

Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains

Mingrui Chen, Xavier Falourd, Marc Lahaye

▶ To cite this version:

Mingrui Chen, Xavier Falourd, Marc Lahaye. Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains. Carbohydrate Polymers, 2021, 266, pp.118113. 10.1016/j.carbpol.2021.118113 . hal-03239745

HAL Id: hal-03239745 https://hal.inrae.fr/hal-03239745

Submitted on 9 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0144861721005002 Manuscript_1bd9840a25d5968bbae939f91a3f14e8

- 1 Sequential natural deep eutectic solvent pretreatments of apple pomace: a novel way to
- 2 promote water extraction of pectin and to tailor its main structural domains
- 3 Mingrui Chen¹, Xavier Falourd^{1,2}, Marc Lahaye¹*
- ⁴ ¹INRAE, UR BIA, F-44316, Nantes, France
- ⁵ ²INRAE, BIBS facility, F-44316, Nantes, France
- 6 *Corresponding author. E-mail address: marc.lahaye@inrae.fr (M. Lahaye).

7 Abstract

- 8 To establish a "green" biorefinery extraction of apple pomace pectin, a sequential pretreatment with
- 9 three natural deep eutectic solvents (NADES, choline chloride (CC): glycerol (G); CC: lactic acid (LA);
- 10 potassium carbonate (K): G) was used prior to hot water extraction. A synergistic effect of CC:G and
- 11 CC:LA pretreatments was observed and led to the highest recovery of pectin. The sequential
- 12 NADES/water extraction process also provided a mean to tailor pectin main structure. It was
- 13 explained as resulting from ion exchange and individual NADES components effects. The ¹³C solid
- 14 state NMR $T_{1\rho}^{H}$ and T_{HH} parameters indicated a reorganization of cellulose in the residues following
- 15 extraction of pectin, notably after alkaline K:G pretreatment/water extraction. Hence, sequential
- 16 NADES pretreatments/water extraction represents a "green" alternative to mild mineral acid to
- 17 extract pectin and to tailor its main structures, while the residual pomace can be further sources of
- 18 valuable compounds and polymers.
- Key words: Natural deep eutectic solvent, Apple pomace, Sequential extraction, Pectin structural
 domain, ¹³C CP/MAS NMR spectroscopy, VCT-CPMAS.

21

22 1. Introduction

- 23 Pectin is a family of structurally complex polysaccharides of plant cell wall. It is generally classified as
- 24 homogalacturonan (HG), rhamnogalacturonan I (RGI), and rhamnogalacturonan II (RGII) structural
- 25 domains. HG takes up 65% of pectin structure, followed by RGI (20–35% of pectin) and lastly by RGII
- 26 (10% of pectin) (Mohnen, 2008). HG backbone consists only of galacturonic acid unit (Voragen,
- 27 Beldman, & Schols, 2001) of which the carboxylic acid function can be esterified by methanol while
- 28 acetyl ester can be found on galacturonic acid at position of O-2 and/or O-3 (Atmodjo, Hao, &
- 29 Mohnen, 2013). According to the degree of methyl esterification, pectin is distinguished as high
- 30 methoxyl (HM) pectins (degree of esterification > 50%) and low methoxyl (LM) pectins (degree of
- esterification < 50%) (Löfgren & Hermansson, 2007). RGI consists of a repeating disaccharide unit of

galacturonic acid and rhamnose with side chain made of arabinose and galactose linked on O-4 of the
rhamnosyl residues (Scheller, Jensen, Sørensen, Harholt, & Geshi, 2007). RGII is a complex structural
domain based on a branched HG backbone. The side chains are of four types made of 12 different
sugars (O'Neill, Ishii, Albersheim, & Darvill, 2004). Moreover, xylose can be found at O-2 position of
galacturonic acid to form xylogalacturonan (Schols, Bakx, Schipper, & Voragen, 1995).

37 Nowadays, pectin is widely applied as gelling agent, stabilizer, emulsifier and thickener in the 38 cosmetic and food industries (Güzel & Akpinar, 2019). The sources of pectin are mainly from 39 grapefruit peel, orange peel and apple pomace. Million tons of apple pomace was generated each 40 year from apple processing industry (Lu & Foo, 2000). The conventional industrial pectin extraction 41 method used is based on mild mineral acid. However, it often leads to environment related problems 42 and low extraction yield when compared with other emerging technology, such as enzymatic 43 extraction and ultrasound/microwave assisted extraction (Wikiera, Mika, Starzyńska-Janiszewska, & 44 Stodolak, 2015). Although these innovative technologies show advantages over traditional processes 45 with regard to environmental and energy saving issues (Adetunji, Adekunle, Orsat, & Raghavan, 46 2017), their scale-up and use by industry is delayed due to the expensive upfront investment and to 47 incomplete understanding of the process. In that context, there is room for new "green" and efficient 48 extraction processes compatible with industrial practices. One possibility is to take advantage of new 49 solvents, such as natural deep eutectic solvents (NADES). These solvents are composed of hydrogen 50 bond donors (HBD) and hydrogen bond acceptors (HBA), which in a definite molar ratio melt at 51 temperature far below than that of individual component to form transparent liquids (Liu et al., 52 2018). These eutectic mixtures are naturally present in the cells of living organisms as a combination 53 of organic acids, sugars and amino acids (Choi et al., 2011). Since NADES are cheap, biodegradable, 54 eco-friendly and can be recycled, they are actively investigated as potential "green" solvent for 55 various purposes. Moreover, since NADES are formed from non-toxic metabolites, these solvents can 56 be applied in processes for food and cosmetics applications (Fernandez, Espino, Gomez, & Silva, 2018). However, the high viscosity of NADES can impede their use, but increasing temperature 57 58 and/or adding small amounts of water (5-20%) can alleviate this drawback by decreasing viscosity to 59 nearly that of water. Such adjustments render NADES usable as a water-based extractant for industrial productions (Choi & Verpoorte, 2019). Based on the pH of the solvent, NADES can be 60 61 classified into neutral, acidic, alkaline NADES. Recently, many acidic NADESs have been tested as 62 potential solvent for pectin extraction (Benvenutti, Sanchez-Camargo, Zielinski, & Ferreira, 2020; Shafie, Yusof, & Gan, 2019). Besides, in a previous work, we showed that choline chloride:Lactic acid 63 64 as a pretreatment of apple pomace could markedly ease subsequent hot water extraction of pectin 65 obtained in high yield (Chen & Lahaye, 2021). However, pretreatment with this solvent has to be

66 done with caution as it can lead to loss of arabinose in cell wall polysaccharides. As the pH of the 67 solvent is a known factor affecting extraction of pectin (Methacanon, Krongsin, & Gamonpilas, 2014), neutral or alkaline NADESs may also have the potential to be applied in pectin extraction process. 68 69 Among various NADES combinations, the choline chloride : glycerol was widely used for extraction of 70 bioactive substances from agri-food waste (Grudniewska et al., 2018; Mouratoglou, Malliou, & 71 Makris, 2016; Sakti, Saputri, & Mun'im, 2019), while potassium carbonate:glycerol as emerging 72 NADES have shown the ability to isolate cellulose fibers or nanocrystals (Gan, Sam, Abdullah, Omar, 73 & Tan, 2020; Lim, Gunny, Kasim, AlNashef, & Arbain, 2019). Moreover, apart from the fact that the 74 gel like structure can be formed between dissociated carboxyl groups of HGs, certain pectin 75 structures strongly interact with cell wall cellulose (Broxterman, & Schols, 2018). The alkaline NADES 76 may represent a suitable candidate for recovering this part of pectin through its pH characteristics. 77 However, it is worth mentioning that due to its high pH, potassium carbonate : glycerol treatment 78 may degrade methyl-esterified pectin by a β -elimination mechanism. In contrast with one-step 79 extraction process, sequential extraction showed advantages in being more selective and 80 fractionating polysaccharides at the laboratory scale. Generally, sequential extraction process of 81 pectin is divided into three to four stages, and each stage uses a different extractant, such as, water, 82 chelating agent, diluted acid or concentrated alkaline solvents (Ramasamy, Gruppen, & Schols, 2013; 83 Yapo, Lerouge, Thibault, & Ralet, 2007), which allows for the recovery of pectin fractions with specific 84 properties (Gawkowska, Cybulska, & Zdunek, 2018; Guo et al., 2018).

85 Although many researches have been conducted on pectin extraction with conventional mineral acid 86 or alkaline solutions within our group (Kaya, Sousa, Crépeau, Sørensen, & Ralet, 2014; Koubala, 87 Kansci, Mbome, Crépeau, Thibault, & Ralet, 2008; Yapo et al., 2007), in the process of establishing an 88 innovative and "green" biorefinery of apple pomace, NADES as a promising green solvent was tested 89 for this purpose. As our previous result showed that abundant pectin resource still remained in 90 residual pomace after one-step NADES pretreatment following water extraction (Chen & Lahaye, 91 2021). Therefore, in present study, three types of NADES: Choline chloride:Lactic acid (acidic NADES), 92 Choline chloride:Glycerol (neutral NADES), Potassium carbonate:Glycerol (alkaline NADES) in 93 sequence prior to hot water extraction were tested as a mean to selectively extract pectin enriched 94 in specific structural domains while yielding extraction residues suitable for further recovery of 95 valuable polymers. Extractions yield and sugar composition were used to evaluate NADES 96 pretreatments efficiency while molecular weight distribution and degree of esterification assessed 97 the quality of the pectin recovered. Pectin extracted by methods from literature and NADES 98 pretreatments were also compared. The effects of NADES pretreatment/water extraction on pectin 99 yield and structural characteristic were discussed. Moreover, possible mechanisms of NADES

- 100 pretreatment effect were proposed. Finally, ¹³C solid-state NMR (ssNMR) spectroscopic analyses
- 101 were realized to assess the impact of NADES pretreatments/water extractions on the polysaccharides
- 102 composition, structure and organization in the residual pomace.
- 103

104 2. Materials and methods

- 105 2.1. Pomace
- Dry industrial pomace was provided by IFPC (Le Rheu, France). Pomace was rehydrated to reach a
 water content (68%, w/w) registered in fresh pomace (Chen & Lahaye, 2021) and then stored at 20 °C prior use.
- 109

110 2.2. Chemicals

- 111 Choline chloride (CAS: 67-48-1, Sigma-Aldrich, France), glycerol (CAS: 56-81-5, Sigma-Aldrich, France),
- 112 potassium carbonate (CAS: 584-08-7, Merck, Germany), DL-lactic acid (CAS: 50-21-5, Sigma-Aldrich,
- 113 France), ethanol (CAS: 64-17-5, Carlo Erba reagents, France), acetone (CAS: 67-64-1, Carlo Erba
- 114 reagents, France), sodium acetate trihydrate (CAS: 6131-90-4, Sigma-Aldrich, France), trans-1,2-
- 115 Diaminocyclohexane-*N*,*N*,*N* [′],*N* [′] -tetraacetic acid monohydrate (CDTA) (CAS: 125572-95-4, Sigma-
- 116 Aldrich, France), sodium carbonate (CAS: 497-19-8, Merck, Germany), sodium borohydride (CAS:
- 117 16940-66-2, Sigma-Aldrich, France) were used in the present research.

