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Abstract: Parascaris sp. is the only ascarid parasitic nematode in equids and one of the most threaten-
ing infectious organisms in horses. Only a limited number of compounds are available for treatment
of horse helminthiasis, and Parascaris sp. worms have developed resistance to the three major an-
thelmintic families. In order to overcome the appearance of resistance, there is an urgent need for
new therapeutic strategies. The active ingredients of herbal essential oils are potentially effective
antiparasitic drugs. Carvacrol is one of the principal chemicals of essential oil from Origanum, Thy-
mus, Coridothymus, Thymbra, Satureja and Lippia herbs. However, the antiparasitic mode of action
of carvacrol is poorly understood. Here, the objective of the work was to characterize the activity
of carvacrol on Parascaris sp. nicotinic acetylcholine receptor (nAChR) function both in vivo with
the use of worm neuromuscular flap preparations and in vitro with two-electrode voltage-clamp
electrophysiology on nAChRs expressed in Xenopus oocytes. We developed a neuromuscular contrac-
tion assay for Parascaris body flaps and obtained acetylcholine concentration-dependent contraction
responses. Strikingly, we observed that 300 µM carvacrol fully and irreversibly abolished Parascaris sp.
muscle contractions elicited by acetylcholine. Similarly, carvacrol antagonized acetylcholine-induced
currents from both the nicotine-sensitive AChR and the morantel-sensitive AChR subtypes. Thus,
we show for the first time that body muscle flap preparation is a tractable approach to investigating
the pharmacology of Parascaris sp. neuromuscular system. Our results suggest an intriguing mode of
action for carvacrol, being a potent antagonist of muscle nAChRs of Parascaris sp. worms, which may
account for its antiparasitic potency.

Keywords: Parascaris; carvacrol; nicotinic acetylcholine receptors; muscle contraction; electrophysiol-
ogy; Xenopus oocytes; mode of action

1. Introduction

Helminth infections of livestock are of considerable importance and cause major finan-
cial losses [1]. Parascaris sp. is the largest nematode parasite of equids, representing a major
threat in equine medicine. Parascaris sp. worms have a very high prevalence especially in
foals with important impact in terms of morbidity and mortality [2,3]. The worms remain in
the intestine of the equids and are targets for anthelmintic drugs. Only a limited number of
compounds are available for treatment of horse helminthiasis with the macrocyclic lactones
being the most recently developed drug class of veterinary anthelmintics, marketed since
the 1980s [1,4]. Anthelmintic resistance is a major problem in veterinary medicine, and
Parascaris sp. worms have recently developed resistance to the three major anthelmintic
families [5–9]. In order to overcome the appearance of resistance, there is an urgent need
for new therapeutic strategies, especially new chemical entities [1,10]. Based on their
pharmacological properties, the active ingredients of herbal essential oils are potentially
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effective antiparasitic drugs [11–13]. Carvacrol and thymol are monoterpenic phenol iso-
mers and the principal chemicals of essential oil from Origanum, Thymus, Coridothymus,
Thymbra, Satureja and Lippia herbs [14]. Carvacrol is known for its wide use in traditional
pharmacopeia due to antimicrobial and disinfectant properties [15–17]. In addition, some
studies previously indicated that carvacrol has antinematodal properties against pathogenic
helminths such as the pig roundworm Ascaris suum [18], the sheep parasite Haemonchus
contortus [19,20], the fish parasite Anisakis simplex [14,21] and plant parasitic nematodes [22],
and it can also kill the free-living model nematode Caenorhabditis elegans [23–25]. However,
the antiparasitic mode of action of monoterpenoid compounds is poorly understood, and
their potential use against horse parasites has not yet been investigated. Previous studies
evidenced that the anthelmintic effect of carvacrol might be mediated through different
ligand-gated ion channel subtypes including tyramine, acetylcholine and GABA receptors
of nematodes [18,25–28] as well as acetylcholinesterase [14].

