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Abstract 

Purpose : Objective markers of usual diet are of interest as alternative or validating tools in 1 

nutritional epidemiology research. The main purpose of the work was to assess whether saliva 2 

protein composition can reflect dietary habits in older adults, and how type 2 diabetes impacted on 3 

the saliva-diet correlates. 4 

Methods : 214 participants were selected from two European cohorts of community-dwelling older 5 

adults (3C-Bordeaux and Seniors-ENRICA-2), using a case-control design nested in each cohort. Cases 6 

were individuals with type 2 diabetes. Dietary information was obtained using the Mediterranean 7 

Diet Adherence Screener (MEDAS). Saliva was successfully obtained from 211 subjects, and its 8 

proteome analyzed by liquid chromatography-tandem mass spectrometry.  9 

Results : The relative abundance of 246 saliva proteins was obtained across all participants. The 10 

salivary proteome differed depending on the intake level of some food groups (especially vegetables, 11 

fruits, sweet snacks and red meat), in a diabetic status- and cohort-specific manner. Gene Set 12 

Enrichment Analysis suggested that some biological processes were consistently affected by diet 13 

across cohorts, for example enhanced platelet degranulation in high consumers of sweet snacks. 14 

Minimal models were then fitted to predict dietary variables by sociodemographic, clinical and 15 

salivary proteome variables. For the food group « sweet snacks », selected salivary proteins 16 

contributed to the predictive model and improved its performance in the Seniors-ENRICA-2 cohort 17 

and when both cohorts were combined.  18 

Conclusion : Saliva proteome composition of elderly individuals can reflect some aspects of dietary 19 

patterns. 20 

 21 

Keywords : salivary biomarkers, proteomics, usual diet, ageing, diabetes, Gene Set Enrichment 22 

Analysis  23 
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Introduction 44 

There is vast evidence linking intakes of nutrients, specific foods, food groups or even dietary 45 

patterns with health and well-being outcomes. Some studies have focused on the older population, 46 

targeting health issues more prevalent in this age group. For example, a link has been established 47 

between usual intake of protein and frailty [1] or between coffee consumption and risk of falling [2]. 48 

Higher adherence to the so-called Mediterranean diet (MeDi) has also been associated with 49 

decreased cognitive decline [3] or decreased risk of frailty [4,5]. Concerning another pathology with 50 

higher prevalence among the elderly population, higher adherence to MeDi diet has been associated 51 

with lower risk of type 2 diabetes mellitus (T2DM) [6,7] and not only through its impact on body 52 

weight [8]. Recording one’s diet can therefore be a useful tool for the clinician as a starting point to 53 

implement dietary guidelines and/or to follow adherence to dietary advice. 54 

One challenge in nutritional epidemiology research is to capture real dietary intakes. Assessment 55 

usually relies on questionnaires (such as 24-hour recalls or Food Frequency Questionnaire) which 56 

may be prone to memory or social desirability bias. Therefore, objective markers of dietary intake 57 

are required as alternative or validating tools to increase the reliability and accuracy of diet 58 

information [9]. With this objective in mind, markers of dietary intake have been sought for mainly in 59 

serum and in urine. For example, metabolome markers of usual consumption of citrus fruit or fish 60 

were identified in serum of adult participants [10]. Urinary metabolome markers of usual nut intake 61 

were also identified and correlated to cognitive decline in older adults [11]. Recently, plasma 62 

metabolome markers of adherence to the Mediterranean diet have been associated with 63 

cardiovascular disease risk [12].  64 

Saliva is a biological fluid which presents some advantages over blood or urine, particularly regarding 65 

its sampling which minimizes pain, privacy or safety issues. Saliva sampling also presents some 66 

limitations, for example in case of minimal saliva flow. Young children and the oldest or frail elderly 67 

subjects are thus two groups for which it may be difficult to obtain saliva samples [13]. However, 68 

saliva was sucessfully sampled and its protein or peptide composition analyzed on 3- and 6-month-69 
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old infants [14], on premature babies [15] or on old persons with a mean age of 82 years [16]. Saliva 70 

composition was successfully associated with usual intake of carbohydrates in adults [17], with diet 71 

transition in infants [14,18] or with dietary patterns in children with or without eating difficulties 72 

[19]. In addition, saliva (together with blood) proved more resilient than urine to recent dietary 73 

intake when focusing on metabolome composition [20].  For all these reasons, the primary objective 74 

of this work was to evaluate whether saliva is a suitable source of objective protein markers of usual 75 

dietary intake in older adults. We evaluated this with participants from two different cohorts, in 76 

France and Spain, which provided information on the cross-cultural and/or geographical sensitivity of 77 

the results. Finally, participants were part of a wider project on salivary biomarkers of Mediterranean 78 

diet and type 2 diabetes mellitus [21]. The design of participants’ selection therefore also enabled to 79 

address a secondary objective, namely to assess the impact of this pathology on the association 80 

between saliva composition and dietary habits. 81 

Methods 82 

Population-based cohorts 83 

Participants originated from two population-based cohorts on ageing, the Bordeaux sample of the 84 

Three-City Study (3C) in France [22] and the Seniors-ENRICA-2 cohort in Spain [23]. Study protocols of 85 

the 3C and Seniors-ENRICA-2 cohorts were approved respectively by the Commitee for Protection of 86 

Persons (CPP) participating in Biomedical Research of the Kremlin-Bicêtre University Hospital (Paris) 87 

and the Ethics Research Commitee of the « La Paz » University Hospital (Madrid).  88 

