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Calibration transfer (CT) refers to the set of chemometric techniques used to transfer (near-infrared)
calibration models between spectrometers. The requirement of traditional CT methods to measure
calibration standard samples has been a challenge as such measurements are difficult in real-world
applications, e.g. when the instruments are located far apart or chemically stable standard samples
are not available. In recent years, major developments have taken place in the domain of CT, hence, this
work provides a concise but critical review of all the main recent chemometric techniques available to
perform CT. Particularly this work explains some newer concepts for standard-free CT, where the
standard samples are not required to attain the CT. We conclude that CT approaches that do not rely on
standard sample measurements hold promise to help making calibration models sharable between
similar analytical devices and to increase the applicability of CT to real-world problems in the analytical
sciences.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A substantial proportion of chemometric applications to real-
world problems deals with the possibility of predicting qualita-
tive and quantitative sample properties based on some analytical
measurements [1—-3]. However, the generalizability of predictive
models, i.e., the extent to which such models can be applied to new
data, depends on how much of the variability spanned by the future
samples is represented in the calibration set [4,5]. A direct conse-
quence of this is that the use of multivariate chemometric models is
often limited to data collected on the same instrument that was
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used to measure the calibration samples. Different instruments
have intrinsic differences, due to i) different technical components
in the instrument such as the detector or the illumination source ii)
differences in the spectral range, resolution or wavelength axis
registry or iii) due to differences in the environment surrounding
the instrument [6,7], e.g. temperature or humidity. To cope with
this limitation, several so-called calibration transfer (CT) strategies
have been proposed in the literature [7,8].

An exemplary overview of the need for CT is illustrated in Fig. 1,
where the scenario of model transfer from a lab-based primary
instrument to similar lab-based instruments and portable spec-
trometers is presented. Such model transfer is required e.g. after
instrument maintenance, when a new similar instrument is used,
or the same type of instrument is deployed at a different location to
analyze similar samples. In another scenario, model transfer is

0165-9936/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abbreviations NPE Neighborhood preserving embedding
O2PLS 2-block orthogonal partial least square
Al Artificial intelligence OH Oxygen hydrogen
CARS Competitive adaptive reweighted sampling OLS Ordinary least square
CCA Canonical component analysis OnPLS n-block orthogonal partial least square
CH Carbon hydrogen 0sC Orthogonal signal correction
CT Calibration transfer OSR Orthogonal signal regression
CTAI Calibration transfer with affine invariance PCA Principal component analysis
CTWM Calibration transfer using weight matrix PDS Piecewise direct standardization
DA Domain adaption PLS Partial least square
di-PLS Domain invariant partial least square RKSPDS Rand Kennard Stone piecewise direct standardization
DL Deep learning SCA Simultaneous component analysis
DOP Dynamic orthogonal projection SDPDS Standard deviation of precision detection spectra
DOP Dynamic orthogonal projections SR Selectivity ratio
DS direct standardization SST Spectral space transformation
ELM Extreme learning machine SWCS Screening wavelengths with consistent and stable
FIR Finite impulse response signals
GCT-PLS  Graph based calibration transfer partial least square TCA Transfer component analysis
JUMBA  Joint and unique multi-block analysis TOP Transfer by orthogonal projection
JY-PLSR  Joint Y partial least square regression TSR Trimmed score regression
LMC Linear model correction TL Transfer learning
LVs Latent variables UVE Uninformative variable elimination
MSCA Multi-level simultaneous component analysis VIP Variable importance in projection
MWMSC Moving window multiplicative scatter correction VPdtw variable penalty dynamic time warping
NAS Net analyte signal WMSC Window multiplicative scatter correction
NIR Near-infrared
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Fig. 1. An example of potential scenarios where CT might be employed to transfer calibration models between analytical devices. The portable, handheld spectrometer is the Felix
portable spectrometer from Felix Instruments, USA and the pocket spectrometer are the SCiO, Consumer physics, Israel.

required when aiming to use advanced portable spectrometers for
field analyses. Furthermore, model transfer may be required to
transfer models between portable spectrometers. Similarly, a
model established on a lab-based or portable spectrometer might
need to be transferred to multiple pocket spectrometers. Lastly,
multiple pocket spectrometers may share a model between
different pocket spectrometers of the same (or different) type.

CT refers to chemometric techniques that allow adaption of a
calibration model developed using a spectral database acquired on
one instrument to enable inference (i.e. prediction) on spectra ac-
quired on other instruments with similar accuracy and precision

[6,7,9]. In this context, the most adopted strategy requires calibra-
tion standard samples to be measured on both instruments to
model the instrumental differences and/or to compensate for them
[7]. For example, the most widely used CT techniques i.e., direct
standardization (DS) [10] and piecewise direct standardization
(PDS) [11], require measurement of the same set of standard sam-
ples on the different instruments. Since the samples are the same, it
is assumed that the resulting differences in the signals are due to
the intrinsic differences between the instruments. The inequality
between a primary instrument (for which an initial calibration
model has been established) and a secondary instrument (to which
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a calibration model should be transferred) can be modelled by
means of a transfer function. Once the transfer function is param-
eterized, it can be used to transform the data from the secondary
instrument to make them look as if they were recorded on the
primary instrument, so that the primary calibration model can be
directly employed for inference on the data from the secondary
instrument (forward standardization). Alternatively, the primary
calibration database is transformed to match the secondary spectra
and the model is rebuilt using the transformed data (backward
standardization) [10,11].

CT based on calibration standards may not always be feasible
[12—14], e.g. if the instruments are in remote locations, if stable
calibration standards with appropriate spectral properties are not
available or, more recently, in the case of portable spectroscopy
where spectrometers are sold as consumer products. There is an
increasing demand for methods which reduce the need for stan-
dard samples measurements in order to facilitate sharing of che-
mometric models across different instruments (or analytical
platforms). Recently, the development of CT strategies that do not
require standard samples has gained attention and several ap-
proaches have been proposed in the literature [8]. These ap-
proaches range from techniques such as dynamic orthogonal
projection (DOP) [15], where the need of paired measurements of
standard samples is replaced by the measurement of occasional
standard samples on the secondary instrument only, to advanced
variable selection techniques such as double competitive adaptive
reweighted sampling (double CARS) [16], which selects the vari-
ables that retain the predictive performance of models on a new
instrument, to domain-adaption techniques such as domain-
invariant partial least-squares (di-PLS) regression [13,14] which
aims at extracting domain-invariant latent variables (LVs) to attain
generalized models that can be used on multiple instruments.

With the present article we aim at providing a concise, easy to
understand but critical review of all the main recent chemometric
concepts and techniques available to perform CT between in-
struments. Successively, a summary and a critical comparison of
different CT methods that do not require standard samples are
presented and innovative applications of standard-free CT methods
are reviewed. A key point to note is that this review focuses on the
transfer of regression models dealing with continuous responses
and that the transfer of classification models is outside the scope of
this review.