Acetylcholine is a major excitatory neurotransmitter in both vertebrates and inverte-
brates. The nicotinic acetylcholine receptors (nAChRs) are major targets for antinematodal
drugs such as pyrantel and levamisole [29,30]. They are members of the cys-loop ligand-
gated ion channel superfamily and consist of five subunits arranged around a central
pore [31]. Despite the large diversity of nAChR subunit genes present in nematodes, few
receptor subtypes have been characterized to date. Two nAChR subtypes have been de-
scribed to mediate fast neurotransmission at the neuromuscular junction in the free-living
model nematode Caenorhabditis elegans [32]: the levamisole-sensitive nAChR (L-AChR),
which is a heteromeric ion channel made of five different subunits, and the prototypi-
cal nicotine-sensitive nAChR (N-AChR), which is composed of five identical subunits
encoded by the Cel-acr-16 gene [33,34]. In parasites, the ACR-16 receptor subunit was
recently isolated and characterized from Parascaris sp. as well as the pig parasite, Ascaris
suum [35,36]. When expressed in Xenopus laevis oocytes, ACR-16 formed a functional
homomeric N-AChR, which is activated by nicotine. Furthermore, a new subtype of nema-
tode AChR preferentially activated by morantel was reported in Parascaris sp. (M-AChR)
along with the small ruminant parasite Haemonchus contortus [29]. Interestingly, parasitic
nematodes affecting humans or animals possess two closely related AChR subunit genes
that are essentially absent in free-living or plant parasitic species: acr-26 encodes an alpha
subunit, and acr-27 encodes a non-alpha subunit. Hence, ACR-26 and ACR-27 subunits
from Parascaris sp. were found to form a functional AChR when co-expressed in Xenopus
oocytes, with higher affinities for pyrantel and morantel than for acetylcholine. Importantly,
the heterologous expression of Parascaris-acr-26 and acr-27 as transgenes in the model ne-
matode Caenorhabditis elegans also drastically increased morantel and pyrantel sensitivity
in vivo [29].

Here, the objective of the work was to characterize and investigate the activity of
carvacrol at different concentrations on Parascaris sp. nicotinic acetylcholine receptors both
for nAChR function in vivo with the use of worm neuromuscular flap preparations and
in vitro for nAChRs expressed in Xenopus oocytes. Strikingly, we observed that carvacrol
abolished Parascaris sp. muscle contraction elicited by acetylcholine. Likewise, carvacrol
inhibited acetylcholine-induced currents on both N-AChR and M-AChR subtypes. Thus,
we show carvacrol is a potent antagonist of muscle AChRs, which may account for its
antiparasitic potency against Parascaris sp. worms.

2. Results
2.1. Acetylcholine-Induced Contraction of Parascaris sp. Body Muscle Flap Preparation

Parascaris sp. and A. suum worms are closely related ascarid species with similar
anatomy and morphology (Figure 1a). The presence of acetylcholine receptors on Parascaris
sp. muscles is anticipated as every nematode is supposed to synthesize acetylcholine and
receptors, although this has not yet been functionally evidenced. Therefore, as for A. suum,
it is expected that the application of acetylcholine on Parascaris sp. muscle strips would
produce muscle contractions. As a first step, we adapted the muscle isometric contraction
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approach, which previously was used in A. suum studies [26,37]. Due to worm size
differences, we had to modify the method of dissection. The part of the Parascaris worm that
we dissected for contractions was 4 to 5 cm behind the head instead of 2–3 cm for A. suum
(Figure 1b). In addition, in order to cause contractions after acetylcholine application, we
had to use a larger initial tension (1.5 g). On the other hand, the maximal contractions were
no higher than the contractions previously obtained in A. suum experiments [26,37]. As a
result, we were able to measure contractions of nerve–muscle strip preparations induced
by ACh. Figure 1c shows a representative recording of the Parascaris sp. muscle flap
contractions produced by increasing concentrations of acetylcholine, while in Figure 1d we
present a concentration–response plot for ACh fitted with non-linear regression. Increasing
concentrations of ACh caused dose-dependent contractions of Parascaris sp. The control
median effective concentration (EC50) of ACh was 6.08 µM (log EC50 = 0.78 ± 0.079, n = 5),
while the maximal effect (Rmax) was 1.19 ± 0.051 g obtained with 100 µM ACh. Overall,
these results indicate that Parascaris sp. body muscle flap preparation is an amenable
approach for investigating the pharmacology of its neuromuscular system.
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Figure 1. Contraction of Parascaris sp. muscle strips produced by acetylcholine. (a) Adult female
Parascaris sp. collected from horses and used in this study; (b) photograph of a single worm indicating
the location of the body muscle flap (1 cm length between the two red arrows), within the anterior
part of the worm (3–4 cm caudal to the head), to be dissected for isometric contraction measurements;
(c) isometric contractions of Parascaris sp. muscle flap produced by increasing concentrations of
acetylcholine (ACh) from 1 to 100 µM (short bars); (d) concentration–response plot for ACh fitted
with non-linear regression, with mean contraction in g ± SE (n = 5).
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2.2. Carvacrol Abolishes Acetylcholine-Induced Contractions of Parascaris sp. Muscle Strips