Participants 89 

The 214 Individuals included in the study were selected using a case-control design nested in each 90 

cohort. Cases were individuals affected by T2DM based on self-reported physician’s diagnosis and/or 91 

being on antidiabetic treatment (oral medication or insulin) at the time of data collection. Controls 92 

were selected concurrently and were free of diabetes at the time of data collection. For the purpose 93 

of the present study, we used the following information from each participant: cohort, sex, age 94 
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(years), body mass index (BMI; kg/m2), type 2 diabetic status, smoker status (never, former, current), 95 

saliva flow (g/min) and food consumption.  96 

Dietary surveys and assessment of adherence to the Mediterranean diet 97 

Food consumption data were collected using a FFQ in the 3C cohort [24] and a validated electronic 98 

diet history in the Seniors-ENRICA-2 cohort [25]. Adherence to the Mediterranean dietary pattern 99 

was assessed by calculating a MEDAS score [26] modified by omitting the question on sofrito, since 100 

this cooking technique is specific of the Spanish population. The MEDAS score could therefore range 101 

from 0 to 13, with higher values indicating higher adherence to the Mediterranean diet. Differences 102 

between cohorts or diabetic status was tested by a Wilcoxon test. In addition, to study the link 103 

between saliva proteome and diet, we restricted the analysis to the 11 MEDAS items describing the 104 

consumption frequency of food groups, namely olive oil, vegetables, fruits, red meat, 105 

butter/margarine/cream, sweet drinks, wine, legumes, fish/shellfish, sweet snacks (confectionary, 106 

biscuits and commercial pastries) and nuts. For each food group, the participants were classified as 107 

high or low consumers based on the cut-off points defined for MEDAS score calculation (Online 108 

Resource 1). 109 

Saliva sampling 110 

Sampling of unstimulated saliva was conducted at the participants’ home. Sampling was proposed 111 

early in the morning after overnight fasting. Drinking water was permitted up to 5 minutes before 112 

saliva collection. Participants were instructed to sit comfortably and to tilt their head slightly 113 

downwards. At their own rythmn, they spat the saliva pooling on the floor of the mouth into 40mL 114 

polypropylene tubes. Sampling was performed for 10 minutes. In case a participant wished to stop 115 

before the end of the 10 minutes, the time was recorded in order to be able to calculate the saliva 116 

flow (expressed in g/min). Saliva samples were immediately placed on ice, transported to the 117 

laboratory and placed at -80°C as soon as possible (never after 4 hours on ice). At the end of the 118 

collection wave, samples were shipped to the analytical facilities in dry-ice. 119 
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Saliva proteome analyses 120 

Sample preparation 121 

Saliva was thawed at 4°C and vortexed. One mL of saliva (or the total volume of saliva when it was 122 

lower than 1mL) was centrifuged at 14000 g for 20 minutes. The supernatant was used for proteome 123 

analyses. Protein concentration was measured by an infrared spectroscopy-based method using a 124 

Direct Detect® spectrometer (Merck). Samples were diluted in water in order to adjust all samples to 125 

the same protein concentration, then mixed with 1 volume of Laemmli denaturing buffer and heated 126 

at 90°C for 5 minutes. Sample volumes corresponding to 3.5 µg of protein were loaded onto SDS-127 

PAGE gels containing 12% and 5% acrylamide in the resolving and stacking gels, respectively. 128 

Electrophoresis was performed using a Mini-Protean II unit (BioRad, Marnes-La-Coquette, France) at 129 

100 V until the dye front entered the resolving gel. Gels were stained for one hour in R-250 130 

Coomassie. Bands were manually excised, reduced in 10 mM dithiotreitol in 50 mM ammonium 131 

bicarbonate, and alkylated in 55 mM iodoacetamide in 50 mM ammonium bicarbonate. Destaining of 132 

the excised bands was obtained by sucessive rinses in 25 mM ammonium bicarbonate / acetonitrile 133 

(1 :1 v/v). Gel pieces were then dried by incubation in 100% acetonitrile for 10 min followed by 134 

vacuum-drying in a SpeedVac. Finally, gel pieces were incubated overnight at 37°C with 30 µL of a 135 

trypsin solution (V5111, Promega) at 10 ng/µL in 25 mM ammonium bicarbonate. Peptide extraction 136 

was performed by addition of 40µL of acetonitrile 100%, 0.5% formic acid and sonication for 15 min. 137 

The trypsin digests were vacuum-dried in a SpeedVac and stored at 20 °C in a solution of 0.05% 138 

trifluoroacetic acid before Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) analysis 139 

Mass Spectrometry analyses 140 

Five µL of the protein digests were injected into a nanoHPLC (Ultimate 3000, ThermoFisher 141 

Scientific). The peptide mixture was first concentrated and desalted on a microcolumn (Acclaim, 300 142 

µm, 5mm) equilibrated with trifluoroacetic acid (TFA) 0.05% in water. After 6 min, the microlumn 143 

was switched on-line to an analytical C18 nanocolumn (Acclaim,75 µm, 25 cm, Pepmap) equilibrated 144 

with 94.9 % H20, 5% dimethyl sulfoxide (DMSO), 0.1% formic acid (FA) and peptides were separated 145 
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at 35°C according to their hydrophobicity with a 4 to 25% linear gradient of acetonitrile (94.9 % ACN, 146 

5 % DMSO, 0.1% FA) at a flow rate of 300 nL/min for 50 min. Peptides were electro-eluted with an 147 

ESI nanosource (1.6 kV) in the mass spectrometer (Orbitrap Velos, ThermoFisher scientific). The 148 