118

- 2.3. Preparation and physiochemical properties measurement of natural deep eutecticsolvents
- Both glycerol (G) and lactic acid (LA) were mixed with choline chloride (CC) in the molar ratio of 2:1
 which is widely used ratio for polysaccharides processing (Zdanowicz, Wilpiszewska, & Spychaj, 2018).
- 123 Potassium carbonate (K) was mixed with G in different molar ratio as shown in **Table 1**. The NADESs
- 124 were mixed in an oil bath at 100 °C until a colorless transparent liquid was formed. The pH of various
- solvents was measure using pH meter (IoLine, SCHOTT Instruments), while viscosities at 40 °C were
- determined according to our previous research (Chen & Lahaye, 2021). The solvents were stored at
- room temperature. The water content of prepared NADESs (CC:G=0.31% (w/w); CC:LA=0.91% (w/w);
- 128 K:G=0.57% (w/w)) were determined by freeze drying to constant weight prior to their use.
- 129

130	Table 1.	Characteristics	of the	various	NADESs.

НВА	HBD	Molar ratio	рН	Viscosity at 10 s ⁻¹ (mPa.s)	Viscosity at plateau (Pa.s)
Choline chloride	glycerol	1:2	6.5	48.9	—
	lactic acid	1:2	1.0	107.3	_
Potassium carbonate	glycerol	1:2	—	—	_
	glycerol	1:3	—	—	_
	glycerol	1:4	14.0	—	27.25
	glycerol	1:5	13.6	—	13.03
	glycerol	1:6	13.1	—	1.65
	glycerol	1:7	13.0	—	1.43
	glycerol	1:25	12.5	—	0.71

HBA: hydrogen bond acceptor; HBD: hydrogen bond donor; The viscosity of Newtonian and non-Newtonian
 NASDESs was determined at 40 °C (not considering water content in apple pomace), for non-Newtonian NADES

133 solutions, the viscosity was that determined at the plateau between 0.1 to 100 s⁻¹; —: not determined

- 134
- 135 2.4. Pectin extractions
- 136 Four different extraction treatments were employed in the present study and schematically
- 137 represented in Fig. 1.

138 2.4.1. Water extraction (route A, Figure 1)

- 139 Wet apple pomace (10 g) was extracted with deionized water (400 ml) under agitation at 75 °C for
- 140 1 h. The soluble polysaccharides were recovered by centrifugation at 15000 g for 20 min.
- 141 Polysaccharides were precipitated with 4 volumes of ethanol, washed with 70% ethanol for 10 min (3
- times), followed by ethanol and acetone for 10 min (2 times), air dried and then dried at 40 °C in
- 143 vacuum oven over P_2O_5 powder for 12 h.
- 144 2.4.2. Mineral acid extraction (route B, Figure 1)
- 145 Wet apple pomace (10 g) was extracted with HCl (pH 1.5, 400 ml) under agitation at 75 °C for 1 h.
- 146 The soluble polysaccharides were recovered by centrifugation at 15000 g for 20 min. The
- polysaccharides were precipitated with 4 volumes of ethanol, washed with 70% ethanol for 10 min (3
- times), followed by ethanol and acetone for 10 min (2 times), air dried and then dried at 40 °C in
- 149 vacuum oven over P_2O_5 powder for 12 h.
- 150 2.4.3. Sequential chelating-agent extraction I (route C, Figure 1)

- 151 The sequential chelating-agent extraction I was conducted according to Vierhuis et al. (2000) with 152 some modification. In brief, wet apple pomace (10 g) was sequentially extracted under agitation with 153 (1) 0.05 M NaOAc buffer, pH 5.2 (three times, 100 ml) at 70 °C for 30 min; (2) 0.05 M CDTA and 0.05 154 M Na-oxalate in 0.05 M NaOAc buffer, pH 5.2 (two times, 150 ml) at 70 °C for 30 min; (3) extracted with 0.05 M NaOH (two times, 150 ml) at 4 °C for 30 min. For each step, the remaining pomace was 155 separated by centrifugation at 15000 g for 20 min. Fraction containing chelating-agent (CDTA and Na-156 157 oxalate) was first dialyzed against 0.1 M NaOAc buffer (pH 5.2) for 24 h and then dialyzed against 158 deionized water for 24 h and freeze dried. The other two fractions were dialyzed directly against 159 deionized water for 24 h and freeze dried.
- 160 2.4.4. Sequential chelating-agent extraction II (route D, Figure 1)
- 161 The sequential chelating-agent extraction II was conducted according to Gawkowska et al. (2018)
- 162 with some modification. In brief, wet apple pomace (10 g) was sequentially extracted under agitation
- with (1) 200 ml of 0.05 M CDTA (pH 6.5) at 25 °C for 6 h and then at ambient temperature for 2 h; (2)
- 164 200 ml of 0.05 M sodium carbonate (Na₂CO₃) and 0.02 M sodium borohydride (NaBH₄) at 4 °C for 20
- 165 h and then at 20 °C for 2 h. For each step, the remaining pomace was separated by centrifugation at
- 166 15000 g for 20 min. The polysaccharide extracts were dialyzed against deionized water for 24 h and
- 167 freeze dried.

168

169 Fig. 1 Schematic representation of the extraction process with various methods

- 170
- 171 2.5. NADES pretreatments followed by pectin extraction.
- 172 These pretreatments are represented schematically in **Fig. 2**.
- 173 2.5.1. Sequential NADESs pretreatment extraction (route E, Figure 2)

174 (1) Wet apple pomace was mixed with CC:Glycerol at the ratio of 1:8 (w/v). The solution was agitated

at 40 °C for 1 h and then centrifuged at 15000 g for 20 min to recover the remaining pellet. The

pomace pellet was then resuspended in deionized water at 80 °C for 10 min under constant agitation

and then centrifuged at 15000 g for 20 min. This water extraction process was repeated five times.

178 The pooled water washes, referred to as the pectin fraction, was concentrated with a vacuum rotary

evaporator and was precipitated by 4 volumes of ethanol. The precipitate was recovered by

180 centrifugation (15000 g, 20 min) and washed with 40 mL of 70% of ethanol for 10 min (3 times),

181 followed by 40 mL of ethanol and acetone for 10 min. The ethanol and acetone washings were

182 repeated until the washes were colorless (at least twice). Both, the remaining pomace and pectin

183 sample were air dried and then dried at 40 $^{\circ}$ C in vacuum oven over P₂O₅ powder for 12 h.

184 (2) The CC:G pretreated pomace was rehydrated (water content = 68%) and sequentially treated with

185 CC:LA at the ratio of 1:8 (w/v). The operation was as same as the first pretreatment described in (1).

(3) The CC:LA pretreated pomace was rehydrated (water content = 68%) and sequentially treated

187 with K:G at the ratio of 1:8 (w/v). The operation was as above.

188 The order of this sequential NADES pretreatments/water extraction was decided based on

189 preliminary experiments defining the order of the highest to the lowest yield of remaining pomace

after each NADES pretreatment/water extraction was realized alone: 57.2% for CC:G, 49.6% for

191 CC:LA, 47.3% for K:G. Furthermore, being neutral, CC:G was expected to be the least impacting on

the polysaccharides structure. According to our previous work (Chen & Lahaye, 2021), since only a

193 trace amount of pectin was extracted directly by NADES, the polymers in this fraction were not

194 considered in the present study.

196

197 Fig. 2 Schematic representation of the sequential extraction process with NADES

198 2.5.2. NADESs pretreatment extraction (route F, G)

199 To compare the effect of sequential pretreatments, wet apple pomace was treated with CC:LA (route

200 F) or K:G (route G), respectively, following the same procedure as for routes E.

201 2.5.3. Water extraction following acid and alkaline solution pretreatments (route H, I)

202 To assess the effect of pH on extraction efficiency, lactic acid (route H) and potassium carbonate

203 solutions (route I) at the pH of CC:LA or K:G NADES pretreatments were prepared for pectin

204 extraction. The extraction procedure was as same as for routes F,G.

- 206 2.6. Extraction yield
- 207 The extraction yield was calculated as follow:

208 Yield (%) =
$$\frac{Wp}{W} \times 100$$

209 Where the Wp is the sample weight in each fractions and W is the initial dry weight of apple

210 pomace (for sequential extraction, the W is based on residual pomace from previous step).

211

212 2.7. Neutral sugars composition and uronic acids content

213 The neutral sugar composition in each pectin fraction was determined by GLC (Gas-liquid 214 chromatograph) analysis (Blakeney, Harris, Henry, & Stone, 1983). In brief, sample was dispersed in 215 sulphuric acid (12 M, 72%) at 25 °C for 30 min, followed by hydrolysis (100 °C, 2 h). The released 216 sugars were reduced and acetylated and the obtained alditol acetates were analyzed by GLC (Perkin-217 Elmer Autosystem) equipped with DB-225 capillary column (J&W Scientific, Folsorn, CA, USA) eluted 218 at 205 °C by hydrogen. The split injector and flame ionization detector temperatures were set at 219 220 °C. Both sugar standard solution and internal standard (inositol) were used for calibration. Sugar 220 content in each fraction was expressed as recovery rate and was calculated as follows:

221 Recovery rate (%) =
$$\frac{(P1 \times Y1)}{(P2 \times Y2)} \times 100$$

Where P1 is the percentage of each sugar in the extracted sample, Y1 is the extraction yield of the
 corresponding fraction, P2 is the percentage of each sugar of untreated sample, Y2 is the dry matter
 percentage of the untreated sample.

Uronic acids in the acid hydrolysate was quantified using the m-hydroxydiphenyl colorimetric acid
 method (Blumenkrantz & Asboe-Hansen, 1973). Galacturonic acid and glucose standard solutions
 were used for calibration.