2. Why calibration models cannot be used directly on a new
instrument?

Multivariate regression/calibration models are often required to
relate the instrument/sensor responses to some property(-ies) of
interest [1]. Due to the usually large number of highly correlated
variables present in the signals from modern near-infrared (NIR)
equipment, methods based on the extraction of latent variables
(LVs), such as partial least squares (PLS) regression, are frequently
used for this purpose [17]. The calibration model identifies a
function which approximates the relationship between the in-
strument/sensor signals and the property(-ies) of interest. For
example, if NIR spectroscopy is used to predict the fat content in
meat, then the corresponding calibration model will identify the
bands around 1200 nm to be the most correlated to the fat content,
as these wavelengths correspond to the second overtone of C—H
stretching vibrations. In principle, one would expect this same
relation to hold for any other NIR instrument. However, due to
instrument-specific sources of additional variability such as dif-
ferences in light source, the sensitivity of the detectors or in the
measurement mode, the same model, if used on a different in-
strument, will lead to over- or under-estimation of the property of

Trends in Analytical Chemistry 143 (2021) 116331

interest. Sometimes it is not only the instrument itself but the
environmental condition in which the measurements are per-
formed that can play an important role in affecting the generaliz-
ability of chemometric models. For example, in the case of NIR
spectroscopy, the temperature at which the measurements are
conducted is known to play a crucial role and often leads to model
failure if not properly accounted for in advance. The influence of
temperature can be noticed as baseline shifts for the complete
spectra or peak shifts near the O—H absorption bands, especially in
high moisture products. Sometimes the CT problem can become
even more challenging when the state of the samples is different,
for example, when the samples on the primary instruments are
measured in solid form while in the secondary they are measured
as powders, as is the case when the model developed on rice ker-
nels is to be transferred to rice flour samples [18]. Such a change in
the physical state of the samples can cause differences between the
spectra from two instruments. Finally, the most complicated sce-
nario arises when there are intrinsic differences in the instruments
as well as differences in the surrounding environment and the
samples’ physical or chemical (i.e. matrix effects) properties. For
example, when a calibration for solid rice kernels established on
one instrument for a certain temperature range needs to be
transferred to a new instrument that operates at different tem-
perature levels on rice flour. The differences that a CT method needs
to account for include the intrinsic difference between the in-
struments, the shifts in peak positions and baselines due to tem-
perature effect and the scattering effects due to interaction of light
with samples corresponding to different physical forms.

3. Recent development in calibration transfer methods

CT using standard samples has been a field of interest in che-
mometrics for a long time [6,9,10]. The procedure usually involves
measuring the same set of samples on the two instruments be-
tween which the calibration model is to be transferred. Later, either
a (correction) function is modelled based on the differences be-
tween the responses of the two instruments or these differences
are compensated [7]. In both cases, CT methods work well and are
widely used in industrial settings, even if their good performances
have not stopped the innovation and the development of novel
approaches based on standard samples. The traditional standard-
based CT methods can be broadly classified into three subgroups:

1. Methods that deal with the complete multivariate signal from
the primary and the secondary instrument at once, such as DS.

2. Methods dealing with local differences between primary and
secondary instruments such as PDS.

3. Methods that perform standardization in latent spaces to attain
generalized performance of the models such as spectral space
transform (SST) [19].

A summary of recent techniques for CT is provided in Table 1. In
terms of local approaches, two types of methods are available. The
first type, such as Rank Kennard- Stone Piecewise Direct Stan-
dardization (RKSPDS) [20], extends the classical PDS approach,
whereas the second type aims to select a subset of variables and
their combinations that support the generalization of models to a
new instrument [21—23]. The RKSPDS methods include a transfer
sample selection step based on the Rank Kennard-Stone approach
[24] prior to applying PDS to select transfer samples of greater
representativeness and wider coverage with respect to the prop-
erty of interest. The main benefit of the RKSPDS over its prede-
cessor PDS is that it achieves high precision model transfer with
fewer transfer samples [20]. In relation to the methods based on the
selection of subsets of variables, the major innovation can be noted
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Table 1
A summary of recent calibration transfer techniques.
Type Technique Background Key features Ref.
Local Double competitive adaptive e Extension of CARS algorithm to multi- e Identifies the key subset of variables  [16]
modelling reweighted sampling (double CARS) instruments scenario that lead to minimum error in both
e Variable importance is considered for both the instrument
primary and secondary instrument e Suitable when model transferred
between different number of
spectral variables
Rank Kennard Stone Piecewise Direct e RKSPDS methods just includes a transfer e The transfer samples selected by  [20]
Standardization (RKSPDS) sample selection step based on Rank Rank-KS have greater representa-
Kennard-Stone approach before the PDS tiveness and wider coverage
operation to select transfer samples of greater e Required the least number of transfer
representativeness and wider coverage over samples in the model transfer
the property of interest e Selected transfer samples selected
can be directly applied to model
transfer related to other properties
e.g., sample selected during
transferring a fat prediction model
and later be used to transfer a protein
prediction model
CT by optimizing wavelengths e Wavelength combinations were screened by e Simplify PLS models and improve the ~ [21]
combination based on stable spectral different methods such as, uninformative models’ efficiency such that when the
signals variable elimination, selectivity ratio and models can be transferred to
variable importance in projection, to obtain secondary spectrometers
robust and simple calibration models that can
be shared by secondary spectrometers
Correlation analysis-based wavelength e Aims to selects the variables at which the e Integrates the variable selection and  [22]
selection for CT spectral responses from different CT in single technique
instruments are well correlated e Selected variables are adjusted based
on the instrument to maintain the
predictive performance
Sub-space CT with canonical correlation analysis o Utilizes canonical component analysis as a e Useful when instruments provide [23]
modelling methods dimensionality reduction technique prior to signals at different resolution,
computing transfer function without any interpolation or
extrapolation of signals
Direct CT to principal components via e PCA-CCA based CT extracts the PCs from e A fast alternative to classical CT  [25]
canonical component analysis (PCA- secondary spectra and then CCA is used to methods such as piecewise direct
CCA) transfer the PCs of secondary to the latent standardization (PDS) and spectral
variables of PLS developed on the primary space transformation (SST)
instrument
CT via extreme learning machine auto e Utilizes extreme learning machine auto e A non-linear approach to CT [26]
encoders encoders as a dimensionality reduction and
difference learning technique
CT with neighborhood-preserving e Utilizes neighborhood preserving embedding e Neighborhood preserving embedding  [27]
embedding as a dimensionality reduction technique prior (NPE) allows capturing the
to computing transfer function nonlinearity in data which improves
the transform function for CT
Cross-component CT with PCA and e Combines principal component analysis e Allow to transfer model between [28]
weighted ELM-based TrAdaBoost (PCA) for dimensionality reduction with the different components to be predicted
algorithm weighted extreme learning machine (ELM)
and TrAdaBoost algorithm
PLS subspace-based CT e The data from primary and secondary e PLS-based subspace transfer provides  [29]
instrument are transferred to the PLS an efficient method for performing
subspace spanned by the PLS model CT with only a small number of
developed between spectra of primary standard samples
instrument and the response variables, latera e Can correct for complex distortions
feature transfer relationship model is
constructed by ordinary least-square regres-
sion at PLS feature space
CT using weight matrix of partial least e Two version were proposed namely CTWM1 e CTWM1 can be applied to the [30]

squares

Trimmed score regression and joint Y
regression

and 2

CTWMT1 uses PLS to build a linear regression
model between the secondary spectra of
standardization samples and the low-
dimensional information extracted from the
primary spectra of standardization samples
using the weight matrix of the original cali-
bration model.