Orbitrap was used in top 15 data dependent mode, with gas phase fractionation (GPF1 400-480 m/z; 149 

GPF2 480-560 m/z; GPF3 560-660 m/z; GPF4 660-850 m/z, GPF5 850-1401 m/z).  150 

Samples were analyzed in 6 different series (different days). To monitor and normalize LC-MS 151 

performance over time, a Quality Control (QC) was injected every 10 samples. This QC was prepared 152 

by diluting 20µL of a commercial mixture of 15 synthetic peptides (Thermo Scientific™ Pierce™ 153 

Peptide Retention Time Calibration Mixture) into 180µL of a trypsin digest of a pool of 20 salivas. Five 154 

µL of the QC was injected and analyzed similarly to samples, except that gas phase fractionation was 155 

not performed.  156 

Raw files were imported into ProgenesisQI Proteomics (Nonlinear dynamics) and the label-free 157 

quantification workflow was followed (see www.nonlinear.com). This includes peak alignment, 158 

establishment of a single ion map, normalization of intensities using data from 2 to 5x charged ions 159 

and XIC type quantification of all ions detected. Peptide identification were performed using Mascot 160 

interrogating the database homosapiens UniProt 201804 (71,600 sequences). Peptide mass tolerance 161 

was set to 10 ppm and fragment mass tolerance was set to 0.5 Da. Two miscleavages were 162 

authorized, and methionine oxidation, carbamidomethylation of cysteine and deamidated 163 

asparagine or acid aspartic were set as variable modifications. Protein identification was then 164 

validated when at least two unique peptides from one protein showed significant identification 165 

Mascot scores with False Discovery Rate (FDR < 1%). For protein quantification, the sum of all unique 166 

normalized peptide ion abundances for a specific protein was calculated for each sample. The final 167 

dataset consisted in 246 proteins quantified in 211 samples. 168 

Proteome data handling 169 

Protein abundance as obtained above was corrected for any series effect using QC data. For each 170 

synthetic peptide, the average abundance was calculated per series and for all runs combined. This 171 
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enabled calculting a correcting coefficient applicable to each series for normalization. The mean 172 

correcting coefficient for the 15 synthetic peptides was calculated per series, and it was applied to 173 

the protein abundance within that series. Missing values (0.3% of overall data) were handled 174 

following two distinct imputation methods as described by Wei et al. 2018 [27]. Eighty-two percent 175 

of the missing values corresponded to proteins which always showed low abundance values. These 176 

missing values were regarded as Missing Not At Random and thus handled using the quantile 177 

regression imputation of left-censored method. Remaining missing values were regarded as Missing 178 

At Random thus handled using the Random Forest imputation method.  179 

Statistics 180 

First, for each food group, we tested differences in the salivary proteome between high and low 181 

consumers Student t-tests corrected by the Benjamini-Hocberg method to control the False 182 

Discovery rate (FDR set at 5%). This was performed for the entire sample or when participants were 183 

stratified by diabetic status or by cohort.  184 

Second, the Gene Set Enrichment Analysis (GSEA) method [28] was used to highlight biological 185 

processes enriched depending on the level of consumption of a food group. Given the case-control 186 

design of the study, we performed the analyses separately for diabetic and non-diabetic subjects. For 187 

each of the 246 proteins of the dataset, ontology terms and related annotations were retrieved from 188 

quickGO and the GO database. GO terms corresponding to at least two proteins (1850 in total) were 189 

selected. For each condition (one condition = one diabetic status, one food group), proteins were 190 

ranked in descending order of their p-values after attributing a negative sign to p-values when 191 

proteins were under-expressed in “high consumers”. This way, a GO term is regarded as of interest if 192 

its protein members are mostly in the top (over-expressed) or bottom (under-expressed) region of 193 

the list. GO terms were tested by unweighted GSEA estimation algorithm with at least a million 194 

permutations. With multifactorial dependencies occurring in the GO terms classification, (correlated 195 

and/or co-occurring annotations, co-occurring proteins …), controlling false positive occurrence is 196 

challenging and usual methods may be over-restrictive. Post-hoc correction was therefore conducted 197 



 
 

10 
 

as follows: the community structure of the GO network (terms as nodes, relationships as edges) was 198 

determined using the Girvan-Newman algorithm [29]. This revealed 223 separated communities with 199 

a modularity of 0.85. GO terms within a community were considered as strongly dependent from 200 

each other whereas communities were considered as independent from each other. P-values of the 201 

223 communities were computed as the mean of p-values of its GO terms members, and the 202 

Benjamini-Hochberg correction was performed (calculation of a q-value). This generated a correcting 203 

factor for each community, which was then applied to p-values of all GO terms within this 204 

community to calculate individual q-values. GO terms were considered significant for q-values <0.01 205 

(FDR 1%). 206 

Finally, we fitted minimal models predicting dietary variables by sociodemographic, clinical and 207 

salivary proteome variables. For that purpose, the workflow was as follows for each food group. First 208 

we reduced the number of protein variables by three successive selection steps : 1- a Kernel Partial 209 

Least Square Regression model was computed and proteins with high Variable Importance in 210 

Projection (VIP) values were selected (cutoff=1). 2- For these proteins, the difference in abundance 211 

between high and low consumers of the food group was tested by a Student t-test corrected by the 212 