Previous studies highlighted the inhibitory effect of carvacrol on A. suum isolated
muscle flap contractions caused by ACh [26,28]. In order to obtain first insights into the
mode of action of carvacrol on Parascaris sp. worms, we determined the effect of carvacrol
in isometric contractions of isolated segments of Parascaris sp. Figure 2 shows an inhibitory
effect of carvacrol (300 µM) on the contractions of nerve–muscle preparation of Parascaris
sp. induced by ACh. Strikingly, carvacrol completely abolished the contraction induced
by ACh even at 100 µM, which is the highest concentration assessed and was used to
achieve the maximal contraction effect. Interestingly, the inhibitory effect of 300 µM car-
vacrol remained even after removal of carvacrol from experimental baths. Altogether, our
results show isometric contractions of Parascaris sp. muscle strips produced by increasing
concentrations of ACh and full inhibition of contractions following application of carvacrol.
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Figure 2. Effect of carvacrol on contractions of Parascaris sp. muscle strips produced by acetylcholine. Isometric contractions
of Parascaris sp. muscle flap produced by increasing concentrations of acetylcholine (ACh) from 1 to 100 µM (left panel,
short bars) and inhibition of contractions mediated by 300 µM carvacrol (middle panel, full line). Absence of ACh-induced
response recovery after washing the preparation (right panel).

2.3. Effect of Carvacrol on the Parascaris sp. Morantel-AChR Expressed in Xenopus oocytes

It was recently described that the co-expression of the Parascaris sp. ACR-26 and ACR-
27 subunits in Xenopus laevis oocytes resulted in a functional morantel-sensitive AChR (M-
AChR) [29]. The expression of the Parascaris 26/27 M-AChR resulted in robust currents in
the µA range when challenged with 100 µM acetylcholine (Figure 3a). The ACh EC50 value
of 25.0 µM (log EC50 = 1.398 ± 0.022, n = 6) was estimated from the concentration–response
curve with current amplitudes normalized to the maximal response to 100 µM (Figure 3c).
When carvacrol was perfused in the recording chamber, we observed no agonist action on
the M-AChR (Figure 3b). Strikingly, the continued perfusion of 100 and 300 µM carvacrol
during the ACh concentration–response relationships significantly decreased the ACh
EC50 values to 12.2 (log EC50 = 1.085 ± 0.064, n = 5) and 6.6 µM (log EC50 = 0.817 ± 0.060,
n = 6), respectively (p < 0.0001). The Hill coefficients were determined and remained stable
in the presence of either 100 (1.7 ± 0.4) or 300 µM carvacrol (1.5 ± 0.3), compared to the
absence of carvacrol (1.4 ± 0.1). In the same experiment, we observed that the perfusion
of carvacrol significantly reduced the efficacy of ACh activation (Imax) of this receptor
(p < 0.0001) (Figure 3b).
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Figure 3. Concentration–response relationships of ACh on the Parascaris sp. ACR-26/27 M-AChR
expressed in Xenopus laevis oocytes in absence of carvacrol (a) or in presence of carvacrol (b). Represen-
tative current traces for single oocytes. The concentrations of ACh and carvacrol (µM) are indicated
above each trace. Bars indicate drug applications: ACh was applied for 10 s. (c) Concentration–
response curves. All responses are normalized to 100 µM ACh. Results are shown as the mean ± SE
(n = 5–6).

