2 tokens in your activity B. Player 2 decides to invest 6 tokens in activity A and therefore

4 tokens in his activity B. Player 3 decides to invest 7 tokens in activity A and therefore 3 tokens in

his activity B. For player 1: His investment in activity A is 8 tokens and the sum of the investments

of players 2 and 3 is 13. For player 2: His investment in activity A is 6 tokens and the sum of the

investments of players 1 and 3 is 15. For player 3: His investment in activity A is 7 tokens and

the sum of the investments of players 1 and 2 are 14 tokens. Your (Player 1) total earnings for the

period are therefore 204 points. The total earnings for player 2 in your group are 190.5 points and

the total earnings for player 3 in your group are 197.25 points.

Part 1

In each period, you must split your 10 tokens between your investment in activity A and your in-

vestment in your activity B. You are free to choose how you want to allocate your 10 tokens. For

example, you can decide whether to allocate all your tokens in activity A or all your tokens in

activity B.

In practice, the computer will ask you to indicate the number of tokens you want to invest in activity

A. The rest of your 10 tokens will automatically be invested in your activity B. The sum of these

two investments is exactly equal to your 10 tokens for this period. As a result, you cannot transfer

a part or all of your tokens from one period to another.

You and the other players make your decisions simultaneously. Once the investment decisions have

been made, the computer calculates your total earnings, as well as the earnings of the other players

for the current period. It will tell you how many tokens you have invested in each of the two activities

and your total earnings in points. The same information about the other the two other players will
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also be displayed on your screen. The next period can then begin. Before each new period, you will

be informed about your total earnings from each of the previous periods. When the 10th period will

be over, the computer will summarize the amount of your earnings for each of the 10 periods.

Part 2 [AM treatments]

As in part 1, there are 10 periods in part 2 in which you will interact with the same persons as in

part 1. You and the other players in your group must decide how much you will invest in activity

A. The earnings in activity A and activity B are exactly the same as in part 1, so you will use the

same ”table of total earnings” as in part 1.

In part 2, each period consists of two stages: Stage 1 and Stage 2. Stage 1 corresponds to the

investment decision: you and the other two players will each have to decide how much to invest in

activity A. Stage 1 corresponds exactly to the same investment decision as in part 1. Stage 2 is

new. Once the three members of your group have chosen their amount to invest in activity A, these

decisions and their associated total earnings are published on the screens of all members (including

yourself) and submitted for approval.

• [unanimity rule:] If all members of your group approve the proposed investment decisions,

they will be applied and everyone will earn the corresponding earnings.

• [majority rule] If at least two of the three members in your group approve the proposed

investment decisions, then these will apply and everyone will earn the corresponding returns.

In this case, the proposed investments are applied and everyone receives the corresponding total

earnings. If at least one player [unanimity rule] or at least two of the three players [majority

rule] in your group disapprove, the computer will apply an identical investment level as explained

in the following instructions.

In practice, in stage 1, the computer will ask you to indicate the amount of your investment in

activity A. In stage 2, the computer will tell you how many tokens you proposed for both activities

and how many tokens the other players proposed in the current period. It will also tell you your
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total earning as well as the total earning of each other player. In addition, the computer will inform

you about the minimum [under the MIN DB] of the proposed investments in activity A or 6

tokens [under the NASH DB] and the total associated earnings. Then, the computer will ask

you whether you approve or reject the proposals from the other members of your group. You will

click YES if you agree with the proposals, or NO if you disagree with the proposals. At the same

time, the other players also have to approve or reject the proposals for the current period. As

aforementioned, if they approve, the computer implements the proposals. Otherwise, it imposes a

uniform level of investment in activity A :

• the minimum of proposals [under MIN DB]

• always 6 tokens [under NASH DB]

and the rest of the 10 tokens is invested in activity B. Then the computer will display the invest-

ments (tokens in activities A and B respectively) and the total earnings.