Benjamini-Hochberg method to control the False Discovery rate (FDR). Variables with a low FDR were 213 

selected (cutoff=0.05). 3- Correlation among these proteins were calculated. Candidates sharing at 214 

least one high correlation (cutoff=0.7) were ordered by Ascendant Hierarchical Clustering, with 215 

adequate number of clusters determined by bootstrapping. The final set of proteins was made of all 216 

uncorrelated variables plus one variable per cluster (the one with the highest contribution). Second, 217 

we fitted the minimal model by logistic model learning using selected proteins and sociodemographic 218 

and clinical confounding factors (diabetic status, cohort, sex, age, BMI, smoker status and saliva 219 

flow). Subjects were split into a learning set (75%) and a validation set (25%). From the learning set, a 220 

logistic model was adjusted. Two stepwise procedures (Akaike Information Criterion, Bayesian 221 

Information Criterion) were performed separately : the AUC (Area under the Curve) of the ROC 222 

(receiver operating characteristic) curves were computed from the validation set and the model with 223 
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the highest AUC was selected. This process was repeated through 1000 simulations of 224 

learning/validation sets, and the final model retained the variables selected in at least half of the 225 

simulations. For the food groups where proteome variables were retained, we evaluated the 226 

performance of the models by calculating the AUC of the ROC curve. More specifically, three models 227 

were tested : Model 1 was the optimal model obtained as described above, Model 2 was Model 1 228 

into which we forced some basic descriptive variables (cohort, age, sex, diabetic status), and Model 3 229 

was Model 1 from which protein variables were removed. The comparison of Model 1 and Model 3 230 

allows documenting how much value the saliva proteome variables add to the model.  231 

Data management and statistical analyses were performed using the Rgui open-source software 232 

(https://cran.r-project.org). 233 

Results 234 

Participants’ characteristics 235 

Among 570 participants from wave 8 (2017-2018, 18y after baseline) of the 3C-Bordeaux cohort, 65 236 

were diabetics. Among them, 37 participants agreed to participate and a random sample of 71 237 

participants were selected as controls. Among 3273 participants from baseline in the Seniors-238 

ENRICA-2 cohort, 669 were diabetics. A random sample of 53 diabetics and 53 matched controls 239 

were selected.  Out of those 214 participants, 3 were excluded because of unsufficient saliva 240 

production (Online Resource 2). The 211 remaining participant’s characteristics are presented in 241 

Table 1. The French sample was older on average (87.3 vs 71.0 y) and comprised more women (61.3 242 

vs 36.2%) than the Spanish one. As expected, the diabetic participants exhibited higher BMI on 243 

average than controls in both cohorts. 244 

Saliva amounts collected and salivary flows 245 

The amounts of saliva collected varied from 0.09 to 8.68 g. As reported in Table 1, the average at-rest 246 

saliva flow varied from 0.18 to 0.26 g/min depending on the cohort and diabetic status. The 247 

difference between the two cohorts tested by a Wilcoxon test was significant (p<0.001), with higher 248 
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flow among Seniors-ENRICA-2 participants. The difference between diabetic and non-diabetic 249 

subjects was not significant either when combining the two cohorts or within each cohort. 250 

MEDAS scores and dietary intakes 251 

The mean MEDAS scores and the proportions of high vs low consumers of 11 food groups among all 252 

participants or stratified by diabetic status or cohort are presented in Table 2. Adherence to the 253 

Mediterranean dietary pattern was slightly (but not significantly) lower in diabetic participants 254 

compared to controls, while it was significantly (p<0.05) lower in 3C-Bordeaux participants compared 255 

to Seniors-ENRICA-2 participants. The dietary patterns were overall comparable between diabetic 256 

and non-diabetic individuals : the only two food groups which were clearly different according to the 257 

diabetic status were « nuts » and « sweets snacks » (confectionary, biscuits and commercial 258 

pastries), with a higher proportion of low consumers among diabetic subjects. In contrast, there 259 

were more differences between the two cohorts, with five food groups clearly different between 260 

Seniors-ENRICA-2 and 3C-Bordeaux. In the Spanish cohort there were more high consumers of olive 261 

oil, while in the French cohort there were more high consumers of vegetables, nuts, wine and butter.  262 

Proteins differentially expressed between high and low consumers of 11 food groups 263 

Table 3 provides the number of proteins significantly different (FDR 5%) between high and low 264 

consumer of the 11 food groups recorded. When considering all participants, there were 265 

differentially expressed proteins for three food groups : vegetables, butter and sweet snacks. The list 266 

of proteins significantly different, details of mass spectrometry identifications and abundance in high 267 

vs low consumers are available in Online resource 3. The intake level of vegetables, red meat and 268 

butter altered more the saliva of non-diabetic subjects (20, 58 and 5 differential proteins, 269 

respectively) than that of diabetic subjects (4, 0 and 0 differential proteins, respectively). In contrast, 270 

the intake level of sweet snacks had a major impact on saliva proteome (65 differential proteins) but 271 

only for diabetic subjects. More generally, the link between saliva proteome and diet was more 272 

pronounced among non-diabetic controls, with 85 proteins in total linked to 4 food groups 273 

(vegetables, legumes, red meat, butter), than among diabetic participants with 69 proteins linked to 274 
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2 food groups (vegetables, sweet snacks). The link between saliva proteome and diet was also more 275 

expressed among Seniors-ENRICA-2 participants with 77 proteins linked to two food groups (fruits, 276 

sweet snacks), than among 3C-Bordeaux participants with 2 proteins linked to the intake level of 277 

olive oil.  278 

Gene Set Enrichment Analysis (GSEA) 279 

Based on protein expression levels in the entire proteomic dataset, GSEA identified the biological 280 

processes that were significantly enriched or depleted depending on the participants’ intake level of 281 

a given food group. This was performed for diabetic and control participants separately and for the 282 

food group « sweet snacks » because of its major and robust impact on the salivary proteome (see 283 