To characterize this effect, the carvacrol antagonist concentration–response relation-
ship was obtained by perfusing oocytes with increasing concentrations of carvacrol for 10 s
prior to the co-application with 100 µM ACh (Figure 4a,b). Hence, increasing concentra-
tions of carvacrol (10 µM to 1 mM) resulted in a dose-dependent reduction of the maximal
ACh-elicited current amplitude. The IC50 value of carvacrol for the Parascaris M-AChR was
169.3 ± 1.0 µM (n = 7) (Figure 4c). Thus, carvacrol slightly increased the ACh affinity for
the Parascaris M-AChR while acting as a non-competitive antagonist.
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AChR expressed in Xenopus oocytes. Representative current traces for single oocytes challenged with
acetylcholine (ACh) in the presence of increasing concentration of carvacrol from 30 to 300 (a) and
1000 µM (b). The concentrations of ACh and carvacrol (µM) are indicated above each trace. ACh
was applied for 10 s (black bars), and carvacrol was applied for 20 s (red bars). (c) Concentration–
inhibition response curve of carvacrol. All responses are normalized to 100 µM ACh. Results are
shown as the mean ± SE (n = 7).

2.4. Effect of Carvacrol on Parascaris sp. and Ascaris suum Nicotine-Sensitive AChRs Expressed
in Xenopus oocytes

It was previously reported that the ACR-16 AChR subunit from Parascaris sp. and from
the closely related species A. suum were able to form homomeric functional N-AChRs when
expressed in Xenopus oocytes [35,36]. Recently, carvacrol proved to be a non-competitive
inhibitor of the A. suum N-AChR [27]. In order to investigate the mode of action of carvacrol
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in Parascaris sp., we applied carvacrol on oocytes expressing the Parascaris sp. N-AChR
(Figure 5b). Perfusion of 100 µM acetylcholine elicited large currents with maximum
amplitude in the µA range (Figure 5a), and the ACh concentration–response curve was
characterized by an EC50 of 6.5 µM (log EC50 = 0.811 ± 0.028, n = 6) (Figure 5c). As expected,
a high concentration of carvacrol (300 µM) had no agonist effect (Figure 5b). In the presence
of 100 and 300 µM of carvacrol, the EC50 values of ACh were 5.9 (log EC50 = 0.772 ± 0.052,
n = 6) and 8.2 µM (log EC50 = 0.913 ± 0.038, n = 10), respectively, and not significantly
different from the ACh EC50 obtained without carvacrol (Figure 5c). As for the M-AChR,
the Hill coefficients were similar with values of 2.0 ± 0.3, 2.1 ± 0.4 and 2.0 ± 0.2 for 100,
300 µM carvacrol and without carvacrol, respectively. However, the ACh maximal response
amplitude was significantly reduced by 2- and 3-fold in the presence of 100 and 300 µM
of carvacrol (p < 0.05), respectively. Thus, ACh had a lower efficacy as an agonist of the
Parascaris N-AChR in the presence of carvacrol.
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Figure 5. Carvacrol effect on the ACh concentration–response relationships for the Parascaris sp.
ACR-16 N-AChR expressed in Xenopus oocytes in absence of carvacrol (a) or in presence of carvacrol
(b). Representative current traces for single oocytes. The concentrations of ACh and carvacrol (µM)
are indicated above each trace. Bars indicate drug applications: ACh was applied for 10 s, and
carvacrol was applied for 11 min (red bar). (c) Concentration–response curves. All responses are
normalized to 100 µM ACh. Results are shown as the mean ± SE (n = 6–10).
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To characterize this inhibition, carvacrol was perfused during the application of ACh
as described elsewhere for different synthetic compounds (Figure 6a) [38]. The carvacrol an-
tagonist concentration–response relationship (10 µM to 1 mM) resulted in a dose-dependent
inhibition of the currents with an IC50 value of 177.8 ± 1.1 µM (n = 6) (Figure 6b). Similarly,
we confirmed that 100 µM carvacrol had no impact on the ACh EC50 value for the A. suum
N-AChR (6.0 ± 1.0 (n = 6) versus 4.9 ± 1.1 µM (n = 11) without carvacrol, p > 0.05). In ad-
dition, we extended this observation to 300 µM carvacrol (8.9 ± 1.1 µM (n = 5)) (Figure S1).
As previously described [27], 100 µM carvacrol led to a significant decrease in the ACh
maximum response (73.6 ± 1.7%, p < 0.05, n = 6). Increasing the carvacrol concentration
to 300 µM drastically reduced the effect of ACh (19.6 ± 1.5%, p < 0.05, n = 5). In addi-
tion, we determined a carvacrol antagonist dose–response relationship for the A. suum
N-AChR and obtained an IC50 value of 36.4 ± 1.3 µM (n = 6) (Figure S2). Altogether, these
results indicate that carvacrol acted as a non-competitive antagonist on Parascaris sp. and
A. suum N-AChRs.
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Figure 6. Concentration–inhibition relationship of carvacrol on the Parascaris sp. ACR-16 N-AChR
expressed in Xenopus oocytes. (a) Representative current traces for single oocytes challenged with
acetylcholine (ACh) in the presence of increasing concentration of carvacrol from 10 to 1000 µM. The
concentrations of ACh and carvacrol (µM) are indicated above each trace. ACh was applied for 30 s
intervals (black bars), and carvacrol was applied for 10 s (red bars). (b) Concentration–inhibition
response curve of carvacrol. All responses are normalized to 100 µM ACh. Results are shown as the
mean ± SE (n = 6).