228 The molar sugar composition of each pectin fraction was used to evaluate pectin characteristics.

Assuming that all galactose and arabinose were part of RGI side-chains, the molar ratios of Gal:Rha

and Ara:Rha stand for the number of galactose or arabinose residues in RGI side chain. Since the

pectin backbone consists of HG (100% GalA) and RGI (GalA:Rha, 1:1), the molar percentage of both

HG and RGI can be expressed as HG = GalA- Rha; RGI = 2 × Rha. The relative ratio between HG and

233 RGI represents the proportion of the different pectin structural domains (Huang et al., 2016).

234

235 2.8. Pectin methylation and acetylation esterification degree

236 Methanol and acetic esters in pectin were measured by HPLC according to (Levigne, Thomas, Ralet,

237 Quemener, & Thibault, 2002). Briefly, 7 mg of sample from different extracts was saponified for 1 h

at 4 °C by using the solution system containing 0.5 mL of NaOH (0.5 M) and 0.5 mL of CuSO₄.5H₂O

239 $(0.5 \text{ mg of CuSO}_4.5\text{H}_2\text{O} \text{ in } 0.5 \text{ mL of isopropanol solution (14 mg mL^{-1}))}$. After centrifugation at 7400 g 240 for 10 min, the supernatant was filtered through cartridge IC-H (Sstarpure, Maxi-Clean SPE 0.5 ml IC-241 H 50pk). HPLC was conducted on C18 (4 mm × 250 mm, Lichrospher 100 RP-18e (5 μm), Interchim, France) column thermostated at 25 °C. H₂SO₄ (4 mM) was used for isocratic elution at a flow rate of 242 243 1.0 mL min⁻¹. Standard solution containing methanol, acetic acid and isopropanol as internal standard 244 was used for calibration. Due to the acetic acid peak was overestimated in HPLC analysis. The acetic 245 acid content of different pectin extracts was re-determined by acetic acid enzymatic kit (BioSenTec, 246 France). The degree of methyl esterification (DM) and acetyl esterification (DA) were calculated as 247 the number of moles of methanol and acetic acid measured per mole of uronic acid in pectin.

248

249 2.9. Molecular weight profiling

250 Molecular weight profile of pectin was determined through High Performance Size Exclusion 251 Chromatography (HPSEC). The system consisted of a Shodex OHpak SB-G 6B pre-column (Shodex, Tokyo, Japan) in front of OHpak SB-805-HQ (Shodex, Tokyo, Japan) connected to pump (Jasco PU-252 253 1580, Tokyo, Japan) and injector (PerkinElmer, series 200 autosampler, Courtaboeuf, France). Pectin-254 rich samples (4 mg) were dissolved in 1.5 mL of distilled water, then centrifuged (10 min, 7400 g) and 255 filtered through 0.45 µm membrane (Millex-HV, PVDF) prior to injection. Elution was performed with 256 50 mM NaNO₃ at a flow rate of 0.7 mL min⁻¹ and monitored by differential refractometry (Viscotek 257 VE 3580 RI detector, Malvern Instruments, Orsay, France). Molecular weights were obtained using 258 the OmniSEC 4.7.0 software and calibration was done in triplicate using pullulan-P108K (Viscotek, 259 Malvern Instruments, Orsay, France).

260

261 2.10. Solid state CP/MAS ¹³C NMR spectroscopy

Approximately hundred mg of the residual pomaces after NADESs pretreatments followed by water 262 263 extraction method were rehydrated to 29-30% (w/w) with ultra-pure water. The solid-state NMR 264 spectra were registered on Bruker Advance III 400 spectrometer at a proton frequency of 400.13 265 MHz and carbon frequency of 100.62 MHz. A double resonance ¹H/X CP/MAS 4mm probe coupled 266 with high power level amplifier was used for CP/MAS experiment. The magic angle spinning (MAS) rate was set at 12 kHz and each acquisition was acquired at ambient temperature (293 °K). The 267 268 experiment was conducted under a 90 ° proton pulse of 2.8 +/- 0.1 μ s a contact time of 1.5 ms and a 269 8 s recycling time for an acquisition of 34 ms during which dipolar decoupling of approximately 90

- KHz was applied. 8192 scans were accumulated for each spectrum. Chemical shifts were calibratedusing external glycine, assigning the carbonyl at 176.03 ppm.
- The chemical shifts, half width and area of peak of samples were deconvoluted and determined using
 a least-squares fitting method with the Peakfit[®] software (Systat software Inc., USA).

274 According to the method of Larsson et al. (1997), the cellulose crystallinity was calculated from

- 275 deconvoluted cellulose C₄ peak in region of 80-91 ppm. Due to spectral resolution, a simplify version
- was used: two crystalline cellulose C₄ peaks (cellulose I($\alpha + \beta$) (88.4 ppm), cellulose I β (87.8 ppm)) and
- 277 one amorphous cellulose C₄ peak (83.3 ppm) were used. The proportion of crystalline cellulose was
- 278 determined by dividing the sum peak area of two crystalline cellulose C₄ peaks by those of three
- 279 cellulose C₄ peaks. Assuming the cross section of cellulose microfiber is square and all amorphous
- 280 cellulose is attached on fiber surface, the lateral fiber dimension (LFD) was also estimated. The
- cellulosic chains width was set at 0.57 nm (Newman, 1999).
- The molecular dynamic of samples was further characterized by varying contact time (τ) from 10 μs
 to 9000 μs. Twenty CP/MAS spectra were recorded with an accumulation of 512 scans per contact
 time. The evolution of carbon peak area (C₄ of crystalline cellulose and O-CH₃ of pectin methyl ester)
 between different groups was fitted with following formula (Kolodziejski & Klinowski, 2002):

286
$$I(\tau) = I_0 e^{-\tau/T_{1\rho}^H} * \left\{ 1 - \lambda e^{-\tau/T_{HH}} - (1 - \lambda) e^{-3\tau/T_{2HH}} e^{-\tau^2/2T_{CH}^2} \right\}$$

287 Where $I(\tau)$ is the carbon peak area (C₄ of crystalline cellulose and O-CH₃ of pectin methyl ester) 288 according to the contact time (τ), I_0 is the maximum carbon signal intensity (associated with the 289 optimal contact time), λ is a parameter that depends on the number of protons (n) carried by 290 carbons (λ =1/(n+1)), $T_{1\rho}^{H}$ is the spin-lattice proton relaxation time in the rotating frame, T_{HH} is the 291 spin diffusion time between two nearby protons, T_{CH} is the thermal mixing time between H and C.

292

293 2.11. Statistical analysis

- 294 Data was subjected to one-way ANOVA and Duncan's multiple range tests using the SPSS 16.0
- statistical software package (SPSS Inc., Chicago, IL, USA). Differences were considered significant at
 P<0.05. Data are presented as mean values with their standard deviations.
- 297

298 3. Results

- 299 3.1. Physicochemical properties of different NADESs
 - 11

301 Table 1 gathers physicochemical properties of the NADES used in this work. Since white insoluble 302 material was observed in K:G with molar ratio of 1:2 and 1:3, which indicated the hydrogen bond was 303 not successfully formed between K_2CO_3 and glycerol, these solvents were not kept for further study. 304 The pH value of K:G gradually decreased with increasing proportion of glycerol. The lowest pH value 305 (12.5) was obtained with K:G molar ratio of 1:25. A similar trend was also observed in the viscosity of 306 K:G. The molar ratio of 1:25 led to less viscous K:G solvent. Moreover, K:G was a Newtonian fluid, 307 while both CC:G and CC:LA solvents were non-Newtonian fluids, as they showed shear-thinning 308 behavior (data are not shown). From a practical point of view, solvents with lower viscosity are 309 preferable as they ease their mixing and diffusion in the substrate. Under this circumstance, the K:G 310 with molar ratio of 1:25 was chosen for pretreatment of apple pomace.

311

300

312 3.2. Effects of different extraction methods on polysaccharide yield

314 Fig. 3 Mean extraction yields (n=4) of polysaccharide extracts according to different procedures (A-I); A: water 315 extraction; B: mineral acid extraction; C1-C3: sequential chelating agent extraction I (1: NaOAc fraction; 2: 316 CDTA&Na-oxalate fraction; 3: NaOH fraction); D1-D2: sequential chelating-agent extraction II (1: CDTA fraction; 317 2: Na₂CO₃&NaBH₄ fraction); E1-E3: sequential water extraction after NADESs pretreatment extraction (1: CC:G 318 fraction; 2: CC:LA fraction; 3: K:G fraction); F: CC:LA pretreatment extraction; G: K:G pretreatment extraction; H: 319 lactic acid solution pretreatment extraction (same pH as CC:LA); I: potassium carbonate solution pretreatment 320 extraction (same pH as K:G); bars: standard deviation; mean values with unlike letters were significantly 321 different.

323 As shown in Fig. 3, the distinct extraction routes led to different extraction yields. Sequential 324 extraction methods clearly led to higher polysaccharide yields than water (A), dilute acid (B) or 325 NADES pretreatment/water extraction methods (E1, F, G). Moreover, the yield in method E (total of 326 31.6%) was significantly higher than that of methods using chelating agents (C: 17.2%; D: 17.1%). 327 Since the yield significantly differed for each step of the different methods, the results are analyzed 328 individually. Besides sequential extractions, the highest yield was achieved with dilute acid (B:13.7%), 329 while the lowest yield was obtained by extraction with water (A:1.4%). Except for the NaOAc 330 treatment (C1), all other treatments significantly improved yield when compared with only water 331 treatment (A). CC:G, CC:LA and K:G pretreatments/water extractions (E1, F, G) showed similar yields 332 as CDTA treatment (D1), while CDTA treatment with Na-oxalate led to significantly lower yield (C2). 333 The yield of water extracted polysaccharides was close following the different NADES pretreatments 334 (E1, F, G). When compared with dilute acid extraction (B), NADES pretreatments following water 335 extraction (E1, F, G) led to significantly lower extraction yields. However, these low yields could be 336 partly mitigated when CC:G, CC:LA and K:G NADES pretreatments followed by water extractions were 337 conducted sequentially. The polysaccharide extraction yields in both E2 and E3 were significantly 338 increased compared with those in F or G, respectively (Fig. 3). Moreover, after CC:G and CC:LA 339 pretreatment, sequential K:G pretreatment/water extraction (E3) led to similar yield as dilute acid 340 extraction (B). Besides extracts yield, the residue yield after dilute acid extraction, CC:LA. K:G 341 pretreatment/water extraction (F and G) were also calculated to explore possible losses in the 342 remaining cell wall (residue fraction: 55.7% for B; 49.6% for F; 47.3% for G).

343

344 3.3. Monosaccharides recovery in extracts

345

346 The total sugar weight percentage recovered in the raw apple pomace and in each fraction indicated 347 that non-polysaccharide substances were present in variable amount according to the exaction 348 methods (Table S1). With 86.7% of total sugar percentage, the water extract after CC:LA 349 pretreatment (F) was the richest in polysaccharides compared to other fractions. Water extracts 350 recovered after K:G pretreatment conducted sequentially or not (E3: 43.3%; G: 58%) were 351 significantly poorer in total sugar percentage compared to E1 (76.3%), E2 (77.4%) and F (86.7%) 352 fractions after CC:G and CC:LA pretreatments. Extracts from methods based on chelating agents (C 353 and D) contained less than 50% polysaccharide with the lowest recovery (27.6%) for the C2 fraction. 354 Fraction C1 was an exception with 73.6% total sugar. Other cell wall substances, residual salt and 355 chelating agent likely contributed to the low total sugar percentage in fractions (C2, C3, D1, D2, E3 356 and G).