Table 3). Results for all participants are presented in Figure 1 and results of the analyses performed 284 

for each cohort separately are available in Online resource 4.  285 

For the two cohorts combined, some biological processes were in common and similarly affected for 286 

all participants. Thus, regulation of cellular macromolecule biosynthetic process was repressed while 287 

platelet degranulation, leukocyte migration involved in inflammatory response and regulation of 288 

immune system were enhanced in high consumers of sweet snacks, regardless of their diabetic 289 

status. 290 

In addition, the impact of sweet snacks intake level was particularly evident among diabetic 291 

participants (Fig. 1). In those participants, three GO categories related to apoptosis were repressed in 292 

high consumers of sweet snacks, as well as the category regulation of peptidase activity. In contrast, 293 

all the other GO terms were enriched in diabetic high consumers of sweet snacks. These terms 294 

covered a very large panel of biological functions such as hemostasis, protein and peptide 295 

expression, modification or secretion, immunity, cell-cell communication or metabolism. Of special 296 

interest is a group of GO terms related to carbohydrate metabolism, (black box in Fig. 1). In controls, 297 

high consumption of sweet snacks also modified specifically some biological processes but to a lesser 298 

extent. 299 
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Analyses performed for each cohort separately confirmed that the impact of sweet snacks intake 300 

level was higher for diabetic participants than for controls in both cohorts. A vast majority of the 301 

biological processes significant for the two cohorts combined were also identified and significant in 302 

at least one of the two cohorts. Results were mostly consistent between the two cohorts combined 303 

and one of the cohorts (lines highlighted in blue in Online resource 4, e.g. platelet degranulation). 304 

Five biological processes (highlighted in yellow in Online resource 4, e.g. regulation of 305 

phosphorylation) were significant for diabetics and controls in the Seniors-ENRICA-2 cohort, while 306 

they were significant only for diabetics in the 3C-Bordeaux cohort and in the joint analysis. Finally, 14 307 

biological processes were consistent across cohorts for diabetics subjects: regulation of apoptotic 308 

process, platelet degranulation, regulation of immune response, regulation of gene expression, 309 

regulation of transport, regulation of cellular component organization, regulation of protein/peptide 310 

secretion, regulation of cell morphogenesis involved in differentiation, interleukin-12-mediated 311 

signaling pathway, regulation of substrate adhesion-dependent cell spreading, Arp2/3 complex-312 

mediated actin nucleation, actin polymerization-dependent cell motility and microtubule-based 313 

movement. The latter four processes, related to cell spreading and motility, are likely linked to the 314 

oral epithelium repair potential. 315 

Salivary markers of specific food groups’ intake levels 316 

Minimal models were sought for all food groups. Tables 4 and 5 present an overview of the variables 317 

retained in such models for all participants combined or cohort by cohort, respectively.  318 

Considering both cohorts combined, apart from fruit for which no minimal model was retained, the 319 

descriptive characteristics of the subjects could predict the level of consumption (defined as meeting 320 

the MeDi requirements or not) for all food groups. The descriptor « cohort » was most frequently 321 

retained (4 occurrences for vegetables, olive oil, wine and butter) followed by sex (3 occurrences for 322 

wine, red meat and sweet snacks), diabetic status (nuts and sweet snacks) and smoker status 323 

(legumes and sweet drinks). Of special interest are the three food groups for which abundance of 324 

salivary proteins are predictors of intake : vegetables (5 proteins : P22079 lactoperoxidase, O00391 325 
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sulfhydryl oxidase 1, P10909 clusterin, P37802 transgelin-2 and Q8TAX7 mucin-7), butter (4 proteins : 326 

Q96DR5 BPI fold-containing family A member 2, P22079 lactoperoxidase, P07476 involucrin and 327 

P23280 carbonic anhydrase 6) and sweet snacks (2 proteins : E7EQB2 lactotransferrin, P02749 beta-328 

2-glycoprotein 1). For the three food groups vegetables, butter and sweet snacks, the distribution of 329 

AUCs for 10000 simulations and the corresponding means and 95% confidence intervals are 330 

presented in Fig. 2. These show that compared to the minimal models (top panels), forcing into the 331 

model additional subjects’ basic descriptors (middle panels) did not improve the model performance. 332 

Moreover, removing the protein descriptors from the minimal models (bottom panel) clearly 333 

reduced the model performance with an AUC mean shift of approximately -0.05 for vegetables and 334 

butter and -0.1 for sweet snacks. In other words, we confirmed that the salivary proteome added 335 

value to the prediction models.   336 

Results obtained cohort by cohort (Table 5) did not directly confirm the protein markers identified 337 

when the two cohorts were combined. In agreement with the very low number of proteins 338 

significantly different between high and low consumers of the different food groups among 3C-339 

Bordeaux participants (Table 3), no minimal models retained salivary proteins for French 340 

participants. Among Seniors-ENRICA-2 participants, salivary proteins were predictors of intake of 341 

fruits, red meat and sweet snacks.  342 

Discussion 343 

In this study, the salivary proteome differed depending on the intake level of some food groups 344 