At the end of stage 2, the computer displays the final total earnings of each group member for that

period. The next period can then start. Before each new period you will know your earnings for

each of the previous periods. When the 10th period is over, the computer will summarize the amount

of your total earnings for each of the 10 periods.

The exchange rate is 1 euro for 15 points. One of the 20 periods will be randomly chosen to be paid

out for real.

Part 2 [Baseline treatment]

As in part 1, there are 10 periods in part 2 in which you will interact with the same persons as in

part 1. You and the other players in your group must decide how much you will invest in activity

A. The earnings in activity A and activity B are exactly the same as in part 1, so you will use the

same ”table of total earnings” as in part 1.
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You and the other players make your investment decisions simultaneously. Once the investment

decisions have been made, the computer calculates your total earnings, as well as the earnings of the

other players in your group for the current period. It will show you how many tokens you invested

in each of the two activities and your total earnings in points. The same information about the

other players will also be displayed on your screen. The next period can then begin. Before each

new period, you know your total earnings from each of the previous periods. When the 10th period

is over, the computer will summarize the amount of your winnings for each of the 10 periods

The exchange rate is 1 euro for 15 points. One of the 20 periods is randomly drawn to be remunerated.
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9 Appendix 3: Analysis of proposed extractions

Table 7: Overall regression results using proposed extractions

Proposed extractions
Variables (1) (2) (3) (4)

Seq ×AM -2.556*** -2.777*** -3.377*** -2.341***
(0.364) (0.400) (0.391) (0.402)

Seq ×AM ×MIN -0.436 -1.371***
(0.335) (0.376)

Seq ×AM ×Maj 1.770***
(0.334)

Seq ×AM ×MIN ×Maj 2.119***
(0.475)

Constant 19.37*** 19.37*** 19.37*** 19.37***
(0.254) (0.254) (0.250) (0.253)

Seq yes yes yes yes
Group− FE yes yes yes yes
Period− FE yes yes yes yes
Observations 1,680 1,680 1,680 1,680
R− squared 0.313 0.314 0.326 0.323
F 13.15 12.31 15.11 13.97

Note: Robust standard errors are in parentheses. * denotes significance at the 10-percent level, ** at the 5-percent
level and *** at the 1-percent level. The regressions contain Period fixed effect, groups fixed effect and effect of
sequences (Seq). The first column shows the variables names. All variables are binary. Treatments MIN DB and
Nash DB are pooled in AM. The variable Seq equals 1 for sequence 2 and 0 for sequence 1. Seq ×AM is the
interaction between the variables Seq and AM. Seq ×AM is 1 for the CPR game with AM in sequence 2 and 0
otherwise. Seq ×AM ×MIN is the interaction variable between Seq ×AM and MIN , where MIN is 1 for groups
submitted to the MIN DB and 0 otherwise. Seq ×AM ×MIN exhibits the additional effect of the MIN DB on the
approval mechanism (Seq ×AM) in the reduction of extraction. Seq ×AM ×Maj is the interaction between
Seq ×AM and Maj, where Maj equals 1 when groups played under the NASH DB and the MIN DB with
majority and 0 otherwise. Seq ×AM ×Maj exhibits the additional effect of majority on the approval mechanism
(Seq ×AM) in the reduction of extraction. We perform DiD regression using realized extractions.
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Table 8: Impact of approval rules on proposed extractions (by disapproval benchmark)

Panel A : NASH DB
(Unanimity vs Majority)

Panel B : MIN DB
(Unanimity vs Majority)

Variables (1) (2) (3) (4)

Seq ×AM -2.341*** -3.023*** -2.777*** -3.712***
(0.402) (0.464) (0.400) (0.435)

Seq ×AM ×Maj 1.405*** 2.119***
(0.475) (0.476)

Constant 19.24*** 19.24*** 19.17*** 19.17***
(0.313) (0.307) (0.341) (0.340)