357 The expression of monosaccharides composition as a percentage of recovery of their initial content 358 in pomace allows better evaluating the efficiency of the different extraction methods to recover 359 pectin related sugars (Rha, Ara, Gal, UA). From **Table S1**, these sugars were found in all extracts. 360 Recovery of UA was the highest among them except in NaOAc treatment extract (C1) and in the water extract following K:G pretreatment (E3). Considering UA recovery, hot water extraction 361 following non-sequential NADES pretreatments led to significantly higher recovery (E1: 23.5%; F: 362 363 27.4%; G: 23.9%) than by chelating agents extraction (C2: 10.4%; D1:8.3%). Sequential NADES 364 pretreatments/water extraction (method E) was the most efficient in allowing extraction of 69.7% of 365 the pomace UA content. As for the yield, CC:G pretreatment (E1) significantly improved UA recovery 366 in the hot water extract following the CC:LA pretreatment (E2: 36.1%), compared with non-367 sequential CC:LA pretreatment/water extraction (F: 27.4%). However, the synergistic effect was not 368 observed in the extract after K:G pretreatment/water extraction (E3: 10.2%). Instead, higher UA 369 recovery was found in non-sequential K:G pretreated/water extraction group (G: 23.9%). According 370 to extraction yield, lactic acid solution pretreatment followed by hot water extraction led to 371 significantly lower pectin related sugar recoveries than that of CC:LA pretreatment/water extraction 372 whether conducted sequentially or not. Although both K:G pretreatment/water extraction (G) and 373 K_2CO_3 solution pretreatment/water extraction (I) led to comparable extraction yield, the water 374 extract after K₂CO₃ solution pretreatment showed significantly lower UA recovery. K₂CO₃ solution 375 had a more negative effect on the pectin galacturonic acid unit recovery. Hemicellulose and cellulose 376 related monosaccharides (Fuc, Xyl, Man, Glc) were also found in some extracts though Fuc and Xyl 377 may also come from HG or RG II structural domains. Glc recovery was the most represented of these 378 sugars except in the NaOH extract (C3) and the K:G pretreatment/water extract (E3).

379

380 3.4. Pectin structural domains in extracts

383 Fig. 4 Mean (n=4) molar ratio of : A, Homogalacturonan (HG) : rhamnogalacturonan (RGI), B, galactose 384 (Gal) : rhamnose (Rha) and C, arabinose (Ara) : rhamnose (Rha) of pectin-rich extracts obtained by A: water 385 extraction; B: mineral acid extraction; C1-C3: sequential chelating agent extraction I (1: NaOAc fraction; 2: 386 CDTA&Na-oxalate fraction; 3: NaOH fraction); D1-D2: Sequential chelating-agent extraction II (1: CDTA fraction; 387 2: Na₂CO₃&NaBH₄ fraction); E1-E3: sequential NADESs pretreatment extraction (1: CC:G fraction; 2: CC:LA 388 fraction; 3: K:G fraction); F: CC:LA pretreatment extraction. G: K:G pretreatment extraction; H: lactic acid 389 solution pretreatment extraction; I: potassium carbonate solution pretreatment extraction. Bar: standard 390 deviation; different letters are significantly different.

391 The sugar recovery data were further analysed to identify specific effects of the extraction methods

392 with regard to pectin strutural domains. Besides UA, Rha can inform about the proportion of RGI

393 recovered in the different extracts. According to the HG/RGI molar ratio shown in Fig. 4A, pectin

394 structure profile was affected by extraction methods. The highest HG proportions were observed in

395 the water extract (A), while all other methods led to RGI richer fraction. For water extracts after non-

396 sequential NADES pretreatments, significantly higher HG proportion was found following CC:G 397 pretreatment (E1) compared with that following CC:LA (F) or K:G pretreatments (G). In the opposite, 398 extract in G fraction possessed significantly higher RGI proportions than other water extracts 399 following non-sequential NADES pretreatments. Based on HG/RGI molar ratio, dilute acid extraction 400 (B) showed similar effect on pectin structural domains composition as CC:G pretreatment/water 401 extraction (E1). When apple pomace was extracted sequentially, no matter which sequential 402 extraction methods was applied, pectin structure was remarkedly affected since HG/RGI molar ratio 403 was significantly different for each step. HG-richer fractions were obtained after CDTA & sodium 404 oxalate extraction (C2), while CC:LA and K:G pretreatment/water extraction (E2 and E3) led to RGI-405 richer fractions.

406 Molar ratio of Gal/Rha and Ara/Rha were also calculated to assess the effect of different methods on 407 RGI side-chains structure assuming that galactose and arabinose were mainly constitutive of pectin 408 side chains. As can be seen from Fig. 4B, the fraction extracted by dilute acid showed the highest 409 ratio for Gal/Rha, all other methods indicated shorter/less galactose side chains to varying degrees. 410 Close amounts of galactose side chains were observed in extracts after CDTA (D1), and water extracts 411 following CC:LA (F) and K:G (G) pretreatments. Instead, the water extract following CC:G 412 pretreatments demonstrated significant higher Gal/Rha molar ratio. Moreover, when CC:LA and K:G 413 pretreatments were conducted sequentially, the amount of galactose side chain increased 414 significantly in the extracts. For sequential extractions using chaleting agents (C and D), CDTA 415 treatment with or without sodium oxalate led similar Gal/Rha ratio. Moreover, NaOH (C3) or Na₂CO₃ 416 & NaBH₄ (D2) did not markedly change galactose side chain proportion since C2 and C3 or D1 and D2 417 shared close Gal/Rha ratio.

418 The pectin fraction showing the shortest/least arabinose side-chains was obtained by dilute acid 419 extraction (B) (Fig. 4C). The water extract following CC:LA pretreatment conducted alone or 420 sequentially (E1 and F) also led to fractions with shorter/less RGI arabinan side-chains than those 421 recovered in water extracts following other NADES pretreatments. No difference was found between 422 fractions recovered after water extraction (A) and water fractions following CC:G pretreatment (E1) 423 or K:G pretreatment (G). Significant higher amount of Ara/Rha molar ratio was found after CDTA 424 (with or without sodium oxalate) extraction when compared with NADES pretreatment/ water 425 extraction method.

426

427 3.5. Esterification of pectin extracts

428

430 to saponification, dilute alkali in method C3 and method I had a severe effect on methyl ester group. 431 A low DM value was also obtained in the water extract following the K:G pretreatment (E3 = 18.2 and 432 G = 11.8) compared with the other water extracts following the CC:G or CC:LA pretreatments (E1 = 433 56.6, E2 = 67.8 and F = 66.6). For sequential chelating agent extractions, both CDTA (with or without 434 sodium oxalate) and sequential Na₂CO₃ & NaBH₄ extraction led to low methyl esterified pectin (ie DM 435 < 50), while for other treatments, high methyl esterified pectin was extracted. K:G pretreatment led to lower acetyl esterification of pectin in the following water extract (E3 and G). Moreover, alkaline 436 437 extracting conditions favored lower DA value of pectin (C3: 1.3; I: 0.7).

Pectin substitution by methanol and acetic acid esters was also assessed (Table S2). As expected due

438

429

Fig. 5 HPSEC-patterns of the pectin-rich fractions. A) A: water extract; B: mineral acid extract; E1-E3: water
extracts following sequential NADESs pretreatment (1: CC:G; 2: CC:LA; 3: K:G pretreatments); F: water extract
following CC:LA pretreatment; B) G: water extract following K:G pretreatment; H: water extract following lactic
acid solution; I: water extract following potassium carbonate solution; C) C1-C3: sequential chelating agent
extracts (1: NaOAc fraction; 2: CDTA&Na-oxalate fraction; 3: NaOH fraction); D) D1-D2: sequential chelating
agent extracts II (1: CDTA fraction; 2: Na₂CO₃&NaBH₄ fraction).

450

451 The molecular weight profile of the polymers in different extracts was analyzed by HPSEC (Fig. 5).

452 Because of overlapping peaks, the estimated Mw of some peaks were provided in Fig. 5 to give a

453 broad view of how molecular weight distribution was influenced by various extraction methods. For

454 both dilute acid and water fractions (trace A and B), two main peaks were observed eluting between

455 6 mL- 11 mL (Fig. 5A). Similar profiles were also found in the water extracts following the CC:G and

456 CC:LA pretreatments, but with a minor peak eluting between 8.5mL and 10.5mL (Fig. 5A, trace E1

457 and E2). This indicated that at least two populations of polysaccharide were present. Water extract 458 following GG:LA pretreatment in the sequential NADES pretreatments method (trace E2, Fig. 5A), 459 following CC:LA pretreatment alone (F, Fig. 5A) and the extract obtained following dilute lactic acid 460 pretreatment (H fraction; Fig. 5B) yielded close Mw distribution profiles. These profiles showed the 461 predominant role of lactic acid in affecting Mw distribution. Alkaline NADES (E3, Fig. 5A and G, Fig. 5B) pretreatment led to polysaccharides degradation since a single peak at 36kDa or 17kDa was 462 463 found eluting at approximately 10.5 mL or 11 mL, respectively (Fig. 5A,B). Similarly, the alkaline 464 condition provided by NaOH and Na₂CO₃ in the sequential chelating agent methods C and D also led 465 to polymer degradation since low molecular weight populations were found in NaOH (trace C3, Fig. 466 5C) and Na₂CO₃ & NaBH₄ (trace D2, Fig. 5D) fractions. Due to the methylesterification of pectin, degradation by a β-elimination mechanism to lower oligomers cannot be ruled out. Compared with 467 468 water extracts following NADES sequential pretreatments, different molecular weight distributions 469 profiles were observed with the extracts from sequential chelating agent extractions (methods C and 470 D). More than one Mw populations were found in extracts after CDTA extraction (with or without 471 sodium oxalate, trace C2 or D2, Fig. 5C,D). The low molecular weight substances eluted after 11 mL 472 in these extracts are likely correspond to salts and chelating reagent (Fig. 5C,D).

473

474 3.7. ¹³C NMR spectra and dynamic characterization of residual pomace

476 477 Fig. 6¹³C CP/MAS spectra of residual pomaces after sequential NADES pretreatment/water extraction; peaks

478 attribution according to (Ng et al. 2014; Phyo & Hong, 2019).