CTWM2 retains the weight matrix but uses
ordinary least squares (OLS) to update the
y-weight vector using the secondary spectra
and property values of standardization
samples.

Permit to exploit the specific relationships
between instruments for imputing new
unmeasured spectra, which will be then

occasion when both the primary and
secondary spectra of standardization
samples can be obtained.

CTWM2 can be applied to the
occasion when the primary spectra
of standardization samples cannot be
obtained but the observed property
values can be.

Utilizes data imputation concept to
simulate unmeasured spectra and

[31]
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Type Technique Background Key features Ref.
resorted to for building an improved late use it to adjust the model to be
predictive model, suitable for the analysis of used on a new instrument.
future incoming data
A two-level strategy for standardization e Uses a two-level MSCA model to capture the e Both the instrument difference and  [32]
of near infrared spectra by multi-level difference between instruments (the first the spectral variation caused by
simultaneous component analysis level) and samples (the second level) operation and measurements
conditions can be corrected,
simultaneously.

A dual model strategy for CT e A primary calibration model is built using the e Does not rely on the transfer function  [33]

spectra of a primary instrument and a

correction model is established to describe

the ratios between the predicted results from

the spectra of different instruments

e The prediction for the spectra of secondary

instrument are achieved by correcting the

prediction of the primary model
Robust calibration model transfer to e Cauchy estimator are employed to learn e Useful in automatically dealing with  [34]
deal with outliers and noise in the common subspace from primary and outliers present in data which may
samples secondary spectra robustly. Transformation affect the performance of transferred

matrix is calculated with the two model

corresponding coefficient matrices.
Multi-instrument CT using independent e Performs independent component analysis e Models can be transferred to multiple ~ [35]
component analysis on variable domain concatenated spectral instruments in one go

matrix to obtain the mixing matrix and the

independent components of different

spectrometers.

e Spectrometers can then be standardized by

correcting the coefficients within the

independent components
Common quantitative model o Utilizes Tchebichef image moment method  Generalized multi-instrument models [36]
generation for models to be used on based on the near infrared (NIR) three- can be obtained
multiple instruments dimensional spectra constructed based on

multiple instruments and later uses stepwise

regression to attain generalized models
Joint and unique multiblock analysis for e Exploits the common and distinct e Models can be transferred  [37]
CT information to perform extracted by multi- simultaneously to multiple

block data analysis to perform the CT instruments
Graph-based CT e Utilizes manifold regularization on the PLS e Does not require that calibration [12]

objective to reduce between-device variation

standards share similar (spectral)
features with the calibration samples

in the development of methods that extend standard variable se-
lection techniques to multi-instrument scenarios allowing CT when
the number of variables recorded by the instruments involved are
different (i.e.,, spectrometers generating signals with different
spectral resolutions). For example, a recent extension of competi-
tive adaptive reweighted sampling (CARS), called Double-CARS,
allows CT by selecting variables from primary and secondary
spectra that lead to low prediction errors [16]. The other recent
variable selection approaches for CT aim to build robust PLS cali-
brations by identifying consistent and stable spectral regions using
traditional strategies such as uninformative variable elimination
(UVE), variable importance in projection (VIP) and selectivity ratio
(SR) [21]. The application of models based on selected variables has
shown better performance compared to the standard PDS approach
to CT. There can also be the possibility of adopting a coupled
strategy where a preliminary variable selection is followed by
traditional CT approaches on the identified subset of predictors. For
example, the recently proposed correlation-based approach to
variable selection can be combined with the classical CT approaches
to enhance the efficiency of CT [22].

Although there have been several developments in the extension
of local modelling strategies, most of the recent ones are related to
subspace modelling approaches (Table 1). The general idea of
subspace-based CT methodologies is to perform the standardization
after transformation, e.g., using traditional chemometric approaches
such as principal component analysis (PCA) [25] or advanced non-
linear approaches such as autoencoders [26], neighbor embeddings

