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Abstract: The Global Ecosystem Dynamics Investigation LiDAR (GEDI) is a new full waveform 
(FW) based LiDAR system that presents a new opportunity for the observation of forest structures 
globally. The backscattered GEDI signals, as all FW systems, are distorted by topographic condi-
tions within their footprint, leading to uncertainties on the measured forest variables. In this study, 
we explore how well several approaches based on waveform metrics and ancillary digital elevation 
model (DEM) data perform on the estimation of stand dominant heights (𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑) and wood volume 
(V) across different sites of Eucalyptus plantations with varying terrain slopes. In total, five models 
were assessed on their ability to estimate 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and four models for V. Results showed that the mod-
els using the GEDI metrics, such as the height at different energy quantiles with terrain data from 
the shuttle radar topography mission’s (SRTM) digital elevation model (DEM) were still dependent 
on the topographic slope. For 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑, an RMSE increase of 14% was observed for data acquired over 
slopes higher than 20% in comparison to slopes between 10 and 20%. For V, a 74% increase in RMSE 
was reported between GEDI data acquired over slopes between 0–10% and those acquired over 
slopes higher than 10%. Next, a model relying on the height at different energy quantiles of the 
entire waveform (𝐻𝐻𝑇𝑇𝑛𝑛) and the height at different energy quartiles of the bare ground waveform 
(𝐻𝐻𝐺𝐺𝑛𝑛) was assessed. Two sets of the 𝐻𝐻𝐺𝐺𝑛𝑛 metrics were generated, the first one was obtained using a 
simulated waveform representing the echo from a bare ground, while the second one relied on the 
actual ground return from the waveform by means of Gaussian fitting. Results showed that both 
the simulated and fitted models provide the most accurate estimates of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and V for all slope 
ranges. The simulation-based model showed an RMSE that ranged between 1.39 and 1.66 m (be-
tween 26.76 and 39.26 m3·ha−1 for V) while the fitting-based method showed an RMSE that ranged 
between 1.26 and 1.34 m (between 26.78 and 36.29 m3·ha−1 for V). Moreover, the dependency of the 
GEDI metrics on slopes was greatly reduced using the two sets of metrics. As a conclusion, the effect 
of slopes on the 25-m GEDI footprints is rather low as the estimation on canopy heights from un-
corrected waveforms degraded by a maximum of 1 m for slopes between 20 and 45%. Concerning 
the wood volume estimation, the effect of slopes was more pronounced, and a degradation on the 
accuracy (increased RMSE) of a maximum of 20 m3·ha−1 was observed for slopes between 20 and 
45%. 
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1. Introduction 
In the last couple of decades, due to its accurate Earth observation capabilities, re-

mote sensing has increasingly been used for the estimation, on local and global scales, of 
forest biophysical characteristics, namely forest heights and above ground biomass 
(AGB). The estimation of forest characteristics is not restricted to a particular remote sens-
ing technique, as it has been obtained using either passive optical sensing such as from 
optical imagery, or using active sensors such as synthetic aperture radar (SAR) or light 
detection and ranging (LiDAR) data. Nonetheless, LiDAR has proven to be better suited 
for the estimation of AGB and canopy heights than SAR (with available wavelengths to 
date: L, C and X bands), Global Navigation Satellite System Reflectometry [1], and optical 
imagery [2,3]. LiDAR data show lower signal saturation with AGB than optical and radar 
data. In general, the literature reports saturation thresholds with optical and radar image-
ries (with X, C and L-bands for SAR data) rarely exceeding 150 Mg/ha [4,5] whereas Li-
DAR data have shown AGB estimation capabilities up to 1200 t/ha [6]. Yet, the AGB esti-
mation levels from LiDAR data are based on canopy vertical structure metrics, and the 
relationship between height structure and ABG itself may saturate at high AGB, thus 
sometimes a start of under-estimation of AGB using LiDAR data is observed [7].  

LiDAR systems capture vertical structures by measuring the time taken for an emit-
ted laser pulse to return. Over vegetated areas, the emitted pulse will start reflecting as 
soon as it hits the top of canopy (given a large enough top of canopy surface), and the final 
return will theoretically be from the ground (if the laser pulse can penetrate through the 
gaps [8]). The representation of such vertical structures depends on the LiDAR system 
used. Discrete LiDAR systems usually have small footprints (<1 m) and record multiple 
returns representing different targets within the travel path. The returned laser echoes are 
next recorded as a series of 3D coordinates known as point clouds. On the other hand, full 
waveform (FW) LiDAR systems record all the reflected signals over a given footprint, and 
not only the first one. They therefore provide a continuous vertical profile representing 
the heights of the different objects within their footprints, which is usually larger than 10 
m. Therefore, FW LiDAR systems provide much richer information about the spatial ar-
rangement of structures within their waveforms [9]. The recorded vertical echoes of ob-
jects within the waveform are represented as a series of multiple connected temporal 
peaks. These peaks might therefore represent reflections from a single object (e.g., top of 
canopy cover) or different objects with relatively the same heights (e.g., short understory 
and the ground) [10]. To measure vegetation characteristics, the vegetation and ground 
portion of the waveform need to be identified and separated. As such, given the wide 
footprint of FW LiDAR systems, a source of uncertainty on the estimation of forest char-
acteristics such as canopy heights and biomass could occur based on the local terrain mor-
phology. For instance over terrain with a high relief, the ground return might get mixed 
with the vegetation leading to an overestimation of the relevant vegetation characteristics 
[11]. 