479

480	Table 2. Structural and dynamic characteristics of cellulose and pectin in apple pomace residu

481 following sequential NADES/water extraction: crystallinity and lateral fiber dimension (LFD) of

cellulose; spin-lattice proton relaxation time ($T_{1\rho}^H$) of crystalline cellulose (C₄ peak area), pectin 482

methyl ester (O-CH₃ peak area) and diffusion time of nearby proton (T_{HH}) of pectin methyl ester (O-483

484 CH₃ peak area) in raw, CC:G pretreated, CC:LA pretreated and K:G pretreated/water extracted

residues 485

	Raw material	CC:G residue	CC:LA residue	K:G residue
Crystallinity	31%	32%	34%	46%
LFD (nm)	2.6	2.6	2.7	3.6
$T^{H}_{1 ho}$ (ms)				
Crystalline cellulose (C ₄ , 87.8 ppm)	8.8	16.2	20.1	36.6
Pectin methyl ester (O-CH ₃ , 52.7 ppm)	6.3	16.8	11.1	—
T _{HH} (ms)				
Crystalline cellulose (C ₄ , 87.8 ppm)	0.52	0.96	1.18	0.48
Pectin methyl ester (O-CH ₃ , 52.7 ppm)	0.28	0.39	0.33	

486 —: not detected.

487

488 The cell wall structure in raw pomace and in the residues after the sequential NADES/water 489 extraction was studied by ¹³C NMR spectroscopy (Fig. 6). Similar spectra were observed between 490 CC:G residue/CC:LA residue and raw apple pomace and were close to those previously published (Ng 491 et al. 2014; Lahaye et al. 2020). The peaks of carboxyl group (whether in acidic (172.7 ppm) or 492 methyl (170.5 ppm) forms) and methyl ester (52.7 ppm) on pectin structure disappeared in K:G 493 residue. In contrast, the higher intensity of crystalline cellulose C₄ (87.8 ppm) peak in this residue 494 indicated a marked impoverishment in pectin to the benefit of cellulose. In addition, the aromatic 495 and aliphatic carbons signals (ranged from 154.3 to 115.6 ppm; from 47.5 to 16 ppm) corresponded 496 to phenolic compounds and protein respectively that gradually disappeared in K:G residue. Moreover, 497 the highest values of crystallinity and LFD were also observed in K:G residue. No characteristic signals 498 for cellulose II were observed in the K:G residue. The molecular structure of both cellulose and pectin 499 was further studied by the ¹H-> ¹³C polarization transfer kinetic, and process with the two-proton 500 reservoir model (see **Fig. S1** for experimental data along with model estimates). The $T_{1\rho}^{H}$ and T_{HH} 501 values of crystalline cellulose C4 peak in residual pomace increased from 8.8 ms to 36.6 ms and from 502 0.52 ms to 1.18 ms with the successive NADESs pretreatments and water extractions (Table 2). The 503 lowest T_{HH} value (0.48 ms) of crystalline cellulose C4 peak was found in K:G residue. Since the pectin methyl ester peak was absent in the spectrum of K:G residue, the corresponding T_{10}^{H} and T_{HH} values 504 could not be reported. Both CC:G and CC:LA pretreatments/water extractions led to higher $T_{1\rho}^{H}$ and 505 T_{HH} values of methyl ester peak than that of raw apple pomace. The highest $T_{1\rho}^{H}$ value (16.8 ms) of 506 the methyl ester peak was found in CC:G residues. Moreover, the similar trend was observed in T_{HH} 507 508 value of methyl ester peak.

509

510 4. Discussion

511 4.1. NADES pretreatments assist in loosening cell wall interactions for polysaccharides

512 extraction

513 Water was not suitable to extract pectin from apple pomace as previously reported (Renard, 2005).

514 The inefficiency of hot water to extract pectin was markedly improved after NADES pretreatments.

515 These pretreatments increased the subsequent water extraction yield by 5 times (yield: 1.5% for A;

516 8.0% for E1; 7.8% for F; 9.0% for G, dw%). However, none of the process taken independently

517 involving NADES pretreatments followed by hot water extraction gave higher yield than dilute acid,

518 which is widely applied in industry for pectin recovery. The possible reason for such lower yields 519 likely resulted from three aspects. First, the heat treatment applied by the industrial provider to 520 dehydrate pomace may have modified interactions between cell wall polysaccharides that reduced 521 contact area of cell wall to the extractant, making it difficult to extract polysaccharides. Although the 522 dry pomace was first rehydrated to swell the cell wall with a water amount close to that registered in 523 fresh pomace (Chen & Lahaye, 2021), irreversible microstructural/chemical modifications of the 524 pomace resulting from the dehydration process remained. When compared with our previous work, 525 CC:LA pretreatment/water extraction showed higher extraction yield in fresh pomace than in dry 526 pomace (Chen & Lahaye, 2021). CC:LA pretreatment/water extraction led to similar yield as that of 527 mineral acid extraction when fresh apple pomace was used for this purpose. Second, the pH of the 528 CC:LA solvent was lower than that of HCl solution. The strong acidity may have partly broken-down 529 pectin to oligosaccharides that were lost during polysaccharide ethanolic precipitation and resulted 530 in a low extraction yield of polysaccharides. This is evidenced by the low yield of residue after CC:LA 531 pretreatment (49.6% compared to 55.7% for the diluted acid extract). A similar result was found by 532 Liew et al. (2018) who showed that higher yield of pectin was extracted from pomelo peel using citric 533 acid (pH 1.8) compared to that treated with lactic acid–glucose–water solvent with a ratio of 6:1:6. A 534 low yield of residue (47.3%) was also found after non sequential K:G pretreatment, which indicated 535 that the alkaline pH of K:G led to cell wall polymer losses and was therefore responsible for lower 536 extraction yield. The pH (pH 6.5) of the CC:G NADES may not be appropriate to break bonds in the 537 cell wall and subsequently less pectin was released compared with that of dilute acid extraction. 538 Third, in addition to the microstructure of different pomace, the relatively higher viscosity of NADES 539 solvent compared with dilute HCl solution may have also limited the mass transfer between solvent 540 molecules and cell wall components, and therefore decreased the extraction efficiency. When NADES 541 pretreatments were applied sequentially, the hot water extraction following each NADES 542 pretreatment could access to more polysaccharides in the cell wall than any one step extraction method. This led to a marked improvement in extraction yields of water extracts following sequential 543 544 CC:LA and K:G pretreatment (Fig. 3). The highest yield obtained by this sequential method compared 545 with other extraction methods represents a promising alternative process for pectin extraction. 546 To promote its application in industry, it would be necessary to understand the underlying 547 mechanism of NADES pretreatments in assisting water-soluble pectin extraction. As mentioned 548 above, the pH condition of the extraction system was paramount in determining extraction efficiency. 549 The lactic acid and potassium carbonate solution as pretreatments were used to explore the effect of 550 pH on the extraction yield. From the results shown in Fig. 3, potassium carbonate solution

551 pretreatment/water extraction (I) led to the same yield as K:G pretreatment/water extraction (G) did.

552 However, CC:LA pretreatment/water extraction (F) was significantly more efficient than lactic acid 553 solution pretreatment/water extraction alone (H) in extracting more polysaccharides. These results 554 indicated that alkaline pH can explain polymer recovery after K:G pretreatment, while acidic 555 condition was not the only factor in determining the extraction yield. Although CC:LA pretreatment 556 may involve hydrolysis of covalent linkages in the cell wall which allows extraction of polysaccharides, both hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) from NADES may also play a 557 558 role in influencing the extraction process. Wang et al. (2020) reported that the carboxylic HBD can 559 interact with hydroxyl groups of cell wall polysaccharides to form esterification products and then 560 ease cell wall deconstruction. The carboxylic group on the lactic acid may have transiently been 561 engaged in esters with cell wall polysaccharides which helped in the deconstruction of apple due to 562 the CC:LA pretreatment. As metallic cations, such as calcium and potassium interact with pectin 563 (Vidot, Gaillard, Rivard, Siret, & Lahaye, 2018; Mierczyńska, Cybulska, Sołowiej, & Zdunek, 2015; 564 Vidot, Maury, Siret, & Lahaye, 2020), ionic bonds breakage between galacturonic acid through ion 565 exchange may subsequently promote choline chloride to react with pectin structure. Taken together, 566 the ion exchange and effects of individual component of CC:LA contributed to the overall loosening 567 of the cell wall structure, which facilitated polysaccharides extraction by hot water (Fig. 7). As for K:G 568 NADES, the solvent can form hydrogen bonds with cell wall polysaccharides by accepting or donating 569 the protons (Gan et al., 2020). However, the hydrolysis of cell wall caused by alkaline pH condition 570 may have an overwhelming effect on extraction yields masking other possible contribution of the K:G 571 solvent pretreatment compared with extraction by K₂CO₃ solution.

Fig. 7 Hypothetical mechanism involved in CC:LA pretreatment/hot water extraction. The individual
components (HBA and HBD) of NADES form esterification products with cell wall polysaccharides,
coupled with ion exchange with metal cations to loosen the cell wall, which facilitates the
subsequent hot water extraction of pectin. NADES: Natural deep eutectic solvent; HBD: hydrogen
bond donor; HBA: hydrogen bond acceptor; Ca: calcium; K: potassium.

- 578
- 579

580 4.2. Sequential NADES pretreatment/water extraction: an efficient method for the recovery581 of pectin enriched in HG or RGI structural domains

According to the uronic acid content of the fractions, CC:G and CC:LA pretreatments followed by hot 582 water extraction clearly afforded efficient pectin extraction from apple pomace (fractions E1, E2 and 583 584 F). While for the K:G pretreatments (fractions E3 and G), pectin were likely released from the cell wall by the combined action of the dissociation of the calcium ions and their replacement by potassium, 585 by cleavage of ester linkages and by degradation of β -elimination in the alkaline pH. Part of pectin 586 587 are known to require basic conditions to be extracted (Santiago et al., 2018). In fact, the K:G solvent 588 in its higher pH mode could be used as an efficient extractant of hemicellulose due to the 589 observation that diluted K:G solvent (molar ratio: 1:25) used in present work co-extracted pectin. NADES pretreatments allowed enriching pectin in HG or RGI structural domains. Of interest is the 590 591 fact that HG/RGI ratio for pectin extracted after CC:LA pretreatment was close, whether the 592 pretreatment was applied alone or after CC:G pretreatment (30.1:1 for E2 and 31.7:1 for F; Fig. 4A). 593 Therefore, CC:LA pretreatment appears specific in freeing RGI structure from apple pomace 594 compared to other pretreatments. The lowest HG/RGI molar ratio found in the water extract after 595 K:G pretreatment in the sequential method (E3) is likely related with the loss of methylesterified HG 596 structural domains following their degradation by β -elimination under the alkaline conditions of the 597 solvent. As a result, the extract of low molecular weight (trace E3, Fig. 5A) corresponded to pectin 598 enriched in RGI structure. In agreement with our results, the RG I rich fraction was also obtained 599 from carrot-based purées under hot alkaline condition (Santiago et al., 2018). Additionally, based on 600 UA recovery in E3 fraction, most of the cell wall HG might have already been extracted by hot water 601 following the first two pretreatments (E1 and E2) resulting in a lower HG/RGI molar ratio. This is 602 supported by the higher HG/RGI molar ratio observed in the water extract following the non-603 sequential K:G pretreatment compared with that of E3 fraction. Hence, the combination of pH and 604 the synergistic effect of NADES pretreatments was responsible for the lowest HG/RGI molar ratio in 605 E3 fraction. Besides pH, other factor may exist to cause the relative higher HG proportion in CC:G 606 pretreated fraction. Actually, CC:G pretreatment did not specifically help extracting HG rich fraction

since a low HG/RGI molar ratio was observed in CC:G fraction when the reversed order pretreatment
was realized, namely, CC:LA pretreatment first, followed by CC:G (data not shown). The detail
explanation for this result remains to be further elucidated. Furthermore, more cell wall losses were
observed when apple pomace was pretreated first with CC:LA or K:G. Therefore, the order of NADES
pretreatment/water sequential extraction was fixed to 1) CC:G, 2) CC:LA, 3) K:G.