[27] or extreme learning machines [26,28]. Canonical correlation
analysis (CCA) has played a major role in the development of
subspace-based CT methods, and particularly methods that allow
transferring models between instruments having different spectral
resolutions [23]. CCA is a popular technique from multivariate sta-
tistics that allows modelling multivariate relationships among
different data blocks, which, in the case of CT, may correspond to
different instruments. Basically, the CCA-based methods operate on
subspaces and thus eliminate the need for interpolation of signals,
representing a generic solution for CT problems [23]. Development
in CCA-based methods can also be noted where CCA is combined
with PCA to attain even more efficient CT [25]. The PCA-CCA-based
CT methods extract the PCs from the signals collected on the sec-
ondary device and then CCA is used to transfer the PCs of the sec-
ondary to the latent variables of a PLS model developed on the
primary instrument [25]. PCA-CCA-based CT methods have already
proven to be better than those based on CCA alone [25]. PLS-based CT
methods are also emerging where at first the primary and secondary
profiles are projected onto the subspace spanned by the primary's
PLS model [29]. Later, the projected secondary spectra are trans-
formed by ordinary least squares to match the projections of the
primary spectra, i.e. a direct standardization is performed in the PLS
subspace. Application of PLS subspace-based methods has proven to
be better than those solely based on CCA [29]. The superior perfor-
mance of PLS subspace-based CT methods can be explained by the
fact that PLS identifies subspaces that are most correlated to the
property of interest. Instead of performing the standardization on
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the projections of primary and secondary spectra, Zhang et al. pro-
posed to apply the transformation on the PLS weight matrix in order
to update the y-regression weights by using the spectra from the
secondary instrument and the corresponding property of interest
[30]. Advances can also be noted in the use of methodologies such as
the trimmed scores regression (TSR) and the joint-Y PLS (JYPLS)
regression where the data from the primary and secondary in-
struments are jointly explored with the aim to attain CT [31]. In
particular, the idea behind both approaches is that CT can be seen as
a missing data imputation problem, where the information in the
paired profiles acquired with both instruments can be exploited to
reconstruct the signals which were not measured on the secondary
device. A recent approach to subspace modelling utilizes a multilevel
simultaneous component analysis approach (MSCA) [32], where the
spectra of the same samples measured on two instruments are
modelled with a two-level MSCA model to capture both the differ-
ence between instruments (the first level) and among samples (the
second level). The MSCA scores of the first level model the spectral
difference between instruments, whereas the inter-sample vari-
ability is captured by the scores of the second level. Later, the spectral
difference due to the instrument and measurement can be corrected
by adjusting the coefficients in the scores of the two-level models,
respectively [32]. A recent approach also utilizes a dual modelling
approach where the aim is not to attain a CT but to correct the
predictions from the model made on the primary instrument to
match the predictions on the secondary instrument's spectra [33].
The presence of outliers negatively affects chemometric models
in general and, specifically, CT methods. Consequently, new de-
velopments in CT methods have emerged from the area of robust
techniques, which can detect and reduce the influence of outlying
samples. One such new technique utilizes the Cauchy estimator to
reduce the influence of the outlying samples [34]. Robust CT
methods have already outperformed the traditional CT methods
such as DS and PDS as well as advanced subspace-based methods
based on CCA [34]. Apart from the robust methods, key de-
velopments can also be noted with methods that allow the transfer
of calibrations to multiple instruments. Traditionally, methods for
CT are limited to two instruments. However, recent advancements
in NIR technology and the increasing availability of low-cost sen-
sors have led to the development of methods that allow multi-
instrument CT, i.e., from one primary device to multiple second-
ary instruments. In the domain of multi-instrument CT, there are
currently three types of methods: simultaneous subspace model-
ling methods [35], methods that aim at developing generalized
common quantitative models to be used on multiple instruments
[36] and methods extending multi-block chemometric strategies to
model the distinct and unique subspaces in a multi-instrument
scenario [37]. Liu et al. have recently introduced a simple
subspace-based multi-instrument CT method using independent
component analysis on the concatenated data matrices (in the
variable domain) [35], where measurements on different spec-
trometers are standardized by correcting the coefficients within the
independent components [35]. In the framework of developing
common quantitative models for multi-instrument scenarios, the
use of Tchebichef image moments to extract relevant chemical
features has been studied in Ref. [36]. In the framework of multi-
block chemometric methods [38], joint and unique multi-block
analysis (JUMBA), where orthogonal n-blocks partial least-squares
(OnPLS) [39] is used to extract common and unique information
from data acquired on the same samples with different spectrom-
eters, has been successfully applied to CT problems [37].
Although several new standard-based calibration methods were
developed in recent years, all these methods require that the
transfer standard samples share similar characteristics with the
calibration samples. In many cases, however, it might be difficult to
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find standard samples that are chemically stable and at the same
time share similar spectral features with the calibration samples.
Towards enabling CT with arbitrary CT standards, Nikzad-Langerodi
and Sobieczky recently proposed a manifold regularization method
for PLS regression [12]. Their approach, termed GCT-PLS, shares
some similarity with other subspace-based CT techniques such as
PLSCT proposed in Ref. [24]. However, instead of first constructing
the PLS subspace and standardizing primary and secondary signals
in that space, GCT-PLS implicitly standardizes the instruments
while deriving a subspace that is predictive with respect to the
response and at the same time-invariant with respect to between-
instrument variation.

4. Standard-free calibration transfer and methods

The main limitation of “classical” CT methods is that they
require standard samples that must be measured on all the in-
struments [8]. Such extra measurements can be time-consuming,
labor intensive and inconvenient (e.g., when the model must be
transferred from the laboratory to an in-line process spectroscopic
sensor), and, sometimes, not possible as either the instruments are
based in locations far from one another, or the primary instrument
is damaged. Further, most CT methods need the standard samples
to have similar or the same spectral properties as the calibration
samples. At the same time, the standards should also be chemically
stable, otherwise each time a different signal will be measured from
the same sample. Over the past years, several standard-free CT
techniques have been proposed to deal with this issue. In the
following subsections, the major concepts related to standard-free
CT are discussed and a summary of available methods is provided in
Table 2.

4.1. Domain adaption-based standard-free calibration transfer

While having already been widely explored in the context of
machine learning, domain adaption (DA) is a new term in chemo-
metrics and analytical chemistry. DA is the branch of machine
learning that is concerned with learning (classification/regression)
models from data that follow different distributions (i.e., data from
different domains). The most frequent setting in DA is when sub-
stantial amounts of labelled data are available in one (source)
domain, whereas label information for data from some related
(target) domain(s) is either missing or scarce. The goal of DA is then
to leverage the source domain information to support learning in
the target domain(s). In the case of CT, data acquired on different
instruments usually follow different distributions and DA tech-
niques might be employed to leverage the calibration set from a
primary instrument to establish a calibration model using unla-
belled secondary instrument data (e.g., spectra where the reference
values are unknown).