Over the last years, many studies were carried out on FW data acquired by the Geo-
science Laser Altimeter System (GLAS) on board the Ice, Cloud, and land Elevation satel-
lite (ICESat) for the estimation of forest characteristics. ICESat/GLAS was the first space-
borne FW LiDAR system, and operated from 2003 until 2009 [12]. ICESat/GLAS pulsed 
one of its three 1064 nm lasers at a time, at 40 Hz, producing ellipsoidal shaped footprints 
with a diameter of ~60 m at ~170 m along-track intervals, and several kilometers across 
tracks. ICESat/GLAS was used during its operational and post-operational period in many 
studies for the precise estimation of forest characteristics such as canopy height and bio-
mass [11,13–19]. However, most of the previously mentioned studies focused on forests 
with relatively flat terrain since ICESat/GLAS with its large footprint size was susceptible 
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to overestimating forest characteristics (e.g., canopy heights, and AGB) over terrains with 
high relief [20,21]. Nonetheless, a number of studies have been carried out to address this 
particular issue, and presented several methods to minimize the effects of slope on the 
waveforms. These studies can be grouped into three categories. The first group of studies 
attempted to retrieve slope information from the waveforms in the form of waveform 
metrics, such as the trailing edge extent (representing terrain variability) and the leading 
edge extent (representing vegetation variability) [11,13,20,22] and terrain indices (range 
of ground surface elevations within a sampling window) retrieved from a digital elevation 
model (DEM). This technique provided increased accuracies on the estimation of forest 
heights over sloping terrain [11], but the squared correlation coefficient (R2) decreased 
with increased slope values, and was only viable for slopes lower than 15° (R2 = 0.63) [23]. 
The second type of studies, such as the study of Yang et al. [24], minimized the effects of 
slope on large footprint LiDAR by modifying the geometric optical and radiative transfer 
(GORT) vegetation LiDAR model [25] to take into account the impacts of surface topog-
raphy. Their approach showed that slope-corrected ICESat/GLAS footprints had an accu-
racy on the estimation of canopy heights of 2.2 m (R2 of 0.77). More recently, Wang et al. 
[26] developed a method based on new waveform metrics to minimize the effects of slopes 
on the estimation of forest AGB. The developed method relies on quantile heights (the 
height above ground at which n% of the waveform energy falls below) [27], and quantile 
heights of the ground return only. The method developed by Wang et al. [26] can be de-
composed into three major steps. (1) A LiDAR waveform over bare grounds but with sim-
ilar slope as the studied waveform is first simulated in order to derive a ground return. 
This was necessary in the study of Wang et al. [26] as they worked on ICESat/GLAS wave-
forms with a ~70 m diameter footprints alongside simulated waveforms with 25 m diam-
eter footprints. For ICESat/GLAS, the ground return disappeared with slopes bigger than 
15° [28] (i.e., returns from ground and vegetation become mixed up over sloping terrain). 
Next, the simulated waveform is aligned with the studied waveform at the signal end, 
and finally the related metrics were derived. The methodology developed by Wang et al. 
[26] gave significant increase in accuracy in comparison to previous methodologies. In-
deed, for the estimation of above ground biomass, a decrease of 20.83 Mg/ha in terms of 
RMSE (32% increase in R2) was observed for slope ranges of 0–40°. 

ICESat/GLAS was succeeded in 2018 by ICESat-2 that carried the Advanced Topo-
graphic Laser Altimeter System (ATLAS) with a goal to measure ice-sheet topography, 
cloud and atmospheric properties, and global vegetation. In contrast to ICESat/GLAS, AT-
LAS is equipped with a single 532 nm wavelength laser that emits six beams (arranged 
into three pairs). Beam pairs are separated by ~3 km across-track with a pair spacing of 90 
m. The nominal footprint of ATLAS is 17 m with a spacing interval of 0.7 m along-track. 
Moreover, unlike ICESat/GLAS, ATLAS uses a photon counting system rather than a full 
waveform system, and has the ability to detect single echoed photons. However, given 
the wavelength of the equipped laser (532 nm), ATLAS has lower reflectance over vege-
tation in comparison to ice [29], coupled with the low number of reflected photons, ICE-
Sat-2 might be limited over tropical forests for direct canopy height retrievals due to the 
canopy cover [29]. 

Recently, the Global Ecosystem Dynamics Investigation (GEDI) on board the Inter-
national Space Station (ISS) started collecting LiDAR data globally since April 2019. 
GEDI’s mission is to provide information about canopy structure, biomass and topogra-
phy, and is estimated to acquire 10 billion cloud free shots in its two years mission [30]. 
GEDI shows many similarities to ICESat/GLAS, however, given GEDI’s higher sampling 
rate (242 vs. 40 Hz for ICESat-1), and its much smaller footprint size (~25 vs. ~60 m for 
ICESat-1), GEDI will provide a highly improved coverage, and improved measurements 
over forested areas with high relief in comparison to ICESat/GLAS. Nonetheless, given 
that GEDI is a FW LiDAR system, it is expected to also be affected by relief. However, 
since GEDI has a much smaller footprint than ICESat/GLAS while getting equivalent ver-
tical resolution (1 ns), the effect of slopes on the waveform should be less pronounced. 
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As far as we know, no studies have yet been dedicated to analyze the effects of slopes 
on GEDI data. Therefore, the objective of this study is two-fold. First, the effects of the 
terrain slope on the estimation of both canopy heights and wood volume of fast-growing 
Eucalyptus plantations in Brazil will be analyzed. Next, slope-effect minimization tech-
niques from previous literature will be used in order to determine which methodology 
yields the best forest characteristics estimates over sloping terrain. The choice of the in 
situ dataset was decided since the physical structure of Eucalyptus is simple enough, and 
very homogeneous within the GEDI footprint, thus reducing uncertainties unrelated to 
the GEDI sensor itself. 