612 When compared with sequential NADES pretreatment/water extraction, sequential chelating agent 613 extraction possessed less ability to separate pectin rich in RGI structural domains as HG proportion 614 was increased after CDTA & Na-oxalate treatment (C2) or Na₂CO₃ & NaBH₄ treatment (D2). CDTA was 615 an effective Ca^{2+} chelating agent (Jarvis, Hall, Threlfall, & Friend, 1981), the HG bridged by Ca^{2+} was 616 released after CDTA treatment. However, the HG/RGI molar ratio was lower in CDTA fraction (D1) 617 compared with that in CDTA & Na-oxalate fraction, which indicated Na-oxalate also promoted HG 618 structural domain enrichment. Although HG is generally unbranched, the xylose-substitution on HG 619 may prevent calcium cross-links of HG chains and thus hinder the pectic network formation (Jensen 620 et al., 2008). In contrast, the neutral side chains on the RGI take part in cell wall construction and 621 development (Willats, Steele-King, Markus, & Knox, 1999; Jones, Milne, Ashford, & McQueen-Mason, 622 2003), play roles in fruit mechanical properties (Lahaye, Bouin, Barbacci, Le Gall, & Foucat, 2018) and 623 chain interactions in pectin network (Sousa, Nielsen, Armagan, Larsena, & Sørensen, 2015). The 624 influence on pectin RGI side chain of the NADES pretreatments and other extraction methods used in 625 this study was further studied. All extracts had less or shorter galactose side-chains than that of 626 dilute acid extraction. The galactose content in extracts after sequential extractions showed a 627 decreasing trend (C, D and E; Fig. 4B). However, the Gal/Rha ratio in E3 fraction increased. As 628 galactan side-chains can bind cellulose through hydrogen bonds (Lin, Lopez-Sanchez, Selway, & 629 Gidley, 2018; Zykwinska, Ralet, Garnier, & Thibault, 2005), CC:G and/or CC:LA pretreatments may 630 expose residual pectin that are H-bonded to other cell wall polymers but that are labile to the 631 alkaline condition of the K:G pretreatment. Consistent with Huang et al. (2016) who reported that 632 EDTA & sodium oxalate led to shorter galactan side-chains on RGI from potato, the CDTA extraction 633 of apple pomace with or without sodium oxalate had a negative effect on the Gal/Rha molar ratio 634 (4.4:1 for C2; 4.0:1 for D1). Arabinose side-chains are known to be rapidly cleaved under mild acidic 635 conditions (Thibault, Guillon, & Rombouts, 1991). Therefore, dilute acid extraction caused severe 636 arabinan side chains losses. The pH of CC:LA is 1, which is close to that of diluted acid (pH=1.5). 637 Hence, it is reasonable that CC:LA pretreatment (E2 and F) had a similar negative impact on these 638 side chains. Moreover, the low Ara/Rha ratio observed in the extract after sequential K:G 639 pretreatment indicated a marked effect of CC:LA pretreatment on arabinan side-chain. Similarly,

pectin samples with very low (Ara + Gal)/Rha ratio were observed when peel of orange, lemon, lime,
and grapefruit was extracted by nitric acid (pH 1.6) (Kaya et al., 2014).

642

643 4.3. Extraction process affected molecular weight distribution of extract

644 The lowest molecular weight of the extracts was obtained after sequential chelating agent extraction 645 (C and D) compared to those following NADES pretreatments (Fig. 5). Especially for both CDTA & Na-646 oxalate (C2) and CDTA (D1) fractions, low molecular weight compounds (except for salt and chelating 647 reagents) may have originated from other apple pomace components since they were poor in sugars 648 (27.6 % for C2 and 29.8% for D1, Table S1). Renard et al. (1993) have reported that pectin structure 649 was extensively degraded when apple was extracted with CDTA (pH 6.5) at 80 °C and two 650 galacturonic acid peaks occurred. These authors also showed that temperature had a lower impact 651 than pH in determining the degradation of pectin by CDTA. In our study, the low MW components in 652 C2 and D1 extracts may result from degradation of cell wall components by CDTA & Na-oxalate 653 treatment (pH 6.5, 70 °C) and CDTA treatment (pH 6.5, 25 °C). However, detailed mechanism needs 654 to be further studied.

The extracts from B, E1, E2, F fractions showed at least two Mw populations on their HPSEC profile

656 (Fig. 5A). A relatively high Glc recovery was also found in the fractions following dilute acid treatment

(B) or CC:G and CC:LA pretreatments (E1, E2, F). Glucose is a typical sugar of cellulose and

658 hemicellulose, but can also come from remaining starch in the pomace due to incomplete regression

659 in apple prior processing. Due to partial acid hydrolysis of starch by dilute HCl, the largest peak

eluting at 10.5 ml observed on the HPSEC profile of the dilute acid extract (trace B, Fig. 5A), which is

the richest in Glc, may have arisen from starch fragments. Acidic NADES were reported to be good

extractants of starch (María, Bruinhorst, & Kroon, 2012; Zdanowicz & Spychaj, 2011). The

663 pretreatment of apple pomace with CC:LA promoted an efficient mean of starch solubilization and

degradation to glucan oligomers that were most likely lost during the recovery of the fraction (F).

- 665 Residual starch fragments probably corresponded to the peak eluting at about 11.5 ml (trace F, Fig
- 666 **5A**). However, the absence of this peak in the water extract following the sequential CC:LA
- 667 pretreatment (E2), indicated that the previous pretreatment by CC:G and hot water may have
- 668 extracted part of the starch that was the most susceptible to acid degradation.

669

670 4.4. Cell wall cellulose aggregates following pectin extraction from pomace

671 To establish an integrated biorefinery process of apple pomace and its further use after pectin 672 extraction, the impact of sequential NADES pretreatment/water extraction on structure and 673 organization of the residual pomace polymers was investigated by CP/MAS ¹³C NMR spectroscopy. 674 The spectra (Fig. 6) revealed the evolution of cell wall structure from a complex raw material to a 675 simpler one in K:G pretreated residues. NADESs pretreatment/water extraction removed pectin, as 676 judged from the decreasing intensity of the signals for C₁ (around 100.4 ppm) corresponding to the 677 overlapping chemical shift of pectin backbone galacturonic acid, rhamnose and xylose sidechain of 678 xyloglucan (Ng et al. 2014; Phyo & Hong, 2019), C₄ (80.8 ppm) corresponding to pectin backbone 679 galacturonic acid (Sinitsya, Copiková, & Pavliková, 1998) and that of the pectin methyl ester at 52.7 680 ppm. The last alkaline NADES pretreatment/water extraction with K:G was particularly efficient in 681 removing also phenolic compounds and proteins, which signal intensity markedly decreased in the 682 spectrum of the residue. Apple varieties for cider production are known to be particularly rich in 683 phenolic compounds that form insoluble complex with cell wall material in pomace (Bourvellec, 684 Guyot, & Renard, 2009). K:G pretreatment can provide a mean for extracting them. As previous 685 research suggested (Newman, Ha, & Melton, 1994), the crystallinity of cellulose and its cross-section 686 dimension can be estimated by solid-state NMR. The crystallinity and LFD up to CC:LA residue were 687 ranged from 31%-34% and 2.6 nm-2.7 nm respectively. A similar 38 % of crystallinity and 2-3 nm of 688 cross-section dimension on apple cell wall has already been reported (Lahaye, Falourd, Laillet, & Le 689 Gall, 2020 and references herein). The higher crystallinity (46%) and LFD (3.6 nm) found in K:G 690 residue indicated the influence of this pretreatment on the cellulose structure and its surrounding 691 environment, which will be discussed below. At the molecular structure level, the two-proton 692 reservoir model allowed evaluating the spin diffusion time of non-bonded proton to proton linked to 693 carbon. In our case, the non-bonded proton mostly comes from water molecule, which was used to 694 rehydrate the residual pomace. Paris et al. (2001) showed that the T_{HH} value was positively 695 correlated with number of surrounding water molecule. The longer T_{HH} value of pectin methyl ester 696 in both CC:G and CC:LA pretreated residual pomace means better hydration of pectin than that of 697 raw material. The first removal of pectin by CC:G pretreatment/water extraction made the pomace 698 residue more porous so that the water used to rehydrate the residue could better interact with the 699 pectin. Further removal of pectin by the CC:LA pretreatment/water extraction did not have a major 700 impact on this porosity and the hydration of the residual pectin. The pore opening by pectin 701 extraction to allow water diffusion was also observed with the increasing T_{HH} value for cellulose up 702 to the CC:LA residue. Further processing with K:G pretreatment/water extraction led to a more 703 hydrophobic environment, most likely due to the aggregation/rearrangement in higher crystalline 704 cellulose by the removal of the alkaline-soluble pectin. The reorganization of the cellulose was 705 evidenced by the lengthening of the $T_{1\rho}^{H}$ relaxation attributed to more organized cellulose (Lahaye,

706 Falourd, Laillet, & Le Gall, 2020). This ordering goes along with that of pectin as judged from the T_{10}^{H} 707 of the pectin methyl ester which agrees with close pectin-cellulose interactions (Wang & Hong, 2016). 708 Although this increase in ordering was observed all along the sequential extraction process and 709 notably after the first CC:G pretreatment/water extraction, K:G pretreatment/water extraction had 710 the most dramatic effect on cellulose. This result suggest that the K:G pretreatment/water soluble 711 pectin and the minor hemicellulose associated in the pectin extract play a major role in the cellulose 712 organization and support the idea that pectin distribution in the cell wall controls cellulose bundles 713 packing.

714

715 **5. Conclusion**

716 Sequential NADES pretreatments/hot water extractions of apple pomace markedly increased pectin 717 recovery. Overall pectin yield was particularly higher than those obtained using conventional 718 sequential extractions including chelating, mild alkaline or mild acidic conditions. A synergistic effect 719 was shown between CC:G and CC:LA pretreatments in the sequential extraction method. Besides the 720 harsh acidic or alkaline conditions of NADES (CC:LA and K:G solvents, respectively), which both led to 721 cell wall polysaccharides hydrolysis, ion exchange together with the effect of individual NADES 722 components contributed to these high pectin yields. The sequential process of the different NADES 723 also provided a mean to tailor the main structure of pectin recovered (HG, RGI and RGI side chains). 724 It also induced reorganization of the cellulose fibers in the pomace. These results open the way to 725 more sustainable extractions of pectin by use of sequential pretreatments with recyclable NADES, 726 which can be part of a more integrated biorefinery process including recovery of valuable NADES 727 soluble compounds and extraction residues.