Many works on DA-based CT employed the domain-invariant
representation learning paradigm, where the idea is to derive
(latent) representations of the input data (e.g. spectra) where the
distributional differences between the domains are small (Fig. 2).
The rationale behind this approach is to make the source and target
domain data look as if they were sampled from the same under-
lying distribution, in which case (according to statistical learning
theory) generalization from the source to the target domain(s)
should succeed (within the usual error bounds). In one of the first
studies of its kind, Andries [40] employed transfer- (TCA) [41] and
scatter component analysis (SCA) [42], two well-established
methods from the DA community, to study CT on the Corn data-
set [40]. Both methods construct subspaces of the input data where
between-domain scatter is small. Subsequently, linear regression is
employed on the (domain-invariant) LVs to establish the
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Table 2
A summary of recent standard free calibration transfer techniques.
Type Technique Background Key features Ref.
Domain adaption- Transfer component e Both methods aim at finding a subspace, e Extraction of LVs that are invariant w.r.t. the different ~ [41]
based standard- analysis (TCA)/Scatter where the distributional difference between conditions (i.e. domains)
free transfer Component Analysis samples belonging to different conditions is e Allows linear or non-linear (kernel-based) embed-
(SCA) small and the amount of explained variance is ding of the domains
large. e The subspace is not necessarily predictive w.r.t. the
response
Domain-invariant e Finds a subspace that is predictive w.r.t. a e Applicable to (semi-) supervised and unsupervised [40]
partial least squares response y and at the same time minimizes domain adaptation scenarios
regression (di-PLS) the distributional difference between the e Assumes normal distributed domains
domains in terms of co-variances.
Domain adaptive e Similar to di-PLS but can handle more e Handles more complicated (i.e. beyond co-variance [14]
partial least squares complicated distributional differences related) domain shifts.
regression beyond co-variances. e Allows linear or non-linear (kernel-based) embed-
ding of the domains.
Semi-supervised o Implicitly removes the influence of mean and e Model agnostic correction of covariate shifts [76]
covariate shift co-variance differences between labelled and
modelling for unlabelled data on the model predictions.
spectroscopic data
Methods based on Orthogonal space e Uses OSC to estimate the Net Analyte Signal e Provides an explicit correction of the spectra [54]
orthogonal regression (NAS) of each domain (primary and e Assumes a simple linear distortion between the two
projections secondary) domains
e Estimates a linear model to turn a NAS into
the other one
Dynamic orthogonal e Builds virtual standards based on some e Makes the same model efficient on both domains [15]
projection control points on the secondary e Provides insights on the spectral differences
o Estimates the subspace of spectral distortions
and remove it by means of an orthogonal
projection
Dual-Domain CT Using e Calculates specific frequency components of e The model generalizes better on new instruments [56]
Orthogonal Projection each domain by means of wavelet transform e Provides insights on the spectral differences
e Projects the frequency components of the
primary spectra onto the subspace
orthogonal to the mean difference between
the domains
Methods relying on  Stacked PLS for CT e Partition data in spectral domain and e Allows to prefilter variables that are not related to the  [65]
variable subset without standards developed several stacked models. property of interest.
modelling e The models were then weighted to
emphasize the spectral region the most
related to the property of interest.
Screening wavelengths e Used the standard deviation of difference e Lead to simplified and robust models based on a few  [66]
with consistent and spectra between the primary and secondary variables.
stable signals instruments to select key wavelengths
invariant to instrumental differences
Methods exploring Partial-least square e Develops an extra PLS model between the e No such specific feature apart from possibility to  [59]
relationship model correction by prediction error obtained from the perform standard free CT
between the modelling prediction application of model made on primary
prediction error error and the spectral instrument and the spectral difference of the
and the spectral difference of the instruments
difference of the instruments e The new error based PLS model is used to
instruments correct the predication of the model made
on primary instrument and used for
prediction on secondary instrument
Affine invariance-based e Utilizes angles and biases between the e Performs better when the concentration ranges of  [60]
CT regression coefficients of the primary spectra measured on primary and secondary
instrument and the secondary instrument instrument are in similar range
Constrained Tikhonov e Utilizes Tikhonov regularization to transfer e Requires some samples measured on secondary [57]
optimization- regularization the coefficients of the primary model by instrument to be augmented to the primary
based methods optimizing the regression coefficients and instrument prior to regularization
minimizing the prediction errors of
secondary spectra
Linear model correction e Utilizes a few spectra measured on secondary e Useful when the spectra measured on different [58]
instrument together with the constrained instruments are linearly correlated
optimization, to transfer the model
coefficients of the primary instrument to the
secondary instrument
Transfer learning Deep learning for non- e Develops several 1-dimensional convolu- e Allows development of generalized models which  [70]
translational data tional neural networks with data from can be used in scenarios with different signal
different spectral and variable size to learn resolution and variables.
generalized features e Useful in cases when huge data is available.
Transfer learning for o Utilizes the concept of model fine-tuning by e Requires a few new measurements to update model  [71]
spectral modelling replacing the output layer of models weights
Other methods Finite impulse response e Useful in dealing with localized differences between  [72,73]

spectra form primary and secondary instrument

(continued on next page)
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Type Technique

Background

Key features

Ref.

Windowed MSC (W-
MSC) and moving

Utilizes finites impulse response filters to
remove non-relevant information from the
spectra of secondary instrument

Extend the concept of multiplicative scatter
correction to correct for localized

e The approach is useful when the differences in the
instrument signals are local

[74]

window MSC (MW-
MSC) spectrometers
Variable penalty e Performs
dynamic time warping

alignment of peaks
primary and secondary instruments

differences in the spectra from different

between e Useful in cases when the main difference between [75]

primary and secondary instrument in the peak shifts

calibration. However, neither method can incorporate information
about the response (i.e. the y-values) while deriving the corre-
sponding subspace and could not significantly outperform local
mean centring approaches. To overcome this limitation, Nikzad-
Langerodi et al., 2018 proposed a domain-regularization approach
for PLS to derive domain-invariant PLS (di-PLS) models which
showed promising results on the same dataset [10]. di-PLS solves a
non-convex optimization problem and is thus difficult to handle in
practice. In Refs. [9,43], the same authors propose a convex relax-
ation of the original objective function of di-PLS which improves
both applicability and performance of the method for CT and
sample matrix compensation problems. Huang et al. subsequently
extended the idea of domain-regularization for PLS regression
problems to handle non-linearities (using a kernel-based approach)
and non-Gaussian domains [37].

The main advantage of DA-based CT approaches is that no
standardization set is required to transfer calibrations to another
instrument if a representative set of samples from the corre-
sponding “primary and secondary domains” are available. How-
ever, several pitfalls can make DA-based CT difficult in practice, in
the cases when only input data are available from the secondary
instrument (i.e., unsupervised DA). For unsupervised DA to succeed,
the so-called covariate shift assumption must hold, which states
that the domains must differ only in the marginal distribution of
the input data (i.e., P(X)). This means that the relationship between
instrumental response and property of interest must be the same in
both domains, i.e., the conditional probability (i.e., P(Y]X)) must not
change across the domains. Secondly, the distribution of the
response (i.e., P(Y)) must be similar for the primary and secondary
data, since models based on domain-invariant representations also

Source Domain

Ys

[0 [w]oo]

=

W
\

Target Domain

=

e

give rise to predictions which are invariant w.r.t. the y-distributions
(Fig. 3).

Other DA approaches to handle covariate shifts are the exten-
sion of the Linear Joint Training Framework proposed in Ref. [38] as
well as the sample and feature augmentation approaches described
in Ref. [44]. Both aim at orthogonalizing the regression vector away
from between-domain differences.

4.2. Methods based on orthogonal projections

Orthogonal projections are immensely popular in the domain of
chemometric data analysis [45]. Orthogonal projection can be un-
derstood as a “multivariate subtraction” and it is usually performed
to subtract the already explained or irrelevant information. The use
of orthogonalization is deep-rooted in chemometrics: the most
popular chemometric methods such as principal component anal-
ysis (PCA) [46] and partial least-squares (PLS) regression [17]
involve several orthogonalization steps to extract the un-correlated
latent variables. Moreover, the current trends in multi-block che-
mometric data processing [47] also rely to a substantial extent on
orthogonal projections which are used to remove the redundant
information from several data blocks to model only unique infor-
mation [38,48—50]. Fig. 4 provides an insight into the concept of
orthogonal projections. Let S1 and S2 be two sets of spectra that
should be similar, because they were acquired on the same sam-
ples, or because they correspond to the same reference value. These
spectra differ because of a change in the measurement environ-
ment. Orthogonalization correction involves identifying the spec-
tral subspace caused by these differences and removing it from the
calibration base. Thus, a model calibrated on the modified base will

PLS

Predicted

2
o
.
)}

Predicted

Measured

Fig. 2. An illustration of the concept of domain-invariant partial least squares (di-PLS) regression [14]. In the di-PLS, domain-invariant subspaces are learned which allows the

model to be generalized to a previously unmodeled variation.
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Fig. 3. What can go wrong with DA-based CT. From left to right: Primary (blue) and secondary (orange) NIR spectra of fruit, distribution of the corresponding dry matter (DM)
contents, measured vs. predicted values of the primary PLS model applied to secondary instrument spectra and measured vs. predicted values of di-PLS model on the secondary
instrument spectra. Note that the predicted values for the di-PLS model vary between 13 and 18, i.e. within the same range of DM contents from the samples recorded on the

primary instrument.
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Fig. 4. Illustration of the calibration transfer by orthogonal projection. Two sets of spectra S1 and S2, measured on two different instruments are at first use to model the difference
and later the spectra are transformed by removing this difference using orthogonal projections.

be insensitive to the spectral variations observed, whatever their
level [51].