3. Discussion

There has been limited published data reporting the contraction force transduction in
adult parasite worms. In the present study, we carried out for the first time an investigation
of Parascaris sp. worm pharmacology using contraction assays performed on nerve–muscle
preparations. The contractions are not different from the contractions that were obtained
in nerve–muscle preparation prepared from A. suum, except that the maximal effect is
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somewhat lower. Indeed, the EC50 of ACh from 6.08 µM is similar to the values ranging
from 8.87 to 10.88 µM observed in A. suum innervated muscle strips [26,37]. These first
results indicate that the body muscle flap preparation is a tractable approach to study the
pharmacology of the Parascaris sp. neuromuscular system. In addition to A. suum [39],
the measurements of force transduction were described for the sheep barber pole worm
Haemonchus contortus [40] and the canine hookworm Ancylostoma caninum, [41]. Interest-
ingly, these studies provided a better understanding of the diversity of body wall muscle
nAChR subtypes that are preferentially activated or antagonized by different cholinergic
anthelmintics [42]. In this context, it would be reasonable to expect that the muscle isomet-
ric contraction approach could be further adapted for pharmacological investigations in
other nematode parasite species of interest such as the ascarids Taxocara canis, Ascaridia galli
and Anisakis simplex. Furthermore, when anthelmintic-resistant parasites were available,
the comparison of muscle contraction assays with drug-susceptible nematode parasites re-
vealed new insights into the mechanisms underpinning resistance to anthelmintics [40,41].
As little is known on the effect of cholinergic anthelmintics on Parascaris sp. Muscles, the
muscle contraction approach will be useful for to assess the nAChRs present in Parascaris
sp. and the changes that could be associated with resistance. In C. elegans, A. suum and
the pig nodule worm Oesophagostomum dentatum, single channel recordings revealed at
least three main nAChR subtypes characterized by their conductance [43–45]. Likewise,
single channel experiments in somatic muscle cells of Parascaris sp. could be helpful to
investigate the muscle nAChR subtypes targeted by anthelmintics and carvacrol in vivo.