728

729 **Reference**

- 730 Adetunji, L. R., Adekunle, A., Orsat, V., & Raghavan, V. (2017). Advances in the pectin production
- 731 process using novel extraction techniques: A review. *Food Hydrocolloids, 62*, 239-250.
- 732 https://doi.org/10.1016/j.foodhyd.2016.08.015.
- 733 Atmodjo, M. A., Hao, Z., & Mohnen, D. (2013). Evolving views of pectin biosynthesis. Annual Review
- 734 *of Plant Biology, 64,* 747–779. https://doi.org/10.1146/annurev-arplant-042811-105534.
- 735 Benvenutti, L., Sanchez-Camargo, A. D. P., Zielinski, A. A. F., & Ferreira, S. R. S. (2020). NADES as
- potential solvents for anthocyanin and pectin extraction from Myrciaria cauliflora fruit by-product: in

- silico and experimental approaches for solvent selection. *Journal of Molecular Liquids, 315*, 113761.
- 738 https://doi.org/10.1016/j.molliq.2020.113761
- 739 Blakeney, A. B., Harris, P. J., Henry, R. J., & Stone, B. A. (1983). A simple and rapid preparation of
- alditol acetates for monosaccharide analysis. *Carbohydrate Research*, *113*, 291-299.
- 741 https://doi.org/10.1016/0008-6215(83)88244-5.
- 742 Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic
- 743 acids. *Analytical Biochemistry*, 54(2), 484-489. https://doi.org/10.1016/0003-2697(73)90377-1.
- 744 Bourvellec, C. L., Guyot, S., & Renard, C. M. G. C. (2009). Interactions between apple (*malus x*
- 745 *domestica borkh*.) polyphenols and cell walls modulate the extractability of polysaccharides.
- 746 *Carbohydrate Polymers, 75*(2), 251-261. https://doi.org/10.1016/j.carbpol.2008.07.010
- 747 Broxterman, S. E., & Schols, H. A. (2018). Interactions between pectin and cellulose in primary plant
- 748 cell walls. *Carbohydrate Polymers, 192*, 263-272. https://doi.org/10.1016/j.carbpol.2018.03.070.
- 749 Chen, M., & Lahaye, M. (2021). Natural deep eutectic solvents pretreatment as an aid for pectin
- r50 extraction from apple pomace. *Food Hydrocolloids, 115,* 106601.
- 751 https://doi.org/10.1016/j.foodhyd.2021.106601
- 752 Choi, Y. H., & Verpoorte, R. (2019). Green solvents for the extraction of bioactive compounds from
- natural products using ionic liquids and deep eutectic solvents. *Current Opinion in Food Science*, 26,
- 754 87-93. https://doi.org/10.1016/j.cofs.2019.04.003.
- 755 Choi, Y. H., Spronsen, J. V., Dai, Y., Verberne, M., Hollmann, F., Arends, I. W. C. E., Witkamp, G. J., &
- Verpoorte, R. (2011). Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular
 Metabolism and Physiology?. *Plant Physiology*, *156*(4), 1701-1705.
- 758 https://doi.org/10.1104/pp.111.178426.
- 759 Fernandez, M. L. A., Espino, M., Gomez, F. J. V., & Silva, M. F. (2018). Novel approaches mediated by
- tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by-
- 761 products. *Food Chemistry*, 239(15), 671-678. https://doi.org/10.1016/j.foodchem.2017.06.150.
- Gan, P. G., Sam, S. T., Abdullah, M. F., Omar, M. F., & Tan, L. S. (2020). An Alkaline deep eutectic
- solvent based on potassium carbonate and glycerol as pretreatment for the isolation of cellulose
- nanocrystals from empty fruit bunch. *Bioresources*, *15*(1), 1154-1170.
- 765 https://doi.org/10.15376/biores.15.1.1154-1170.

- 766 Gawkowska, D., Cybulska, J., & Zdunek, A. (2018). Cross-linking of sodium carbonate-soluble pectins
- from apple by zinc ions. *Carbohydrate Polymers*, *196*, 1-7.
- 768 https://doi.org/10.1016/j.carbpol.2018.05.024.
- 769 Grudniewska, A., Melo, E. M. D., Chan, A., Gniłka, R., Boratyński, F., & Matharu, A. S. (2018).
- 770 Enhanced Protein Extraction from Oilseed Cakes Using Glycerol–Choline Chloride Deep Eutectic
- 771 Solvents: A Biorefinery Approach. ACS Sustainable Chemistry & Engineering, 6(11), 15791-15800.
- 772 https://doi.org/10.1021/acssuschemeng.8b04359
- Guo, X. M., Wang, Z. M., Pi. F., Pan, R. Q., Zhao, Z. G., & Yu, S. J. (2018). Sequential extraction and
- physicochemical characterization of polysaccharides from chicory (*Cichorium intybus*) root pulp. *Food*
- 775 *Hydrocolloids,* 77, 277-285. https://doi.org/10.1016/j.foodhyd.2017.10.004
- Güzel, M., & Akpınar, Ö. (2019). Valorisation of fruit by-products: production characterization of
- pectins from fruit peels. *Food and Bioproducts Processing*, *115*, 126-133.
- 778 https://doi.org/10.1016/j.fbp.2019.03.009.
- Huang, J. H., Kortstee, A. J., Dees, D. C. T., Trindade, L. M., Schols, H. A., & Gruppen, H. (2016).
- 780 Modification of potato cell wall pectin by the introduction of rhamnogalacturonan lyase and β-
- 781 galactosidase transgenes and their side effects. *Carbohydrate Polymer*, *144*, 9-16.
- 782 https://doi.org/10.1016/j.carbpol.2016.02.037.
- Jarvis, M. C., Hall, M. A., Threlfall, D. R., & Friend, J. (1981). The polysaccharide structure of potato
- cell walls: Chemical fractionation. *Planta*, *152*, 93-100. https://doi.org/10.1007/BF00391179.
- Jensen, J. K., Sørensen, S. O., Harholt, J., Geshi, N., Sakuragi, Y., Møller, I., Zandleven, J., Bernal, A. J.,
- Jensen, N. B., Sørensen, C., Pauly, M., Beldman, G., Willats, W. G. T., & Scheller, H. V. (2008).
- 787 Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis.
- 788 *Plant Cell*, 20(5), 1289-1302. https://doi.org/10.1105/tpc.107.050906.
- Jones, L., Milne, J. L., Ashford, D., & McQueen-Mason, S. J. (2003). Cell wall arabinan is essential for
- 790 guard cell function. *Proceedings of the National Academy of Sciences of USA, 100,* 11783–11788.
- 791 https://doi.org/10.1073/pnas.1832434100.
- 792 Kaya, M., Sousa, A. G., Crépeau, M. J., Sørensen, S. O., & Ralet, M. C. (2014). Characterization of
- 793 citrus pectin samples extracted under different conditions: influence of acid type and pH of
- 794 extraction. Annals of Botany, 114(6), 1319–1326. https://doi.org/10.1093/aob/mcu150.
- 795 Kolodziejski, W., & Klinowski, J. (2002). Kinetics of cross-polarization in solid-state NMR: A guide for
- 796 chemists. Chemical Reviews, 102(3), 613-628. https://doi.org/10.1021/cr000060n.

- 797 Koubala, B. B., Kansci, G., Mbome, L. I., Crépeau, M. J., Thibault, J. F., & Ralet, M. C. (2008). Effect of
- 798 extraction conditions on some physicochemical characteristics of pectins from "Améliorée" and
- 799 "Mango" mango peels. Food Hydrocolloids, 22(7), 1345-1351.
- 800 https://doi.org/10.1016/j.foodhyd.2007.07.005
- Lahaye, M., Bouin, C., Barbacci, A., Le Gall, S., & Foucat, L. (2018). Water and cell wall contributions
- to apple mechanical properties. *Food Chemistry*, *268*(1), 386-394.
- 803 https://doi.org/10.1016/j.foodchem.2018.06.110.
- Lahaye, M., Falourd, X., Laillet, B., & Le Gall, S. (2020). pectin and water in cell walls determine apple
- 805 flesh viscoelastic mechanical properties. Carbohydrate Polymers, 232, 115768.
- 806 https://doi.org/10.1016/j.carbpol.2019.115768.
- 807 Larsson, P. T., Wikholm, K., & Iversen, T. (1997). A CP/MAS ¹³C NMR investigation of molecular
- 808 ordering in cellulose. *Carbohydrate Research, 302*, 19-25. https://doi.org/10.1016/S0008-
- 809 6215(97)00130-4.
- Levigne, S., Thomas, M., Ralet, M. C., Quemener, B., & Thibault, J. F. (2002). Determination of the
- 811 degrees of methylation and acetylation of pectins using a C18 column and internal standards. Food
- 812 *Hydrocolloids*, *16*(6), 547-550. https://doi.org/10.1016/S0268-005X(02)00015-2.
- Liew, S. Q., Ngoh, G. C., Yusoff, R., & Teoh, W. H. (2018). Acid and Deep Eutectic Solvent (DES)
- 814 extraction of pectin from pomelo (Citrus grandis (L.) Osbeck) peels. *Biocatalysis and Agricultural*
- 815 *Biotechnology*, *13*, 1-11. https://doi.org/10.1016/j.bcab.2017.11.001.
- Lim, W. L., Gunny, A. A. N., Kasim, F.H., AlNashef, I. M., & Arbain, D. (2019). Alkaline deep eutectic
- solvent: a novel green solvent for lignocellulose pulping. *Cellulose 26,* 4085–4098.
- 818 https://doi.org/10.1007/s10570-019-02346-8
- Lin, D., Lopez-Sanchez, P., Selway, N., & Gidley, M. J. (2018). Viscoelastic properties of
- 820 pectin/cellulose composites studied by QCM-D and oscillatory shear rheology. Food Hydrocolloids, 79,
- 821 13-19. https://doi.org/10.1016/j.foodhyd.2017.12.019.
- Liu, Y., Friesen, J. B., Mcalpine, J. B., Lankin, D. C., Chen, S. N., & Pauli, G. F. (2018). Natural Deep
- 823 Eutectic Solvents: Properties, Applications, and Perspectives. Journal of Natural Products, 81(3), 679-
- 824 690. https://doi.org/10.1021/acs.jnatprod.7b00945.
- Löfgren, C., & Hermansson, A. M. (2007). Synergistic rheological behavior of mixed HM/LM pectin
- 826 gels. Food Hydrocolloids, 21(3), 480-486. https://doi.org/10.1016/j.foodhyd.2006.07.005.