The rest of this paper is organized as follows: Section 2 describes the study area and 
lists the data used. Section 3 presents a thorough description of the methods for the esti-
mation of canopy heights and wood volume over sloping terrain. Sections 4 and 5 present 
the results and the discussion, respectively. Finally, in Section 6, we summarize and con-
clude our study. 

2. Study Area and Dataset 
2.1. Study Area 

The study area is located in Brazil, in five regions across a large latitudinal gradient 
(Figure 1), covering different climate and soil types. Maranhão (MA) is located in a typical 
equatorial region with different intensities of monsoon rainfall (1200 to 2500 mm/year. 
Bahia (BA) and Espírito Santo (ES) are located in a tropical coastal region with strong 
rainfall anisotropy (800 to 1500 mm/year) that directly affects wood productivity from the 
nearshore towards the hinterland. Mato Grosso do Sul (MS) is located in a tropical region 
(1200 to 1500 mm/year) but with some subtropical features (rare frost), it is the most envi-
ronmentally homogeneous among the five study areas, resulting in less variation in wood 
productivity within the region. São Paulo (SP) is mainly in a subtropical region (1100 to 
2000 mm/year with orographic effects), heavy frost-days are frequent in the southern part, 
has complex relief and a wide range of deep and shallow tropical soils, resulting in a huge 
variability in wood productivity across the region. Across the five regions, clonal seed-
lings of mainly E. grandis (W. Hill) and E. urophylla (S.T. Blake) and different types of hy-
brids are planted in rows at a density of 1000–1667 trees/ha. The wood productivity of the 
plantations was on average 40 m3/ha/year, with 80% of the stands being between 30–50 
m3/ha/year and some stands could reach values as high as 60 m3/ha/year. At harvest time, 
the dominant height of around 80% of the stands is in the 20–35 m range with a stand 
volume between 180 and 300 m3/ha. The plantations were managed locally by stand units 
(~50 ha), where the same management is applied for each stand: planting, harvesting and 
weed control, genetic material, soil preparation and fertilization. The plantations are gen-
erally characterized by a sparse understory and herbaceous strata. Eucalyptus plantations 
exhibit a simple structure, with a tree crown strata of 3 to 10 m in width above a “trunk 
strata” with few Eucalyptus leaves and few understories. The “soil strata” is mainly con-
stituted of litter accumulation of branches and leaves, with some patches of herbaceous 
species. More than 82% of the Brazilian Eucalyptus plantations are cultivated on flat to 
gentle slopes due to huge harvesting and logging operation costs on high slopes [31]. In 
some areas, such as the states of Minas Gerais, Paraná, Santa Catarina, and São Paulo (Pa-
raíba Valley), high slopes are however the rule.  
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Figure 1. Location of the five study sites; the zoomed-in rectangle shows an example of GEDI 
tracks over some stands. 

2.2. In Situ Data 
A total of 168 Eucalyptus stands were selected with field inventories performed be-

tween 1 April 2019 and 1 June 2019. The stands were selected due to the presence of ac-
quired GEDI shots within this period. Moreover, these stands are generally located on a 
terrain with slopes of varying degrees. Specifically, 86.4% of stands are located over slopes 
lower than 10%, 11.2% of stands are located on sloping terrain with slope ranges between 
10 and 20%, and the remainder of the stands (2.4%) are located on a terrain with slopes 
between 20 and 45%. An additional 50-m internal buffer strip from the stand borders was 
used to account for any footprint geolocation errors and to avoid footprints that match the 
boundary between the stand of interest and the surrounding medium. Permanent inven-
tory plots had an area of approximately 400 m2 and were systematically distributed 
throughout the stand with a density of one plot per 10 ha. They included 30 to 100 trees 
with an average of 58 trees. During a field inventory, the diameter at breast height (DBH, 
1.3 m above the ground) of each tree in the inventory plot, the height of a central subsam-
ple of 10 trees, and the height of the four largest trees in terms of DBH (dominant trees) 
were measured. The mean height of these dominant trees defined the dominant height of 
the plot (𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑). 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑, basal area and age on the inventory date were then used in local 
volume equations to estimate the plot’s total and merchantable volume (the merchantable 
volume is a tree’s volume up to 6 cm stem diameter with bark). Table 1 shows the distri-
bution of field measurements of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and wood volume. 

Table 1. Distribution of dominant canopy height (a) and wood volume densities (b) from field 
inventories over the 168 Eucalyptus stands. 

𝑯𝑯𝒅𝒅𝒅𝒅𝒅𝒅 Classes (m) Stand Distribution (%) V Classes (m3·ha−1) Stand Distribution (%) 
[10–15[ 10 [0–75[ 19 
[15–20[ 32 [75–150[ 33 
[20–25[ 28 [150–255[ 26 
[25–30[ 24 [255–300[ 16 
[30–35] 7 [350–450] 6 

(a) (b) 
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2.3. GEDI Dataset 
GEDI is equipped with three 1064 nm onboard lasers designed to sample the Earth’s 

surface at a ~60 m interval along the track with a cross track separation of ~600 m. One of 
the lasers is split into two beams. These four beams are then dithered across track to pro-
duce eight parallel tracks of observations. The GEDI lasers fire at a frequency of 242 Hz 
and, on the ground, measure 3D structures over a 25-m wide footprint. The received 
waveforms are digitized to a maximum of 1246 bins with a vertical resolution of 1 ns (15 
cm), corresponding to a maximum of 186.9 m of height ranges, with a vertical accuracy 
over relatively flat, non-vegetated surfaces of ~3 cm [30]. 