Given the limited number of anthelmintic drugs available for the control of Parascaris
sp. infestations (benzimidazole, pyrantel, ivermectin and moxidectin) and the growing
issue of anthelmintic resistance worldwide, there is an urgent need to develop new alter-
native control strategies [7,10]. Hence, increasing attention is given to the nematocidal
potential of plant-based natural products [46], including essential oils, which could re-
place or potentiate the effects of classical anthelmintic drugs [12]. The advantage of this
approach is the possibility of continuous application of functional feeds, thus preventing
reinfection after deworming, which does not provide long-term protection against infection.
Among the active ingredients from essential oils, carvacrol was shown to be active against
animal parasitic nematodes, plant parasitic nematodes and the free-living nematode C.
elegans [18,22,46]. Here, we took advantage of the adapted neuromuscular contraction
approach to assess the effect of carvacrol in Parascaris sp. We found that carvacrol com-
pletely abolished the contractions induced by ACh, and this effect remained even after
removal of carvacrol from the experimental bath. Based on this result, we hypothesized
that carvacrol may interact directly with nAChRs. We would like to comment on the
fact that after incubation of the neuromuscular flaps with 300 µM of carvacrol, it was not
possible to obtain contractions again. In our previous studies on A. suum, the effect was
reversible, and contractions almost reached the control value after washing. Given the
results obtained after receptor expression on oocytes, we hypothesize that the reason for
this nature of carvacrol action is the anatomical and morphological specificity of Parascaris
sp. that we observed. Namely, we assume there may be a kind of cumulative effect of
carvacrol and the impossibility of its removal by washing. The body wall of Parascaris sp.
is 2–3 mm thicker than in A. suum, due to the three-layer collagen sheath that holds the
carvacrol and makes it impossible to wash. This assumption should certainly be examined
in future research.

Our electrophysiological investigations demonstrated the non-competitive inhibition
of carvacrol on both the nicotine-sensitive ACR-16 and the morantel-sensitive ACR-26/27
AChRs from Parascaris sp. expressed in Xenopus oocytes. In addition, this effect was further
confirmed for the ACR-16 N-AChR from A. suum, which is closely phylogenetically related
to Parascaris sp. This not the first time that carvacrol has been assayed on A. suum nAChRs.
It was previously observed that carvacrol produced significant inhibition of A. suum
muscle contractions induced by ACh, inhibited depolarizations caused by acetylcholine
and reduced membrane conduction of muscle cells [26]. Unlike menthol, carvacrol has
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further been reported to produce non-competitive inhibition on the A. suum ACR-16 N-
AChR [27]. More recent contraction experiments revealed the antagonistic interaction
of carvacrol with anthelmintic drugs at different muscle nicotinic receptors in vivo [28].
Interestingly, the full inhibition of the ACh contractile effect with 300 µM of carvacrol was
markedly different from the effect in A. suum, which did not exceed 49% [26,28]. This result
suggests that Parascaris worms may be more sensitive to carvacrol than Ascaris worms.
On the other hand, our data are consistent with the results for A. suum ACR-16 N-AChRs,
in which carvacrol acted as a non-competitive antagonist [27]. In addition, we further
confirmed this effect on Parascaris sp. ACR-16 N-AChRs and extended to the ACR-26/27
M-AChRs. However, according to our concentration–inhibition data, carvacrol showed
approximately 5-fold higher affinity for the A. suum N-AChR over the Parascaris sp. N
-AChR. Therefore, it is not possible to rule out that additional mechanisms may be involved
in the activity of carvacrol in Parascaris sp.

Noticeably, carvacrol and cinnamaldehyde showed a better potency in multi-drug
resistant H. contortus egg hatch assay when combined together, and this result highlights the
anthelmintic value of bioactive compounds from plant sources [20]. However, the literature
is scarce on the clinical efficacy of herbal essential oils either alone or in combination with
synthetic drugs in vivo, whereas numerous studies have shown interesting effects in vitro.
Some recent investigations on plant product combination with anthelmintic drugs have
reported potentially interesting synergistic effects against gastrointestinal parasites [47–49].
The potential of carvacrol and essential oils either alone or in association with anthelmintic
drugs in treating Parascaris sp. infections in equids remains to be evaluated.