- 827 Lu, Y. R., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple
- 828 pomace. Food Chemistry, 68(1), 81-85. https://doi.org/10.1016/S0308-8146(99)00167-3.
- 829 María, F., Bruinhorst, A. V. D., & Kroon, M. C. (2012). New natural and renewable low transition
- 830 temperature mixtures (ITTMs): screening as solvents for lignocellulosic biomass processing. Green
- 831 *Chemistry*, *14*, 2153-2157. https://doi.org/10.1039/C2GC35660K.
- 832 Methacanon, P., Krongsin, J., & Gamonpilas, C. (2014). Pomelo (*Citrus maxima*) pectin: Effects of
- 833 extraction parameters and its properties. *Food Hydrocolloids, 35*, 383-391.
- 834 https://doi.org/10.1016/j.foodhyd.2013.06.018
- 835 Mierczyńska, J., Cybulska, J., Sołowiej, B., & Zdunek, A. (2015). Effect of Ca²⁺, Fe²⁺ and Mg²⁺ on
- rheological properties of new food matrix made of modified cell wall polysaccharides from apple.
- 837 *Carbohydrate Polymers, 133,* 547-555. https://doi.org/10.1016/j.carbpol.2015.07.046.
- 838 Mohnen, D. (2008). Pectin structure and biosynthesis. *Current Opinion in Plant Biology*, 11(3), 266-
- 839 277. https://doi.org/10.1016/j.pbi.2008.03.006.
- 840 Mouratoglou, E., Malliou, V. & Makris, D. P. (2016). Novel Glycerol-Based Natural Eutectic Mixtures
- and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food
- 842 Waste Biomass. *Waste and Biomass Valorization, 7,* 1377–1387. https://doi.org/10.1007/s12649-
- 843 016-9539-8.
- 844 Newman, R. H. (1999). Estimation of the lateral dimensions of cellulose crystallites using ¹³C NMR
- signal strengths. *Solid State Nuclear Magnetic Resonance*, 15(1), 21-29.
- 846 https://doi.org/10.1016/S0926-2040(99)00043-0.
- 847 Newman, R. H., Ha, M. A., & Melton, L. D. (1994). Solid-State ¹³C NMR Investigation of Molecular
- 848 Ordering in the Cellulose of Apple Cell Walls. Journal of Agricultural and Food Chemistry, 42(7), 1402-
- 849 1406. https://doi.org/10.1021/jf00043a002.
- Ng, J. K. T., Zujovic, Z. D., Smith, B. G., Johnston, J. W., Schroder, R., & Melton, L. D. (2014). Solid-state
- ¹³C NMR study of the mobility of polysaccharides in the cell walls of two apple cultivars of different
- firmness. *Carbohydrate Research, 386*, 1-6. https://doi.org/10.1016/j.carres.2013.12.019.
- 853 O'Neill, M. A., Ishii, T., Albersheim, P., & Darvill, A. G. (2004). Rhamnogalacturonan II: structure and
- function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology, 55,
- 855 109-139. https://doi.org/10.1146/annurev.arplant.55.031903.141750.

- 856 Pena, M. J., & Carpita, N. C. (2004). Loss of highly branched arabinans and debranching of
- 857 rhamnogalacturonan I accompany loss of firm texture and cell separation during prolonged storage
- 858 of apple. *Plant Physiology*, *135*(3), 1305. https://doi.org/10.1104/pp.104.043679.
- Phyo, P., & Hong, M. (2019). Fast MAS¹H-¹³C correlation NMR for structural investigations of plant
- 860 cell walls. *Journal of Biomolecular NMR, 73,* 661–674. https://doi.org/10.1007/s10858-019-00277-x.
- 861 Ramasamy, U. S., Gruppen, H., & Schols, H.A. (2013). Structural and water-holding characteristics of
- untreated and ensiled chicory root pulp. Journal of Agricultural and Food Chemistry, 61(25), 6077-
- 863 6085. https://doi.org/10.1021/jf401621h
- 864 Renard, C. M. G. C. (2005). Variability in cell wall preparations: quantification and comparison of
- 865 common methods. *Carbohydrate Polymers, 60*, 515-522.
- 866 https://doi.org/10.1016/j.carbpol.2005.03.002.
- 867 Renard, C. M. G. C., & Thibault, J. F. (1993). Structure and properties of apple and sugar-beet pectins
- 868 extracted by chelating agents, *Carbohydrate Research*, 244(1), 99-114. https://doi.org/10.1016/0008869 6215(93)80007-2.
- 870 Sakti, A. S., Saputri, F. C., & Mun'im, A. (2019). Optimization of choline chloride-glycerol based
- 871 natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii
- barks and Caesalpinia sappan heartwoods. *Heliyon, 5*(12), e02915.
- 873 https://doi.org/10.1016/j.heliyon.2019.e02915
- 874 Santiago, J. S. J., Kyomugasho, C., Maheshwari, S., Kermani, Z. J., Van de Walle, D., Loey, A. M. V.,
- 875 Dewettinck, K., & Hendrickx, M. E. (2018). Unravelling the structure of serum pectin originating from
- thermally and mechanically processed carrot-based suspensions. *Food Hydrocolloids*, 77, 482-493.
- 877 https://doi.org/10.1016/j.foodhyd.2017.10.026.
- Scheller, H. V., Jensen, J. K., Sørensen, S. O., Harholt, J., & Geshi, N. (2007). Biosynthesis of pectin.
- 879 Physiologia Plantarum, 129, 283-295. https://doi.org/10.1111/j.1399-3054.2006.00834.x.
- Schols, H. A., Bakx, E. J., Schipper, D., & Voragen, A. G. J. (1995). A xylogalacturonan subunit present
- in the modified hairy regions of apple pectin. *Carbohydrate Research*, 279, 265-279.
- 882 https://doi.org/10.1016/0008-6215(95)00287-1.
- Shafie, M. H., Yusof, R., & Gan, C. Y. (2019). Deep eutectic solvents (DES) mediated extraction of
- pectin from Averrhoa bilimbi: optimization and characterization studies. Carbohydrate Polymers, 216,
- 885 303-311. https://doi.org/10.1016/j.carbpol.2019.04.007.

- 886 Sinitsya, A., Copiková, J., & Pavliková, H. (1998). ¹³C CP/MAS NMR spectroscopy in the analysis of
- pectins. Journal of Carbohydrate Chemistry, 17(2), 279-292.
- 888 https://doi.org/10.1080/07328309808002328.
- Sousa, A. G., Nielsen, H. L., Armagan, I., Larsena, J., & Sørensen, S. O. (2015). The impact of
- rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin.
- 891 *Food Hydrocolloids*, 47, 130-139. https://doi.org/10.1016/j.foodhyd.2015.01.013.
- 892 Thibault, J. F., Guillon, F., & Rombouts, F. M. (1991). Gelation of sugar beet pectin by oxidative
- 893 coupling. In R. H. Walter (Ed.), *The chemistry and technology of pectin*. San Diego: Academic Press.
- Vierhuis, E., Schols, H. A., Beldman, G., & Voragen, A. G. J. (2000). Isolation and characterisation of
- cell wall material from olive fruit (*Olea europaea* cv koroneiki) at different ripening stages.
- 896 *Carbohydrate Polymers*, *43*(1), 11-21. https://doi.org/10.1016/S0144-8617(99)00204-0.
- 897 Vidot, K., Maury, C., Siret, R., & Lahaye, M. (2020). Phenolic compounds limit or promote oxidative
- degradation of pectin related to iron-H₂O₂ ratio. *LWT*, *125*, 109324.
- 899 https://doi.org/10.1016/j.lwt.2020.109324.
- 900 Vidot, K., Gaillard, C., Rivard, C., Siret, R., & Lahaye, M. (2018). Cryo-laser scanning confocal
- 901 microscopy of diffusible plant compounds. *Plant Methods*, 14, 89. https://doi.org/10.1186/s13007-
- 902 018-0356-x.
- 903 Voragen, F., Beldman, G., & Schols, H. (2001). Chemistry and enzymology of pectins. In B. V. McCleary,
- 804 & L. Prosky (Eds.), Advanced dietary fibre technology. (pp. 379-398). Oxford: Blackwell Science Ltd.
- 905 Wang, J. Q., Jing, W. Q., Tian, H. Y., Liu, M., Yan, H. Y., Bi, W. T., & Chen, D. D. Y. (2020). Investigation
- 906 of Deep Eutectic Solvent-Based Microwave-Assisted Extraction and Efficient Recovery of Natural
- 907 Products. ACS Sustainable Chemistry & Engineering, 8(32), 12080-12088.
- 908 https://doi.org/10.1021/acssuschemeng.0c03393.
- 909 Wang, T., & Hong, M. (2016). Solid-state NMR investigations of cellulose structure and interactions
- 910 with matrix polysaccharides in plant primary cell walls. Journal of Experimental Botany, 67(2), 503-
- 911 514. https://doi.org/10.1093/jxb/erv416.
- 912 Wikiera, A., Mika, M., Starzyńska-Janiszewska, A., & Stodolak, B. (2015). Development of complete
- 913 hydrolysis of pectins from apple pomace. *Food Chemistry*, *172*, 675-680.
- 914 https://doi.org/10.1016/j.foodchem.2014.09.132.

- 915 Willats, W. G. T., Steele-King, C. G., Markus, S. E., & Knox, J. P. (1999). Side chains of pectic
- 916 polysaccharides are regulated in relation to cell proliferation and cell differentiation. The Plant
- 917 Journal, 20, 619–628. https://doi.org/10.1046/j.1365-313X.1999.00629.x.
- 918 Yapo, B. M., Lerouge, P., Thibault, J. F., & Ralet, M. C. (2007). Pectins from citrus peel cell walls
- 919 contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and
- 920 rhamnogalacturonan II. Carbohydrate Polymers, 69(3), 426-435.
- 921 https://doi.org/10.1016/j.carbpol.2006.12.024
- 922 Zdanowicz, M., & Spychaj, T. (2011). Ionic liquids as starch plasticizers or solvents. Polimery (Warsaw),
- 923 *56*, 861-864. https://doi.org/10.14314/polimery.2011.861.
- 924 Zdanowicz, M., Wilpiszewska, K., & Spychaj, T. (2018). Deep eutectic solvents for polysaccharides
- 925 processing. A review. *Carbohydrate Polymers, 200*, 361-380.
- 926 https://doi.org/10.1016/j.carbpol.2018.07.078
- 927 Zykwinska, A. W., Ralet, M. C., Garnier, C. D., & Thibault, J. F. (2005). Evidence for in vitro binding of
- 928 pectin side chains to cellulose. *Plant Physiology*, *139*, 397-407.
- 929 https://doi.org/10.1104/pp.105.065912.