GEDI data are already processed by the Land Processes Distributed Active Archive 
Center (LP DAAC, https://lpdaac.usgs.gov/tools/data-pool/ (accessed on 27 May 2021)). 
GEDI data are provided through three data products, L1B [32], L2A [33], and L2B [34]. 
The L1B data product, contains among other, the geolocated (longitude, latitude, and ele-
vation) raw transmitted and received waveforms as well as information on mean and 
standard deviation of the noise, and acquisition time. The L2A product contains data of 
elevation and height metrics of the vertical structures within the waveform. These height 
metrics are issued from the processing of the received waveforms from the L1B product. 
Finally, the L2B data product [34] provides footprint-level vegetation metrics, such as can-
opy cover, vertical profile metrics, Leaf Area Index (LAI), and foliage height diversity 
(FHD). 

The extracted metrics from each waveform are the results of several processing steps 
[32,33]. First, the raw received waveforms are smoothed to reduce the noise in the signal, 
and thus permitting the determination of the useful part of the waveform within the cor-
responding footprint [32]. Waveform smoothing is performed by means of a Gaussian 
filter with a current width of 6.5 ns. The smoothing permits the determination of 
searchstart and searchend, which are, respectively, the first and last positions in the signal 
where the signal intensity is above the following threshold [32]: 

𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑟𝑟𝑎𝑎𝑎𝑎 + 𝑟𝑟𝑡𝑡𝑜𝑜. 𝑣𝑣 (1) 

where “mean” is the mean noise level, “std” is the standard deviation of the noise of the 
smoothed waveform, and “v” is a constant currently set at 4. Inside the window delimited 
by searchstart and searchend, the highest (toploc) and lowest (botloc) detectable returns are 
determined (Figure 2) [32]. toploc and botloc respectively represent the highest and lowest 
locations inside the waveform extent where two adjacent intensities are above a threshold. 
The threshold equation used to determine toploc and botloc is the same as Equation (1), 
with “v” an integer fixed at 2, 3, 4 and 6. Two values of “v” are used to determine the toploc 
(“Front_threshold”) and botloc (“Back_threshold”). Finally, the location of the distinctive 
peaks or modes in the waveform, such as the ground peak, or top of canopy peaks are 
determined using a second Gaussian filtering of the waveform section between toploc and 
botloc, and then finding all the zero crossings of the first derivative of the filtered wave-
form (Figure 2) [33]. The width of the second Gaussian filter (“Smoothwidth_zcross”) is 
fixed to either 3.5 or 6.5 ns. Currently, the LP DAAC provides six configurations (a1 to a6) 
for the estimation of the waveform metrics. The difference in these configurations are the 
values used for the thresholds presented earlier. For studies on Eucalyptus plantations, 
Fayad et al. [7] determined that algorithm a1 (Smoothwidth_zcross = 6.5, Front_threshold 
= 3, Back_threshold = 6) provided the best metrics for the estimation of canopy heights 
and wood volume. 

https://lpdaac.usgs.gov/tools/data-pool/


Remote Sens. 2021, 13, 2136 7 of 22 
 

 

 
Figure 2. Example of an acquired GEDI waveform (RW) over an Eucalyptus stand (𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 = 20.4 m; 
V = 129.6 m3·ha−1). The cumulative energy of the waveform (CE) between botloc and toploc and the 
corresponding relative heights (𝑅𝑅𝐻𝐻𝑛𝑛) at different quantiles “n”. The left and right red dashed lines 
represent, respectively, the position of the vegetation (Vloc) and ground peaks (Gloc). Note that 1 
ns corresponds to 15 cm sampling distance in the waveform. The waveform amplitudes are counts 
from the analog to digital converter (ADC) on the instrument and normalized to be between 0 and 
1. 

In this study, variables from both L1B and L2A were extracted. From L1B, we ex-
tracted the raw received waveforms, their geolocation (longitude, and latitude), as well as 
their acquisition date and times. From the L2A data product, we extracted the following 
variables: (1) the position within the waveform of toploc and botloc, and (2) the relative 
height metrics at 10% intervals from botloc (0%) to toploc (100%) (𝑅𝑅𝐻𝐻𝑛𝑛 , 10% ≤ 𝑎𝑎 ≤
100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠 10%). 𝑅𝑅𝐻𝐻𝑛𝑛 represent the height between botloc and the location at n% of cu-
mulative energy (Figure 2) [33]. 

Initially, 2128 GEDI shots acquired over the 168 Eucalyptus stands were selected. 
These GEDI shots corresponded to acquisitions within a window of two months (before 
or after) the stand inventory. The two-month window is necessary to overcome tree 
growth differences that occur between inventory times and acquisition times. In fact, on 
these fast-growing plantations, a 2-month difference could result in an up to 50 cm growth 
in 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and 10 m3·ha−1 in V (depending on the genetic material, pedoclimatic conditions 
and age). However, this reasonable hypothesis allows keeping a large number of stands, 
including a large variability of age and growing conditions. 

Finally, not all GEDI acquisitions are viable, as atmospheric conditions (e.g., clouds) 
can affect them. Therefore, a waveform was not investigated further if it met any of the 
following criteria: 
• Waveforms with reported elevations that are significantly higher than the corre-

sponding elevations in the SRTM DEM [15]. In essence, we removed all waveforms 
where the absolute difference is higher than 100 m;  

• Waveforms with a difference between waveform extent (𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 , height between toploc 
and botloc, [13]) and (Gloc-Vloc) higher than 400 bins (corresponding to 60 m).  
After filtering, 1477 (~69.4%) GEDI shots were retained and used. 