4. Materials and Methods
4.1. Parascaris sp. Muscle Flap Contraction

For the contraction assay, adult female Parascaris sp. worms were collected weekly
from the slaughterhouse at Vrčin, Belgrade, Serbia. Worms were maintained in Locke’s
solution, composition (mM): NaCl 155, KCl 5, CaCl2 2, NaHCO3 1.5 and glucose 5, at a
temperature of 32 ◦C. The Locke’s solution was changed twice daily, and each batch of
worms was used within 2 days of collection. Parascaris muscle flaps for the contractions
were prepared by dissecting the anterior part of the worm, 3–4 cm caudal to the head
(Figure 1b). Each flap (always the same length of 1 cm) was monitored isometrically by
attaching a force transducer in an experimental bath maintained at 37 ◦C, containing 20 mL
Ascaris Perienteric Fluid Ringer/APF Ringer (mM: NaCl, 23; Na-acetate, 110; KCl, 24;
CaCl2, 6; MgCl2, 5; glucose, 11; HEPES, 5; pH 7.6) and bubbled with room air. After
dissection, the preparations were allowed to equilibrate for 15 min under an initial tension
of 1.5 g. Different concentrations of ACh were then added to the preparation (1, 3, 10, 30
and 100 µM), and the maximum contraction was observed before washing and subsequent
application of the next concentration of acetylcholine. Responses for each concentration
were expressed in grams of tension (g), produced by each individual flap preparation.
The effect of carvacrol (300 µM) on the acetylcholine dose–response plots was determined.
Contractions were monitored on a PC using a BioSmart interface and eLAB software
(ElUnit, Belgrade, Serbia). The system allows real-time recording, display and analysis of
experimental data. Sigmoid dose–response curves for each individual flap preparation at
each concentration of the antagonist were described by the Hill equation.

4.2. Two-Electrode Voltage-Clamp Electrophysiology in Xenopus laevis oocytes

Parascaris sp. ACR-26/27 M-AChR as well as Parascaris sp. and A. suum ACR-16 N-
AChRs were expressed in Xenopus laevis oocytes as previously described [29,35,36]. Briefly,
Xenopus laevis defolliculated oocytes were obtained from Ecocyte Bioscience (Germany).
Oocytes were micro-injected with 36 nL of cRNA mixes containing 50 ng/µL of each
cRNA encoding subunits of interest and three H. contortus ancillary factors (Hco-RIC-3.1,
Hco-UNC-50 and Hco-UNC-74). After 3–4 days of incubation, the oocytes were assayed
under voltage clamp at −60 mV, and electrophysiological recordings were performed as
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described previously. The carvacrol concentration-dependent inhibition of acetylcholine
current response was assessed for Parascaris- and Asu-ACR-16 channels with the protocol
described by Zheng et al. [38].

4.3. Drugs

Acetylcholine chloride (ACh) and carvacrol were purchased from Sigma-Aldrich.

4.4. Statistical Analyses

The results of the contraction assay are expressed as means ± S.E. in grams (g) of
tension. Sigmoid concentration dose–response is described by the equation as follows:
% response = 1/1 + [EC50/Xa] nH, where the median effective concentration (EC50) is
the concentration of the agonist (Xa) producing 50% of the maximum response, and nH
is the Hill coefficient (slope). GraphPad Prism® Software (San Diego, CA, USA) was
used to estimate the constants EC50 and nH by non-linear regression for each preparation.
We determined the mean contraction responses to each concentration of acetylcholine.
Whole cell current electrophysiology responses were analyzed using the pCLAMP 10.4
package (Molecular Devices). EC50 and IC50 values were determined using non-linear
regression on normalized data (100 µM ACh as maximal response) using GraphPad Prism®

software. One-way analysis of variance (ANOVA) was applied for the comparison of
the differences between the EC50 value and the maximal effect (Rmax). Differences were
considered significant when the p value was < 0.05. The statistical analysis was conducted
using GraphPad Prism® software (San Diego, CA, USA), while all values are expressed as
mean ± standard error (S.E.).

5. Conclusions

In summary, we report for the first time in vivo contraction assays from Parascaris sp.
neuromuscular preparation. Our findings indicate that the antimicrobial agent carvacrol
inhibited nAChR function in vivo on Parascaris sp. muscle contractions and in vitro on both
morantel- and nicotine-sensitive nAChRs. The present study improves the understanding
of the anthelmintic mode of action of plant essential oil ingredients and opens the way for
new therapeutic prospects in equine medicine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14060505/s1, Figure S1: Carvacrol effect on the acetylcholine concentration–response rela-
tionships for the Ascaris suum ACR-16 N-AChR expressed in Xenopus oocytes, Figure S2: Concentration–
inhibition relationship of carvacrol on the A. suum ACR-16 N-AChR expressed in Xenopus oocytes.
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