(especially vegetables, fruits, sweet snacks and red meat), in a diabetic status- and cohort-specific 345 

manner. In addition, some saliva proteins were predictive of the intake level of sweet snacks after 346 

adjusting for several sociodemographic and clinical confounding factors.  347 

The first challenge of the study was the collection of saliva. Only 3 participants out of 214 were 348 

excluded due to unsufficient saliva production, and only one of the 211 donors requested to stop 349 

before the end of the 10 min collection time. The average saliva flows were below the 0.3 g-0.4/min 350 

generally reported [30,31], in accordance with the well-known reducing impact of ageing on both at-351 
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rest and stimulated saliva flow [32]. Age is likely the main factor explaining the statistical difference 352 

between the cohorts, with lower average flow in French participants who are on average 16 years 353 

older than Spanish participants. The sex-ratio and the cases-controls proportions also differ between 354 

the two cohorts. However, several studies reported that gender had no significant impact on saliva 355 

flows of either healthy [33] or diabetic elderly subjects [34]. Furthermore, the diabetic status had no 356 

significant impact on saliva flow in our study, in each cohort or combining the two. To conclude on 357 

saliva collection, our study highlighted that it was feasible, well-tolerated and although the volumes 358 

were sometimes limited especially in the oldest elderlies, they remained compatible with the needs 359 

of proteome analytical methods. 360 

The assessment of dietary intakes is also a challenge for any population. Diet history and Food 361 

Frequency Questionnaire are often used to capture usual nutrient intake or dietary habits with a high 362 

level of details. Here, we used two different tools which are standard and validated instruments for 363 

collecting food consumption data. In a previous study where these same cohorts and respective diet 364 

recording tools were used, consistent results for the association between fruit and vegetable intake 365 

and functional outcomes in older adults were obtained [35]. Based on the data obtained, we used 366 

the MEDAS score to represent adherence to the MeDi diet [26]. We confirmed previous 367 

observational studies reporting no difference in adherence to MeDi between persons with diagnosed 368 

diabetes and controls [36]. The MEDAS questionnaire also enabled to classify participants into high 369 

and low consumers for 11 food groups. There was a limited impact of the diabetic status on the 370 

intake levels, at the exception of nuts and sweet snacks. This latter finding is in accordance with 371 

previous results observed within the Seniors-ENRICA cohort, showing that the diet of diabetics differs 372 

mainly by a greater avoidance of sweet products while other food groups are little affected [36]. 373 

Other studies are also in general agreement with this idea. For example, a cross-cultural study 374 

investigated the diet of diabetic and non-diabetic elderly men in Finland, the Netherlands and Italy 375 

and highlighted that the only food group that was significant different in all three countries was the 376 

consumption of added sugar [37]. In another study [38], the food group sweets differed largely 377 

between individuals with or without diabetes both in a pan-European cohort (the EPIC study) and a 378 
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USA-based cohort (the MEC study). The two latter articles also evidenced that differences between 379 

countries exceeded those between diabetics and non-diabetics, in line with our results on the 380 

MEDAS score or the individual food groups. Some dietary differences that we observed between 381 

cohorts corresponded to expected cultural specificities (more high consumers of wine in the 382 

Bordeaux area in France, more high consumers of olive oil in Spain), while others were more 383 

surprising. In particular, the proportion of high consumers of vegetables was extremely high in the 3-384 

C Bordeaux cohort, well above other estimations for France [39]. In the 3-C Bordeaux cohort, fruits 385 

and vegetables consumption has already been associated with a lower risk of death [40] which may 386 

explain that high consumers of vegetables are over-represented in our sample of very old 387 

participants. In contrast, the proportion of high consumers of vegetables in the Seniors-ENRICA-2 388 

cohort was extremely low (3.8%) compared to the 12.3% or 17.6% in the general Spanish population 389 

[41] or in diabetic Spanish patients [36], respectively.  390 

Keeping these issues in mind, and with the objective of describing broadly the impact of dietary 391 

intake on salivary proteome, we used the GSEA approach. Many salivary proteins are multifunctional 392 

[42] and thus GSEA provided an overwhelming wealth of information, but a first obvious result was 393 

that the biological processes enriched according to the intake level were mostly different between 394 

diabetic subjects and controls. The salivary proteome is therefore shaped differently by diet 395 

depending on the physiopathological status of the subject.  396 

The second finding is that intake of sweet snacks had a major effect on biological processes in 397 

diabetics, regardless of the cohort considered. This is not surprising since dietary sugars have a 398 

profound physiological effect in diabetic individuals, who by definition have difficulty in controlling 399 

glycemia. For example 8 enzymes of the glucose catabolic process to pyruvate (out of the 10 of the 400 

core glycolysis pathway) were over-represented in high consumers of sweet snacks among diabetic 401 

participants. This is consistent with the long-known increase in glycolytic enzymes activity or 402 

expression induced by glucose in various tissues or cells such as pancreatic cells [43] or the jejunum 403 

[44]. Inter-individual variability in salivary glycolytic enzymes has been hypothesized to be at least 404 

partly related to dietary habits of the healthy adult saliva donors [45]. Finally, several glycolytic 405 
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enzymes were found in saliva of diabetic subjects and these were overexpressed in subjects with the 406 

most severe forms of retinopathy [46].  407 

More unexpectedly, when analyzing the two cohorts jointly, the endothelial cell apoptotic process 408 

was repressed in diabetic high consumers of sweets, while high glucose is known to trigger apoptosis 409 

in endothelial cells [47]. However, the three proteins attached to this GO term in our dataset are the 410 

fibrinogen α, β and γ-chains. They are linked to negative regulation of the apoptotic process in GO, 411 

but their primary function is rather blood clotting: their over-expression could thus reflect the more 412 

frequent gum bleeding in diabetic individuals with inadequate intake of sweet snacks. This is then in 413 

accordance with a consensus report indicating that poor glycaemic control in diabetes is associated 414 

with poorer periodontal status and outcomes [48]. This example illustrates that GSEA should be 415 

regarded as indicative of biological processes to be investigated further, and findings should be 416 

examined considering representativity of the proteins attached to each GO category.  In that respect, 417 

the example of platelet degranulation deserves special attention since it is associated with 30 418 

proteins in our dataset (out of 129 in the human genome). Increased platelet degranulation is 419 

observed in T2DM patients compared to healthy subjects [49,50] and a mechanistic study concluded 420 

that high glucose per se increased platelet reactivity in blood of both diabetics and controls [51]. In 421 

our study, combining both cohorts, the saliva proteome composition also suggested that high intake 422 

of sweet snacks was linked with enhanced platelet reactivity both in diabetics or controls. This was 423 

confirmed in the Spanish cohort and among diabetic subjects in the French cohort. 424 