2.4. Digital Elevation Model Metrics 
The Shuttle Radar Topography Mission’s (SRTM) Digital Elevation Model (DEM) with 

a spatial resolution of 30 m was used is this study. Two variables were derived from the 
DEM for each GEDI footprint: slope (S), and surface Roughness (ROUG). The surface rough-
ness map was obtained by computing the standard deviation of the elevation in a 3 × 3 pixel-
moving window. 
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3. Methodology 
3.1. Stand Scale Dominant Heights Estimation 

In this section, we evaluate five models for the estimation of stand-scale dominant 
heights (𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑) from GEDI data acquired over terrain with different slopes. Two models 
are based on GEDI metrics and terrain information from the SRTM DEM and 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 is es-
timated through linear regression, while the remaining three will be exclusively based on 
GEDI metrics where 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 is estimated using random forest regression algorithms. The 
first tested model is based on the formulation by Lefky et al. [13]: 

𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎 ⋅ 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑏𝑏 ⋅ 𝑆𝑆 + 𝑐𝑐 (2) 

where 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒  is the waveform extent (height difference between botloc and toploc) in meters, 
S is the terrain slope in degrees, a is the coefficient applied to the waveform height index, 
b is the coefficient applied to the slope, and c is a constant.  

In the study of Fayad et al. [7], it has been shown that the relative height metric (RH100) 
(Figure 2) is better correlated to in situ 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 than the waveform extent. Therefore, a mod-
ified version of Equation (2) will also be tested. Equation (3) will use the RH100 instead of 
the 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 : 

𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎 ⋅ 𝑅𝑅𝐻𝐻100 − 𝑏𝑏 ⋅ 𝑆𝑆 + 𝑐𝑐 (3) 

We will also attempt to estimate 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 through nonlinear nonparametric regressions 
by means of a Random Forest regressor (RFH). Random Forests are an ensemble of ma-
chine learning algorithms used for classification or regressing by fitting a number of de-
cision trees on various sub-samples of the dataset, and use averaging to improve the pre-
dictive accuracy and control over-fitting [35]. Compared to linear models, RF is advanta-
geous for being able to model also nonlinear relationships (threshold effect) between the 
variable to explain and the explanatory variables. The suggested model will use the rela-
tive height metrics 𝑅𝑅𝐻𝐻𝑛𝑛{10% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} , as well as the terrain roughness 
(ROUG), and terrain slope (S).  

The models integrating terrain information, such as the models provided by Lefsky 
et al. [13], have been proven to increase the accuracy on 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 estimation over sloping ter-
rain [11]. However, the effect of slopes is not completely eliminated. For instance, in the 
study of Xing et al. [23], the accuracy of the method proposed by Lefsky decreased with 
the increasing slope. Indeed, the RMSE increased from of 2.87 m (R2 of 0.89) for slope 
ranges 0–5° to 5.97 m (R2 of 0.08) for slope ranges 0–30°. Therefore, Wang et al. [26] pro-
posed a method relying on new waveform metrics in order to reduce the effects of slopes. 
The method of Wang et al. [26] comprises three steps in order to generate the new wave-
form metrics. First, a waveform over bare grounds with the same slope value as the stud-
ied waveform is simulated. The simulated waveform is based on a Gaussian function, 
resembling the Laser pulse used by FW LiDARs, and thus has the following form (assum-
ing a nadir-viewing angle): 

𝑦𝑦 = 𝐴𝐴 ⋅ 𝑟𝑟𝑒𝑒𝑠𝑠 �
−𝑒𝑒2

2𝜎𝜎2
� (4) 

where σ and A are respectively the standard deviation and amplitude of simulated echoed 
waveform, and x the waveform sample locations at 1 ns (15 cm) intervals. For simplicity, 
the amplitude (A) is set to one. The standard deviation of the waveform, which affects its 
width, is dictated by the characteristics of the LiDAR system used. Over flat bare grounds, 
the standard deviation of the echoed waveform is defined as follows: 

𝜎𝜎 = 𝜎𝜎𝑏𝑏 = �
−(𝑐𝑐 ⋅ 𝑡𝑡)2

2𝑜𝑜𝑎𝑎 (𝑃𝑃𝑇𝑇) (5) 

where c is the speed of light (3 ⋅ 108 m/s), t is the pulse width of the LiDAR system (t = 
15.6 ns for GEDI [30]), and PT = 0.5 (half the amplitude points of the pulse width). 
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Over sloping terrain, the waveform extent will increase with the terrain slope even if 
the canopy is the same, and the echoed waveform will exhibit a broadening of the ground 
return (Figures 3 and 4). Therefore, the standard deviation value to simulate a bare ground 
return (Equation (5)) should be broadened in accordance to the terrain slope. The standard 
deviation on a slope terrain 𝜎𝜎𝑠𝑠 is computed from 𝜎𝜎𝑏𝑏 by adding a broadening effect: 

𝜎𝜎 = 𝜎𝜎𝑠𝑠 = 𝜎𝜎𝑏𝑏 + 𝛽𝛽 ⋅ 𝛾𝛾 ⋅ 𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡 (6) 

where 𝜎𝜎𝑏𝑏 is obtained from Equation (5), β = 0.5 for waveforms simulated over forest stands 
[36], γ is the footprint diameter (γ = 25 m for GEDI), and finally, θ is the terrain slope in 
degrees (°). 

 
Figure 3. Box-whiskers plots of the full width at half maximum (FWHM) of the fitted ground re-
turn across five slope ranges. Numbers in parenthesis represent the number of points in each slope 
class. 

 
Figure 4. GEDI waveforms acquired over two Eucalyptus stands with the same 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 (~16.75 m) 
but different terrain slopes. The dashed lines represent the toploc and botloc positions. The full 
width at half maximum (FWHM) is indicated for the ground peak. Both waveform amplitudes 
were normalized to be between 0 and 1 for comparison purposes. 