The use of orthogonal methods for CT started with a method
called transfer by orthogonal projection (TOP) [52]. TOP attains the
CT by orthogonalizing the calibration spectra with respect to di-
rections in the spectral space in which most of the between-
instrument variability lies. However, the main drawback of the
TOP approach was that it required the standard samples to be
measured on both primary and secondary instruments to estimate
the between-instrument variability. To remove the dependence of
TOP on the requirement of standard samples, new standard-free
orthogonal methods were proposed. Although the standard-free
orthogonal methods were first proposed with the aim of model
maintenance [15], they have been finding increased application for
CT purposes [53]. There are two different scenarios where the
orthogonal projection-based methods can be used to perform
standard-free CT. The first is where a small set of spectra and
reference measurements are available from the secondary instru-
ment, and in that case, the methods dynamic orthogonal projection
(DOP) [15] and orthogonal space regression (OSR) [54] can be
implemented. The second scenario is when the reference values for
the secondary instrument are not available; in this case, methods
such as orthogonal signal correction (OSC) [55] and dual-domain CT
using orthogonal projection [56] are of high interest. DOP and OSR
rely on the same principle of developing virtual standard spectra to

account for response changes between instruments or batches. The
aim is to identify the detrimental subspace which captures the
differences between the instruments. This detrimental subspace is
also unrelated to the property of interest, hence, their removal from
the model does improve the prediction of the property of interest
when the orthogonalized model from the primary instrument is
tested on a secondary instrument. However, the main limitation of
DOP and OSR is that they both require some spectra from the
secondary instrument along with the values of the corresponding
reference measurements. To deal with this, the dual-domain CT
using orthogonal projection, which combines wavelet prism
decomposition with the TOP approach to CT, was proposed [56].
The new dual-domain method projects the frequency components
of the signals from the primary instrument onto the subspace
orthogonal to the mean difference between the profiles from the
primary and the secondary instrument. Then, each frequency
component model is weighted according to the cross-validation
error of the frequency components of the projected primary in-
strument's spectra to generate a stacked ensemble model robust to
contributions to the spectra from instrumental variations [56]. By
doing this, the dual-domain method allows suppression of the
instrumental or physical phenomena (i.e., instrumental baseline
shifts or discretized intensity changes which may be attributed to
scattering), and enhancing of the chemical phenomena useful to
explain the property of interest [56]. The dual-domain approach
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has already outperformed the other orthogonal projection methods
that require property values for spectra from the secondary in-
strument [56].

4.3. Constrained optimization-based methods

Constrained optimization is the process of optimizing an
objective function with respect to some variables in the presence of
constraints on those variables. A constrained optimization-based
method such as utilizing Tikhonov regularization also gained
popularity for standard-free CT. Tikhonov regularization transfers
the coefficients of the primary model by optimizing the regression
coefficients and minimizing the prediction errors of the secondary
spectra [57]. Inspired by the Tikhonov regularization, a new con-
strained optimization method called linear model correction (LMC)
was proposed [58]. LMC assumes that the spectra measured on
different instruments for samples with similar physical and
chemical properties are linearly dependent. Hence, the coefficients
of the linear models constructed by the spectra measured on
different instruments are similar. Using a few spectra measured on
the secondary instrument together with the constrained optimi-
zation method, the coefficients of the primary model can be
transferred to those of the secondary instrument [58].

4.4. Methods exploring the relationship between prediction error
and spectral differences between instruments

When the same sample is measured using two different in-
struments under the same chemical, physical and environmental
conditions, the differences in the spectra from the two instruments
are due to differences between the instruments. In the case of
spectrometers, these can be termed as spectral differences of the
instruments. Similarly, when a model made on one instrument is
used on a different instrument it may result in high prediction er-
rors. However, it is a well-documented fact that the differences
between the two instruments are proportional to the prediction
error of the model made on the first instrument and used on the
other [59,60]. For example, if the spectral differences between the
data from two spectrometers are large, the prediction error
resulting from applying a model trained on one instrument to
signals acquired with the other will be large as well. Considering
this relationship between signal differences and prediction error,
two different standard-free CT methods were recently proposed
[59,60]. The first method is based on the correction of the PLS
models made on the primary instrument assuming a linear rela-
tionship between the spectral difference and the prediction error.
The method uses the PLS model built on the primary instrument to
make predictions for the signals acquired with the secondary in-
strument. Later, the error in the predictions is used to build a new
PLS correction model relating the error itself to the spectral dif-
ferences. The predicted error obtained with the correction model
can be used to amend that of the primary model [59]. The second
method, called CT based on affine invariance (CTAI), establishes a
PLS model on the primary instrument to obtain score matrices and
predicted values of the primary and secondary instruments, and
then the regression coefficients between each of the score vectors
and predicted values are computed for the primary instrument and
the secondary instrument, respectively. Later, angles and biases are
calculated between the regression coefficients of the primary in-
strument and the secondary instrument. Finally, by introducing an
affine transformation, new samples are predicted based on the
obtained angles and biases [60]. Both approaches showed a
comparative performance to the standard-based CT methods such
as DS and PDS.
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4.5. Methods relying on variable subset modelling

Multivariate signals generated by analytical instruments, such
as spectrometers, often contain many collinear variables [61].
Furthermore, in many cases signals ascribable to the chemical
analytes that are targeted can be localized in specific regions of the
multivariate profiles [62,63]. Hence, in chemometrics, variable se-
lection is widely used to identify key spectral intervals or bands
most related to the property of interest, to gain insight into the
background chemistry and to improve the predictive performance
of calibration models [62—64]. Dealing with the importance of
localized regions or variables, two standard-free CT methods were
recently proposed [65,66]. The first method is based on the concept
of stacked PLS regression analysis, where several PLS models are
built by partitioning the data into a set of disjoint regions to
emphasize the portions of the signal related to a property of in-
terest to be predicted [65]. By emphasizing those regions of the
profiles, the technique correspondingly down-weights intervals
with little or no predictive information. The models made with
stacked PLS were comparable in performance to traditional
standard-based CT methods, with the major advantage that
spurious variation due to irrelevant variables was pre-eliminated
[65]. Another recent method assumes that there can be a subset
of variables that is invariant to the differences in the instruments so
that a model made on the data from the primary instrument using
only those variables can be directly used on the secondary instru-
ment. The method called screening wavelengths with consistent
and stable signals (SWCS) eliminates the wavelengths at which the
standard deviation of the difference between the signals of the
primary and secondary instruments is higher than the standard
deviation of precision detection spectra (SDPDS, i.e., the standard
deviation of the profile of a sample measured on the primary in-
strument several times), and the wavelengths with the highest
SDPDS values. For the examples discussed in the paper, the NIR
calibration built with fewer variable was found to be robust with
good prediction results for the samples from secondary in-
struments [66].