Seq yes yes yes yes
Group− FE yes yes yes yes
Period− FE yes yes yes yes
Observations 1,000 1,000 980 980
R− squared 0.282 0.289 0.333 0.348
F 5.637 5.893 9.296 11.23

Note: Robust standard errors are in parentheses. ∗ denotes significance at the 10-percent level, ∗∗ at the 5-percent
level and ∗ ∗ ∗ at the 1-percent level. The regressions contain Period fixed effect, groups fixed effect and effect of
sequences (Seq). The first column shows the variables names. All variables are binary. Treatments NASH DB with
majority and NASH DB with unanimity are pooled in AM of Panel A while treatments MIN DB with unanimity
and MIN DB with majority are pooled in AM of Panel B. The variable Seq equals 1 for sequence 2 and 0 for
sequence 1. Seq ×AM is the interaction between the variables Seq and AM. Seq ×AM is 1 for the CPR game with
AM in sequence 2 and 0 otherwise. Seq ×AM ×Maj is the interaction variable between Seq ×AM and Maj,
where Maj is 1 for groups submitted to the majority rule (NASH DB with majority for Panel A and MIN DB with
unanimity for Panel B) and 0 otherwise. We perform DiD regression using proposed extractions.
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Table 9: Effect of group approval on proposed extractions (by disapproval benchmark))

Panel A : NASH DB Panel B : MIN DB
(Unanimity vs Majority) (Unanimity vs Majority)

Variables (1) (2) (3) (4) (5) (6)

Seq ×AM -2.917*** -2.875*** -2.876*** -3.840*** -3.577*** -3.579***
(0.498) (0.516) (0.516) (0.465) (0.471) (0.471)

Seq ×AM ×Maj 1.717*** 1.609*** 1.625*** 2.311*** 1.612*** 1.621***
(0.509) (0.596) (0.596) (0.509) (0.569) (0.569)

Seq ×AM × Success1 -0.789** -1.025* -1.019* 0.0307 -1.251** -1.242**
(0.388) (0.591) (0.591) (0.431) (0.598) (0.598)

Seq ×AM × Success1 ×Maj 0.367 0.668 2.562*** 2.920***
(0.784) (0.813) (0.890) (0.944)

Seq ×AM × Success1 ×MWC -0.925 -1.188
(0.658) (0.847)

Constant 19.38*** 19.39*** 19.40*** 19.31*** 19.35*** 19.34***
(0.306) (0.306) (0.306) (0.341) (0.337) (0.338)

Seq yes yes yes yes yes yes
Group− FE yes yes yes yes yes yes
Period− FE yes yes yes yes yes yes
Observations 900 900 900 882 882 882
R− squared 0.310 0.310 0.311 0.364 0.371 0.372
F 7.026 6.904 6.602 11.87 11.54 10.85

Note: Robust standard errors are in parentheses. * denotes significance at the 10-percent level, ** at the 5-percent
level and *** at the 1-percent level. The regressions contain Period fixed effect, groups fixed effect and effect of
sequences (Seq). The first column shows the variables names. All variables are binary. Treatments NASH DB with
majority and NASH DB with unanimity are pooled in AM of Panel A while treatments MIN DB with unanimity
and MIN DB with majority are pooled in AM of Panel B. The variable Seq equals 1 for sequence 2 and 0 for
sequence 1. Seq ×AM is the interaction between the variables Seq and AM. Seq ×AM is 1 for the CPR game with
AM in sequence 2 and 0 otherwise. Seq ×AM × Success1 is the interaction variable between Seq ×AM and
Success1, where Success1 is 1 when the group approved unanimously (for unanimity rule) or mostly (for majority
rule) in the previous period and 0 otherwise. Seq ×AM × Success1 ×Maj is the interaction variable between
Success1 and Maj. Finally, Seq ×AM × Success1 ×Maj ×MWC is the interaction variable between
Seq ×AM × Success1 ×Maj and MWC, where MWC equals 1 for 2/3 approval under majority rule and 0
otherwise. We perform DiD regression using proposed extractions.
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