After determining the shape of the waveform over a bare ground with known slope 
(Figure 5.a), the simulated ground return is superposed over the studied GEDI waveform 
by the position of the signal end (botloc) of both waveforms (Figure 5.b). For the simulated 
waveform, toploc is determined as the first position where the amplitude of the simulated 
waveform is above zero, while botloc is the last position where the amplitude is above 
zero. 
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Figure 5. (a) Overview of the methodology for the simulation of the ground return as defined by Wang et al. [26] for a 
GEDI footprint acquired at 18.4° terrain slope. (b) The extracted canopy height metrics. CE represents the cumulative 
energy (from botloc to toploc) of the original waveform. GCE represents the cumulative energy of the simulated ground 
waveform. The dashed lines represent the toploc and botloc positions. 

After the superposition of the original waveform and the simulated ground wave-
form, the 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛  metrics (“s” for simulated) can be generated, where 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 = 𝐻𝐻𝑇𝑇𝑛𝑛 −
 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛, and 𝐻𝐻𝑇𝑇𝑛𝑛 is the height between botloc and the position at n% energy of the original 
waveform, and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 is the height between botloc and the position at n% energy of the 
simulated ground waveform (Figure 5.b). 

To estimate the AGB, Wang et al. [26] relied on a linear regression model using 
four 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛  ( 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇25 , 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇50 , 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇75, and 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇100). However, since random forests are 
more accurate than linear regression models for the estimation of forest characteristics 
(e.g., canopy heights, AGB) [7], in this study, 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 will be used in a random 
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forest regression model using nine  𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛  and nine  𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛  values ( 20% ≤ 𝑎𝑎 ≤ 100%,
𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%). 

The method proposed by Wang et al. [26] relies on slope information from the SRTM 
DEM which has a resolution of 30 m while the diameter of GEDI is 25 m. Therefore, in 
order to analyze the pertinence of the Wang method, we propose a methodology that re-
lies on the same 𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 metrics, but instead of simulating a ground return, the 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 metrics 
will be calculated from the ground return of the original waveform (henceforth referred 
to as 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛, “f” for fitted). The original ground return will be fitted by means of an auto-
mated Gaussian decomposition of the original waveform [37]. Figure 6 shows the differ-
ence over the ground return between a simulated ground return, and fitted ground return. 

 
Figure 6. Difference between a simulated ground waveform (dashed blue line) and fitted ground 
waveform (dashed red line) over an Eucalyptus stand, with a terrain slope of 18.36° (33.2%). 

A summary of the models that will be tested for the estimation of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 are presented 
in Table 2. For the random forest-based models, they are built using a set of 500 trees 
(higher tree count slightly increased the model accuracy), with a tree depth equal to the 
square root of the number of available factors. Model performance is assessed using a 5-
fold cross validation, and the Eucalyptus stands used for training or validation were se-
lected randomly regardless of the terrain slope. In addition, we imposed that footprints 
belonging to the same stand were assigned exclusively to one of the data partitions (train 
or test) with the aim to avoid possible non-independence of the data due to spatial prox-
imity in the evaluation procedure. Finally, model performances are evaluated by means 
of the coefficient of determination (R2), the root mean square error (RMSE), the bias (dif-
ference between estimated and in situ variables), and the root mean squared percentage 
error (RMSPE). RMSPE is defined as: 

𝑅𝑅𝑅𝑅𝑆𝑆𝑃𝑃𝑅𝑅 = 100 ⋅ �
1
𝑎𝑎
⋅��

𝑌𝑌𝑒𝑒 − 𝑌𝑌𝑝𝑝
𝑌𝑌𝑒𝑒

�
2𝑛𝑛

𝑖𝑖=1

 (7) 

where 𝑌𝑌𝑒𝑒 is the measured variable and 𝑌𝑌𝑝𝑝 is the predicted variable. 
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Table 2. List of the models used for the estimation of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑. 

ID Metrics Used Model 
MH1 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 , S 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎 ⋅ 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑏𝑏 ⋅ 𝑆𝑆 + 𝑐𝑐 
MH2 𝑅𝑅𝐻𝐻100, S 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑎𝑎 ⋅ 𝑅𝑅𝐻𝐻100 − 𝑏𝑏 ⋅ 𝑆𝑆 + 𝑐𝑐 

RFHRH 
𝑅𝑅𝐻𝐻𝑛𝑛{10% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%}, Slope (S), and ter-
rain roughness (ROUG) 

Random Forests 

sRFHRHT+HG 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} 
𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} Random Forests 

fRFHRHT+HG 𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} 
𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} Random Forests 

3.2. Wood Volume Estimation 
Four models will be tested for the estimation of wood volume. The first model is 

adapted from Saatchi et al. [38] and uses a power law relationship between the volume 
and Lorey’s height. The model will also use the terrain slope (S) in order to compensate 
for the terrain slope effect: 

𝑉𝑉 = 𝑎𝑎𝐻𝐻𝐿𝐿𝑏𝑏 + 𝑐𝑐 ⋅ 𝑆𝑆 + 𝑜𝑜 (8) 

where HL is Lorey’s height and S is the terrain slope. In this study, the relationship defined 
in Equation (8) was used by replacing Lorey’s height with 𝑅𝑅𝐻𝐻100 (representing the domi-
nant height 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑) as both height values were similar (HL was lower than 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 by a max-
imum of 0.9 m at the end of the rotation of the Eucalyptus plantation) [15]. 

The second model that will be tested is based on a random forest regressor using the 
relative height metrics 𝑅𝑅𝐻𝐻𝑛𝑛{10% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%}, as well as the terrain roughness 
(ROUG), and terrain slope (S). 