4.6. Deep learning-based transfer learning

Deep learning (DL) is an emerging field in the domain of ma-
chine learning where advanced neural networks are employed to
learn hidden data representations to enhance the performance of
predictive models. DL has outperformed all classical machine
learning and image processing algorithms in the domain of com-
puter vision and image analysis. The main advantage of deep
learning (DL) comes into play when huge data sets are available (in
the order of thousands of samples). Application of DL in chemo-
metrics is still in its infancy and only a few works can be found such
as the development of 1-D convolutional networks for multivariate
calibration [67] and the use of stacked auto-encoders for feature
extraction from highly multivariate spectral datasets [68].

Since DL requires huge data sets and training new models from
scratch is usually not feasible for small calibration sets, a popular
practice in DL is to employ transfer learning (TL) [69]. TL aims to
fine-tune the weights of an existing model for a similar problem
by including a few samples from the new application (i.e. the
target domain). An analogy to CT can be understood as a DL model
trained on a primary instrument that needs to be transferred to a
secondary instrument, where the weights of the model trained for
the primary instrument are used to initialize the model for the
secondary instrument. In chemometrics, there are currently two
studies that report on the application of transfer learning in the
framework of reusing the model weights between spectral data
sets with different numbers of variables [70,71]. In the new
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chemometric framework proposed for non-translation data,
several spectral datasets with different numbers of variables can
contribute to learning an optimal (latent) representation.
Learning from several spectral data sets allows learning higher-
level representations that generalize over multiple data sets
regardless of the data sets having different input sizes [70].
Although, the new deep learning framework for non-translational
data does not deal directly with the standard-free CT problem and
practical applications of it is still awaited, the development of
generalized models with this or similar approach may allow
models to be sharable between instruments of different resolu-
tion. Recently, the use of transfer learning (TL) was proposed for
updating DL models [71]. The TL approach was based on the idea
of fine-tuning of DL models, where the old DL model is com-
plemented by new dense layers to adapt to the variability present

A
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in the new scenario. The idea of TL is inspired from the reuse of
models and to avoid the training of models from scratch. A sum-
mary of the three recent TL approaches to fine-tune DL models is
shown in Fig. 5. In TL, an existing model architecture (Fig. 5A) is
first modified by removing the output layer. Then, the modified
architecture is complemented by either adding only a new output
layer (Fig. 5B) or multiple dense layers (Fig. 5C and D) to learn
complex patterns specific to the new instrument. Later, with the
help of some new data, the model is retrained and ready to be
used on a new instrument. In a recent study, the TL approaches
allowing retraining of the old model weights (Fig. 5B and C) were
found to achieve better predictive performance compared to a
model where the training was only performed on the new dense
layers (Fig. 5D). More extended details on the TL approaches to
updating DL models can be found elsewhere [71].
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Fig. 5. A summary of the transfer learning approach from Ref. [71] for model transfer. (A) The primary deep learning (DL) model architecture. (B) The output layer of the primary DL
model is replaced by a new output layer to learn the variability in the new instrument data; the old model weights were allowed to be retrained. (C—D) The output layer of the
primary DL model is replaced by a new output layer and two dense layers to learn the variability in the new instrument data and the old model weights were allowed to be

retrained (C) or kept frozen (D).
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4.7. Other methods

The first seed of standard-free CT in chemometric was sowed 2
decades ago when a finite impulse response (FIR) filtering approach
was proposed [72] which performed equally well as standard-
based CT methods such as PDS. The basic principle of FIR-based
CT was to map the response obtained on one spectrometer to the
response from a second spectrometer. Furthermore, since only the
instrument variation was reduced, the FIR-based method does not
require standard samples but just a spectrum from the secondary
instrument to filter the spectra of the primary. A major challenge
with the FIR-based CT approach was that it led to artefacts in the
transferred spectra due to the nonlinearity between the spectra.
Hence, the FIR method was improved to make the transfer more
robust and general by avoiding transfer artefacts in the filtered
spectra [73]. Later, methods based on the adaption of pre-
processing methods such as windowed MSC (W-MSC) and mov-
ing window MSC (MW-MSC) were proposed to do the CT without
standard samples [74]. The aim of the methods was to locally
standardize the spectra from primary and secondary instruments
so that the model developed on the primary can be used efficiently.
One of the challenges of the MSC preprocessing-based methods is
to choose the right window size. Although the authors proposed a
strategy based on sample leverage to decide the optimal window
size, the method failed to find widespread and successful applica-
tions in the scientific domain [74].

In some cases, the instrumental differences can manifest
themselves mainly as shifts in the peaks of the resulting signals
[75]. In that case, the alignment of peaks may be sufficient to
maintain the predictive performance of models on a new instru-
ment. To deal with such peak shifts, a dynamic time wrapping-
based method for standard-free CT was recently proposed [75].
The method utilizes the variable penalty dynamic time warping
(VPdtw) for peak alignment of spectral data and has proved supe-
rior in performance to the traditional standard-based CT methods
as well as standard-free techniques, such as di-PLS, particularly on
data sets with shifted peaks [75].