We also looked for markers of diet and adjusted the models for confounding factors (diabetic status, 425 

cohort, age, sex etc.). Combining both cohorts, salivary proteins were retained in the model for three 426 

food groups. For « vegetables » and « butter », one should note that the proportions of high 427 

consumers are much higher in the 3C-Bordeaux cohort. Results should therefore be taken cautiously 428 

because there is a risk that results are partly confounded with a cohort effect. In addition, the 429 

analyses performed for each cohort separately highlighted the differences between the two cohorts 430 

and illustrated the difficulty of identifying universal markers. Nevertheless, whatever the subjects’ 431 

characteristics in terms of cohort, age, sex, diabetic status, smoker status, BMI or saliva flow, higher 432 
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abundance of lactotransferrin (E7EQB2) and beta-2-glycoprotein 1 (P02749) in saliva was associated 433 

with a higher chance of being a high consumer of sweet snacks. Interestingly, we had previously 434 

observed in healthy children that another protein of the transferrin family (serotransferrin) was 435 

positively associated with a number of food groups including biscuits & sweets [19]. There is also 436 

some biological coherence among some of the identified markers. For example, the two positive 437 

markers of vegetables intake (lactoperoxidase, sulhydryl oxidase 1) catalyze reactions involving H2O2 438 

and contribute to cellular redox homeostasis. However, the main general lesson from those results is 439 

that the abundance of some salivary proteins was linked to the consumption level of some food 440 

groups in elderly subjects after adjusting for several sociodemographic and clinical confounding 441 

factors. In addition, since including salivary proteins data improved the prediction models, this is the 442 

proof-of-concept that saliva might be a source of objective markers of usual diet. 443 

To conclude, it should be reminded that the studied population originated from two very contrasted 444 

cohorts, especially in terms of age and dietary habits. This represented a challenge, particularly for 445 

statistical methods which can not fully account for confounding factors. Dietary intake was also here 446 

simply evaluated as compliance or not to the requirements of MeDi diet. However, the salivary 447 

proteome data suggested biological functions affected by the dietary intake level of sweet snacks, 448 

across cohorts and diabetic status (e.g. platelet degranulation) or across cohorts and specific to one 449 

diabetic status (e.g. functions linked to cell spreading and cell motility).  Proteome data also added 450 

value to minimal models predicting the intake level of some food groups. It is now necessary to 451 

confirm these results on a validation population, but also to assess more finely the link between the 452 

potential markers’ expression and the actual quantitative intakes.  453 
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Table 1. Main characteristics of the 211 participants whose saliva was analyzed in the study 

 

 Seniors-ENRICA-2 3C-Bordeaux 
 diabetics 

(n=52) 
controls 
(n=53) 

diabetics 
(n=37) 

controls 
(n=69) 

 
Age (years, mean ± SD) 

 
70.6 ± 4.3 

 
71.4 ± 3.7 

 
87.4 ± 4.1 

 
87.3 ± 2.9 

Sex (% men) 69 58 48 33 
BMI (mean ± SD) 30.0 ± 5.0 26.6 ± 3.9 29.0 ± 3.9 24.4 ± 4.0 
Smoker (never/former/current) a 9/37/6 15/33/5 17/7/5 33/20/5 
Saliva flow (g/min, mean ± SD) 0.26 ± 0.17 0.23 ± 0.16 0.18 ± 0.13 0.20 ± 0.18 
     

 

a 19 missing values (3C-Bordeaux)  
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Table 2. Modified MEDAS score (0 to 13 points) and percentage of low and high consumers of 11 

food groups among the 211 older adults, altogether or when individuals are stratified by diabetic 

status or cohort. The cut-off points to define low and high intake are provided in Online Resource 1. 

Cells shaded in gray highlight the food groups for which there is a large (>10%) difference between 

the two sub-samples.  

 

  All subjects Diabetic status Cohort 

   
(n=211) 

Diabetics 
(n= 89) 

Controls 
(n=122) 

Seniors-ENRICA-2 
(n=105) 

3C-Bordeaux 
(n=106) 

 
13-point MEDAS score 

 
6.24 ± 1.57 

 
6.13 ± 1.52 

 
6.32 ± 1.61 

 
6.47 ± 1.39 

 
6.02 ± 1.70 

 
Vegetables 

      