Finally, the metrics generated by Wang et al. [26] will be used in a random forest 
regressor in order to estimate the wood volume. Two sets of metrics will be used: (1) the 
𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛  and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 as defined by Wang et al. [26], and (2) the 𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛 which rely on 
a Gaussian decomposition. A summary of the tested models for the estimation of wood 
volume is presented in Table 3. 

Table 3. List of the models used for the estimation of wood volume (V). 

ID Metrics Used Model 
MV1 RH100, S 𝑉𝑉 = 𝑎𝑎𝑅𝑅𝐻𝐻100𝑏𝑏 + 𝑐𝑐 ⋅ 𝑆𝑆 + 𝑜𝑜 

RFVRH 
𝑅𝑅𝐻𝐻𝑛𝑛{10% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%}, slope (S), and terrain 
roughness (ROUG) 

Random Forests 

sRFVRHT+HG  𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} 
 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} Random Forests 

fRFVRHT+HG 
 𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} 
 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛{20% ≤ 𝑎𝑎 ≤ 100%, 𝑟𝑟𝑡𝑡𝑟𝑟𝑠𝑠10%} Random Forests 

4. Results 
4.1. Estimation of Dominant Stand Heights (𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑) 

The results presented in Figure 7 and Table 4 show the accuracy of the estimation of 
𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 from the models presented in Table 2 over three slope ranges (0–10%, 10–20%, and 
between 20 and 45%). For slope ranges 0–10%, the accuracy of the estimation of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 us-
ing MH1 was the lowest with an RMSE of 2.06 m (R2 = 0.81). For the remaining models, 
the RMSE of the 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 estimates were similar and ranged between 1.35 m (R2 = 0.93,𝑅𝑅𝑅𝑅𝐻𝐻𝑅𝑅𝑅𝑅) 
and 1.42 m (R2 = 0.93, fRFHRHT+HG). For slope ranges 10–20%, the models did not show any 
decrease in performance due to slope, except for the Wang model (sRFHRHT+HG) which had 
a 30 cm increase in RMSE (Table 4) and a 1% increase in RMSPE. For slopes higher than 
20%, all models except for (fRFHRHT+HG) had a decrease in accuracy with increased slopes. 
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Indeed, for slopes higher than 20%, the RMSE ranged between 1.65 m (R2 of 0.86, RFHRH) 
and 3.26 m (R2 of 0.45, Model 1) (Table 4). Moreover, the bias (estimated 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑-in situ𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑) 
was ~1.2 m using Models MH1 and MH2, and 0.65 m for (RFHRH). The (sRFHRHT+HG) and 
(fRFHRHT+HG) models were the two models that did not show high sensitivity to terrain 
slopes (no bias) even for slopes higher than 20% (Figure 7, Table 4). Nonetheless, the 
model (fRFHRHT+HG) was slightly more accurate for slope ranges higher than 10%, where 
the RMSPE on the estimation of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 remained 6% (RMSE of 1.26 m, R2 of 0.92), with a 
slight bias of 0.11 m. 

 
Figure 7. Comparison of the measured vs. estimated dominant height from the models presented 
in Section 3.1 (Table 2) using GEDI metrics extracted with the processing configuration “a1” of 
GEDI data. 
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Table 4. Model performance for the estimation of Eucalyptus stand dominant height (defined in Section 3.1). Bias = esti-
mated 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑-in situ 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑. 

 
Slope Ranges (%) 

0–10 10–20 >20 

ID 
RMSE 

(m) 
RMSPE 

(%) 
R2 Bias 

(m) 
RMSE 

(m) 
RMSPE 

(%) 
R2 Bias 

(m) 
RMSE 

(m) 
RMSPE 

(%) 
R2 Bias 

(m) 
MH1 2.06 11 0.85 0.07 2.11 11 0.87 −0.16 3.26 16 0.45 1.22 
MH2 1.36 7 0.94 −0.08 1.30 7 0.95 0.15 1.93 9 0.81 1.23 

RFHRH 1.35 7 0.94 −0.04 1.46 7 0.94 0.05 1.65 7 0.86 0.65 
sRFHRHT+HG 1.39 6 0.93 −0.02 1.66 7 0.92 −0.01 1.53 8 0.88 −0.14 
fRFHRHT+HG 1.34 6 0.94 −0.02 1.34 6 0.95 −0.2 1.26 6 0.92 0.11 

An analysis of the slope effects on the accuracy of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑  is presented in Figure 8, 
which shows the variability of the difference between the estimated and in situ 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑. The 
results shown in Figure 8 indicate that the slope effect on 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 estimates using the models 
(MH2) and (RFHRH) were not completely eliminated for slopes higher than 15%. Indeed, 
for both models, the median difference between estimated and in situ 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑  increased 
from −0.08 and −0.06 for, respectively, the models (MH2) and (RFHRH) for slope ranges 
]10–15%] to 1.2 and 0.59 m for slope ranges higher than 20% (between 20 and 45%). In 
contrast, the slope effects on 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑  estimates using the Wang-based methodology 
(sRFHRHT+HG, or fRFHRHT+HG) was greatly reduced, and the median difference between esti-
mated and in situ 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 ranged between −0.096 and 0.0.12 m for (sRFHRHT+HG) and between 
−0.25 and 0.17 m for (fRFHRHT+HG). 

