# Impact of linked selection on demographic inference: insights from the Inverse Instantaneous Coalescence Rate (IICR)

Simon Boitard<sup>1</sup>, Lounès Chikhi<sup>2,3</sup>, Olivier Mazet<sup>4</sup>

1: INRAE, Centre de Biologie et de Gestion des Populations (CBGP), Montpellier, France - 2: CNRS, Evolution et Diversité Biologique (EDB), Toulouse, France - 3: Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal - 4: INSA, Institut de Mathématiques de Toulouse (IMT), Toulouse, France

Virtual conference Probabilistic Modeling In Genomics, April 14 - 16, 2021

#### CONTEXT

- Linked selection is pervasive (Elyashiv *et al*, 2016; Pouyet *et al*, 2018) and biases demographic inference (Ewing and Jensen, 2016; Schrider *et al*, 2016; Pouyet *et al*, 2018; Johri *et al* 2021).
- Can be modelled approximately by a local reduction (background selection & sweeps) or increase (balancing selection) of effective population size  $N_e$  (Hill and Robertson, 1966)
  - $\Rightarrow$  Variable levels of  $N_e$  genome-wide (Gossmann *et al*, 2011) reflecting the variations of recombination rate or gene density.
- Study the genome-wide distribution of pairwise coalescence times  $(T_2)$  for models with variable genomic  $N_e$  to predict the impact of linked selection on PSMC (Li and Durbin, 2011).

#### LINKED SELECTION UNDER PANMIXIA

- K genomic classes with relative proportion  $a_i$ .
- Class i evolves under the WF model with  $\lambda_i$ N diploids.

$$IICR(t) = \frac{\sum_{i=1}^{K} a_i \mathbb{P}(T_2^i \ge t)}{\sum_{i=1}^{K} a_i d\mathbb{P}(T_2^i = t)} = \frac{\sum_{i=1}^{K} a_i e^{-\mu_i t}}{\sum_{i=1}^{K} a_i \mu_i e^{-\mu_i t}}, \quad \mu_i = \frac{1}{\lambda_i}$$

General results

**Example:** 
$$K = 2$$
,  $\lambda_1 = 0.1$ ,  $\lambda_2 = 1$  (neutral)

- IICR'(t) > 0spurious signal of  $N_e$ decline
  - $IICR(0) = \frac{1}{\sum_{i=1}^{K} \frac{a_i}{\lambda_i}}$
- $IICR(t) \rightarrow \lambda_{max}$  as  $t \rightarrow +\infty$



#### LINKED SELECTION AND STRUCTURE

Class i evolves under an **island model** with n demes, scaled migration rate M = 4Nm (not affected by selection) and **deme size**  $\lambda_i N$ .

Example for n = 10, K = 2,  $\lambda_1 = 0.1$ ,  $\lambda_2 = 1$ :



- $\rightarrow$  Close to panmixia (see poster left column) for large M.
- $\rightarrow$  IICR plateau  $\uparrow$  as  $M \downarrow$  (general property of structured models).
- $\rightarrow$  Selection effect weaker than under panmixia for  $M \leq 1$ .
- $\rightarrow$  Counter-intutive effects: IICR sometimes  $\uparrow$  as selection proportion  $\uparrow$ .

## THE IICR (MAZET et al, 2016)

ullet For a given evolution model, the IICR is a function  $\lambda()$  defined by

$$\frac{1}{\lambda(t)} = \frac{d\mathbb{P}(T_2 = t)}{\mathbb{P}(T_2 \ge t)}, \quad t \ge 0 \text{ in } 2N_e \text{ units}$$

- The IICR  $\lambda$ () is the quantity estimated by **PSMC**.
- It corresponds to the temporal trajectory of  $N_e$  if and only if the population considered has always evolved under panmixia.

#### COMBINING VARIOUS FORMS OF SELECTION

 $K=3: \ \lambda_1=0.1 \ (BGS \& sweeps), \ \lambda_2=1 \ (neutral), \ \lambda_3=3 \ (balancing).$   $a_3=0.01$   $a_1=0.5$ 





- → BGS & sweeps (resp. balancing sel.) affect recent (resp. ancient) IICR
- $\rightarrow$  **Stronger effect of balancing selection** for the same proportion.

## Realistic $N_e$ distributions

Estimated for *Drosophila melanogaster* from polymorphism and divergence data, discretized into K=25 classes.





## LINKED SELECTION, HUMAN STRUCTURE & IICR

- Demographic model (black): Island model with no population size change but 4 changes of *M* over time mimicking the human PSMC (Mazet *et al* 2016).
- With selection (red):  $\lambda$ () distribution from Gossmann *et al* (2011).
- $\rightarrow$  Limited effect of selection except in ancient past.

## FUNDING