 Low 56.4 60.7 53.3 96.2 17.0 

 High 43.6 39.3 46.7 3.8 83.0 

Fruits       

 Low 54.0 58.4 50.8 53.3 54.7 

 High 46.0 41.6 49.2 46.7 45.3 

Olive oil       

 Low 88.2 85.4 90.2 80.0 96.2 

 High 11.8 14.6 9.8 20.0 3.8 

Legumes       

 Low 91.0 88.8 92.6 88.6 93.4 

 High 9.0 11.2 7.4 11.4 6.6 

Nuts       

 Low 82.9 91.0 77.0 89.5 76.4 

 High 17.1 9.0 23.0 10.5 23.6 

Wine       

 Low 65.4 69.7 62.3 82.9 48.1 

 High 34.6 30.3 37.7 17.1 51.9 

Fish       

 Low 68.2 70.8 66.4 64.8 71.7 

 High 31.8 29.2 33.6 35.2 28.3 

Red meat       

 Low 92.4 91.0 93.4 90.5 94.3 

 High 7.6 9.0 6.6 9.5 5.7 

Butter       

 Low 61.6 66.3 58.2 89.5 34.0 

 High 38.4 33.7 41.8 10.5 66.0 

Sweet snacks      

 Low 63.5 70.8 58.2 63.8 63.2 

 High 36.5 29.2 41.8 36.2 36.8 

Sweet drinks      

 Low 91.5 86.5 95.1 88.6 94.3 

 High 8.5 13.5 4.9 11.4 5.7 
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Table 3. Number of proteins significantly differently expressed (FDR<5%) in saliva of low vs high consumers of 11 food groups, altogether or when 

individuals are stratified by diabetic status or by cohort. The cut-off points to define low and high intake are provided in Online Resource 1. 

 

 Vegetables Fruits Olive oil Legumes Nuts Wine Fish Red meat Butter Sweet 
snacks 

Sweet 
drinks 

 

 
All participants (n=211) 

 
22 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
3 

 
8 

 
0 

Diabetics (n=89) 4 0 0 0 0 0 0 0 0 65 0 
Controls (n=122) 
Seniors-ENRICA-2 (n=105) 
3C Bordeaux (n=106) 

20 
0 
0 

0 
63 
0 

0 
0 
2 

2 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

58 
0 
0 

5 
0 
0 
 

0 
14 
0 

0 
0 
0 
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Table 4. Variables retained in minimal models of prediction of intake of 11 food groups (two cohorts 

combined). Quantitative variables are separated into positive (chance of being a high consumer 

increases with value) or negative (chance of being a high consumer decreases with value) predictors. For 

categorial variables, the category associated with high intake is reported. Proteins are identified by their 

UniProt entry reference.  

 

Food groups Quantitative variables Categorial variables 

 positive negative  

 

Vegetables 

 

P22079, O00391 

 

P10909, P37802, Q8TAX7 

 

French cohort 

Fruits    

Olive oil BMI  Spanish cohort 

Legumes   
Former or current 

smokers 

Nuts   Non-diabetics 

Wine   French cohort, Men 

Fish   Saliva flow  

Red meat   Men 

Butter Q96DR5, P22079 P23280, P07476  French cohort 

Sweet snacks E7EQB2, P02749  Non-diabetics, Men 

Sweet drinks  Age 
Former or current 

smokers 
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Table 5. Variables retained in minimal models of prediction of intake of 11 food groups (for each cohort 

separately). Quantitative variables are separated into positive (chance of being a high consumer 

increases with value) or negative (chance of being a high consumer decreases with value) predictors. For 

categorial variables, the category associated with high intake is reported. Proteins are identified by their 

UniProt entry reference.  

 

Food groups Quantitative variables Categorial variables 

 positive negative  

Seniors-ENRICA-2  

Vegetables 

 

BMI 

 

Age 

 

Women 

Fruits Q86YZ3, P0DMV8 P06753, P01024  

Olive oil BMI   

Legumes   Women 

Nuts   Non-diabetics 

Wine   Men 

Fish     

Red meat  Q96DR5, Q8TDL5, P01024, Age Men 

Butter    

Sweet snacks 
P61158, P07195, P02763, 

P61769, saliva flow 
P06744 Non-diabetics 

Sweet drinks  Age  

    
3C-Bordeaux  

Vegetables 

 

Age 
  

Fruits  Age, saliva flow  

Olive oil   Non-diabetics 

Legumes   Men 

Nuts  Saliva flow  

Wine   Men 

Fish   Saliva flow  

Red meat   Diabetics 

Butter    

Sweet snacks BMI  Non-diabetics, Men 

Sweet drinks    
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Figure Captions 

 

Fig. 1 Biological processes (Gene Ontology terms) associated with saliva proteins in high consumers of 

sweet snacks. Gene Set Enrichment Analysis was conducted separately for diabetic participants or 

controls. A « positive » or « negative » effect refers to the situation where proteins attached to the GO 

term are over-expressed and under-expressed, respectively, in high consumers of sweet snacks. The size 

of the dots indicates the number of proteins attached to each GO term in the experimental dataset, and 

the colour of the dots translates the gene ratio, i.e. the number of proteins attached to each GO term in 

the experimental dataset divided by the total number of proteins linked to that GO category in the 

human genome. In addition, four biological processes are common to all high consumers of sweet 

snacks, regardless of their diabetic status : regulation of cellular macromolecule biosynthetic process 

(negative effect), platelet degranulation, leukocyte migration involved in inflammatory response and 

regulation of immune system (positive effect).  

 

Fig. 2 Estimation of the performance of minimal models predicting the consumption level of vegetables, 

butter and sweet snacks : distribution of AUCs (Area under the Curve) of the ROC (receiver operating 

characteristic) curves for 10000 simulations. For each food group, results are presented for three 

models: minimal model selected as described in the Material & Methods section (upper panel), minimal 

model with systematic inclusion of age, sex, cohort, diabetic status (middle panel), minimal model 

without protein variables (lower panel). 

 

 