5. When to use which standard-free CT techniques

To this end, a summary of recent developments in the domain of
CT techniques has been provided. The number of techniques pre-
sented in Tables 1 and 2 suggests that an exponential development
of both standard-based and standard-free CT techniques has
occurred in recent decades. On the one hand, the development of a
large number of techniques provides practical users, such as
analytical chemists, with multiple options to explore in order to
solve their model transfer problems, while on the other hand, the
availability of multiple techniques makes the decision regarding
the choice of a particular technique more difficult. There is
currently no single golden technique that is suitable for all cases,
and indeed, the development of different techniques is the result of
the different challenges usually associated with different scenarios
of CT. Standard-free CT techniques emerged to cope with the main
constraint associated with the standard-based techniques which is
the need to perform the measurements of standard samples on the
primary as well as on the secondary instruments. In a practical
scenario, an analytical chemist can expect that in many cases the
measurement of standard samples will not be possible. For
example, when the primary instrument is located in a distant
location or even damaged. Furthermore, in many cases, it sometime
becomes difficult to find standard samples that are stable in terms
of their physico-chemical properties. For standard-based methods,
the measurements performed to do CT requires physico-chemically
stable samples, otherwise the difference modelled by CT
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techniques is not purely the instrument difference but also includes
physico-chemical changes. Hence, in the scenario, when the pri-
mary instrument is not available, the analytical chemist has no
option other than using one of the standard-free CT methods.
Because of the wide range of standard-free CT techniques available
(Table 2), the analytical chemist first needs to check if the model
created on the primary instrument is a multivariate, such as a PLS
regression, or a (deep) neural network-based model. If the model is
a DL model, then the user should follow either the DL approach to
non-translation data [70] or the recently proposed transfer learning
approach [71] where only some data from the new instrument are
required and the model weights can be updated to be used on the
new instrument. A key point to note is that the model transfer
approach based on DL requires both the spectra and the reference
property of interest to be measured on the new instrument. On the
other hand, when the model to be transferred is a multivariate
model like a PLS regression, the user can follow traditional
standard-free CT approaches based on domain adaption, such as di-
PLS, or orthogonal projection-based methods such as DOP.
Although there are multiple techniques mentioned in Table 2, these
two methods di-PLS and DOP are particularly highlighted here due
to their versatility as well as to the availability of free open-access
code. However, a key point to note is that techniques like DOP do
not require standard sample measurements but requires both
spectra and corresponding reference property to be measured for
the new instrument. Domain adaption-based techniques, such as
di-PLS, allow more flexibility by allowing to perform either unsu-
pervised (i.e. without reference measurements for samples
measured on the secondary instrument) or semi-supervised (i.e.
reference measurements are available for some of the samples
measured on the secondary instrument) model transfer. In some
cases, an analytical chemist may also note that the main differences
in the spectra of the primary and the secondary instrument are the
shifted peaks, in that case, the user can apply the variable penalty
dynamic time wrapping technique [75] to align the shifted peaks
such that the model made on the primary instrument can be well
generalized to the secondary instrument data. Furthermore, there
are also cases when in addition to standard-free model transfer, the
user may like to gain more insight into the important spectral
wavelengths that are related to the property of interest. Such
additional insight into important wavelengths can serve multiple
purposes, e.g. easier understanding of the underlying chemistry of
the model or improvement of the predictive performance of
models. There are currently two methods that rely on variable
subset selection i.e. stacked PLS [65] and screening wavelengths
with consistent and stable signals [66].

Although several standard-free CT techniques are now available
in the scientific literature (Table 2), they are not available in com-
mercial software packages and still outside the reach of the average
analytical chemist. Following a literature search, it was found that
only three methods had associated codes available for the scientific
community to perform standard-free CT. The first method is di-PLS
regression, which is available at: https://github.com/B-Analytics/
di-PLS. The second method is the variable penalty dynamic time
wrapping technique available at: https://github.com/HMzhu/
CTVPdtw. The third technique is the DOP, for which the codes are
available as a graphical user interface (GUI) [77]. For the transfer of
DL models, the techniques for model-fine tuning are openly
accessible from TensorFlow API, Google, Inc., USA [71].

In many cases, the choice of a CT technique will be more inspired
by the modality of spectroscopy to be used. For example, if the CT is
required to be performed in two identical, laboratory-based in-
struments located in the same laboratory, then the users can
measure standard samples easily and can use standard CT tech-
niques. Doing such a CT in a standard-free way can facilitate the
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analysis but is not necessary. On other hand, if the aim is to transfer
models between portable spectrometer such as consumer spec-
trometers, then standard-free CT becomes mandatory. This is
because the consumer spectrometers are often used by non-
experts, who do not have research facilities and chemometric
expertise, and hence, cannot perform reference analysis to perform
the CT. Hence, in the case of consumer spectrometers the best
standard-free CT approach is the unsupervised domain adaption
techniques where the users just need to measure some extra
spectra and adapt the primary model with techniques such as
unsupervised di-PLS [13] or TL [71].

6. Innovative applications of standard-free calibration
transfer approaches

Going back to the fundamental concepts, the main aim of CT is to
remove the differences between the signals acquired with two (or
more) instruments. To attain the CT, either standard-based or
standard-free methods can be used. However, thinking broadly, the
effectiveness of CT strategies to remove the contributions to the
signals ascribable to differences between two instruments can also
be extended to remove spurious variability related to temperature
changes, differences in the sample state, seasonal effects e.g. in
agro-food products [78] and many more [15,53]. For example, it is a
well-known fact that NIR spectroscopy measurements are affected
by the temperature of the samples; hence, if the primary model is
built on a set of signals recorded at a particular temperature, it will
probably fail in providing accurate predictions when applied to
data collected at a different temperature [15]. In such a case, the CT
algorithms can be used to adapt the existing model to the new
temperature range by removing (or accounting for) the differences
in the spectra due to the temperature variations. Such applications
of CT are becoming more abundant: For instance, spectral space
transformation (SST) [19], DOP [15,53], transfer component analysis
[41] and domain invariant partial least-square (di-PLS) [13] have
recently been successfully applied to correct for unwanted varia-
tion due to temperature differences [53,79,80]. The adaptation of
models to signals collected on samples in different physical forms is
emerging as another interesting application of CT methods. An
application where a NIR-based protein prediction model made on
intact rice kernels was transferred to ground rice flour samples was
recently presented by Xu et al. [18]. To do so, measurements were
collected on both rice kernels and powder in order to model the
discrepancies between the paired spectra acquired on the same
samples in the two different physical forms. Later, the model made
on rice kernels was transformed using the difference function in
order to be used for the powdered samples [18]. These “out-of-the-
box” applications of CT methods are still relatively new and more
are to be expected in the near future.

7. Concluding remarks

CT in chemometrics holds a unique place due to its potential to
make calibration models widely sharable and applicable on
different instruments. In the last decade, extensive developments
have taken place regarding both standard-based and standard-free
CT approaches. Standard-based CT methods are still the gold
standard in laboratory scenarios, however, the application of
standard-free CT methods is gaining increasing attention as can be
measured by the number of recent publications on the subject. For
the former, in our view, important developments comprise ap-
proaches that can cope with different spectral resolutions of
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primary and secondary instruments as well as methods where the
spectral features of CT standards and calibration samples don't
need to be similar (such as with GCT-PLS proposed in Ref. [12]).
Such approaches could be employed in the future for CT using
calibration standards that are directly built into NIR spectrometers.

The main benefits of standard-free CT methods are the time and
cost-saving related to running extra experiments for standard
measurements. Furthermore, in some scenarios, standard-free CT is
more practical, e.g. when aiming at transferring calibrations from a
lab-based primary to a (low-cost) portable instrument that is
operated by non-expert users. In such situations, an automatic
standard-free CT based method could be a viable solution to allow
the end-user to use calibrations developed elsewhere and to share
his models as well. Out-of-the-box applications of CT are also
emerging such as for transferring models between different tem-
perature levels, between different physical forms of samples such
as from solids to powders or between different sample matrices.
With the recent progress pace in artificial intelligence (Al), deep
learning and computing capabilities, it is foreseen that the major
advantage in future years could be related to automatic standard-
free CT methods which can automatically adapt between in-
struments of different resolutions.
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