 
Figure 8. Box-whiskers plots of the difference between estimated and in situ 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 using four esti-
mation models across five slope ranges. Numbers in parenthesis represent the number of points in 
each slope class. 
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4.2. Estimation of Wood Volume (V) 
Four models were tested for the estimation of the wood volume (V) in Eucalyptus 

stands. The results presented in Figure 9 and Table 5 show that the models (MV1) and 
(RFVRH) are sensitive to slopes with increasing RMSE on the estimation of V (decrease of 
R2) with increasing slope. For both models, the RMSE increased from about 27.5 m3·ha−1 

(R2 ~0.9) to about 48.7 m3·ha−1 (R2 ~0.75) when the terrain slope increases from [0–10%] to 
slope values higher than 20% (between 20 and 45%). The mean difference between estimated 
V and in situ V (bias, Table 5) also decreased from, respectively, 0.21 m3·ha−1 and −1.60 
m3·ha−1 for MV1 and RFVRH for slopes between 0–10% to, respectively, 13.95 m3·ha−1 and 
11.42 m3·ha−1 for MV1 and RFVRH for slopes higher than 20%. The Wang-based methodology 
(sRFHRHT+HG) did not show an increased overestimation by increased slopes (bias between 
−2.66 and −5.91 m3·ha−1, Table 5). Nonetheless, the (sRFHRHT+HG) model showed lower accu-
racy for slopes higher than 10%. Indeed, for slopes between 0–10%, the RMSE of the esti-
mation of V using the (sRFHRHT+HG) model was 27.57 m3·ha−1 (R2 of 0.91) and decreased to 
53.82 m3·ha−1 (R2 of 0.79) for slopes between 10–20% and 49.12 m3·ha−1 (R2 of 0.74) for slopes 
higher than 20%. Finally, the modified Wang model (fRFHRHT+HG) which relies on 𝐻𝐻𝐺𝐺𝑛𝑛 met-
rics derived from the fitted ground return of the waveforms, similarly to 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 estimates, 
was the most accurate model. Indeed, the results presented in Figure 9 and Table 5 show 
that the estimation of V using the model (fRFHRHT+HG) was the most accurate in comparison 
to the three other models with an RMSE ranging between 26.78 m3·ha−1 (RMSPE of 20%, 
R2 of 0.92) for slopes between 0–10% to 36.29 m3·ha−1 (RMSPE of 20%, R2 of 36.29 m3·ha−1) 
for slopes higher than 20%. Moreover, the mean difference between the estimated V and 
in situ V using the model (fRFHRHT+HG) remained relatively stable with a mean difference 
of 1.32 m3·ha−1 for slopes between 0–10% to −2.65 m3·ha−1 for slopes higher than 20% (Table 
5). 

Table 5. Model performance for the estimation of Eucalyptus wood volume. The models are described in Section 3.2. Bias 
= estimated V-in situ V. 

 
Slope Ranges (%) 

0–10 10–20 >20 

ID 
RMSE 

(m3.ha-1) 
RMSPE 

(%) 
R2 Bias 

(m3.ha-1) 
RMSE 

(m3.ha-1) 
RMSPE 

(%) 
R2 Bias 

(m3.ha-1) 
RMSE 

(m3.ha-1) 
RMSPE 

(%) 
R2 Bias 

(m3.ha-1) 
MV1 28.78 19 0.90 0.21 48.36 22 0.83 9.15 48.63 29 0.75 13.95 

RFVRH 26.55 19 0.91 −1.60 46.25 23 0.85 9.45 48.86 24 0.74 11.42 
sRFVRHT+HG 26.76 20 0.91 −2.57 38.05 22 0.90 −5.16 39.26 22 0.86 −1.49 
fRFVRHT+HG 26.78 20 0.92 1.32 32.68 24 0.92 −2.22 36.29 20 0.86 2.65 
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Figure 9. Comparison of measured vs. estimated wood volume from the models presented in Sec-
tion 3.2 using GEDI metrics extracted using algorithm a1. RMSE is expressed in m3.ha-1. 

The variability of the difference between the estimated and in situ V for the four 
tested models across five slopes ranges is presented in Figure 10. As seen previously, MV1 
and RFVRH both show sensitivity to slopes higher than 10%. This is evident by the in-
creased median difference between the estimated and in situ V. For the model (MV1, Fig-
ure 10), the median difference between the estimated and in situ V increased from −0.23 
m3·ha−1 for slopes between 0–5% to 24.32 m3·ha−1 for slopes higher than 20%. Similarly, for 
the model (RFVRH), the median difference between the estimated and in situ V increased 
from −1.53 m3·ha−1 for slopes between 0–5% to 20.20 m3·ha−1 for slopes higher than 20%. 
The models sRFVRHT+HG and fRFVRHT+HG were both insensitive to slopes with a median dif-
ference between the estimated and in situ V ranging from 0.58 m3·ha−1 (slopes ∊ [0–5]%) 
and 5.42 m3·ha−1 (slopes > 20%) for the model sRFVRHT+HG and from 1.21 m3·ha−1 (slopes ∊ 
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[0–5]%) and 2.16 m3·ha−1 (slopes > 20%) for the model fRFVRHT+HG (Figure 10). Nonetheless, 
the model sRFVRHT+HG showed higher variability on the estimates of V for slopes higher 
than 10% in comparison to the model fRFVRHT+HG (Figure 10). 

 
Figure 10. Box-whiskers plots of the difference between the estimated and in situ 𝑉𝑉 using four 
estimation models across five slope ranges. Numbers in parenthesis represent the number of 
points in each slope class. 

5. Discussion 
The results presented in this study show that the models relying on the SRTM DEM 

generated terrain metrics provide a limited slope-effect correction of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑and wood vol-
ume (V) estimates from GEDI data, especially for high slope values (e.g., higher than 20%). 
Indeed, for MH2 and RFHRH the effect of the slopes was minimal for slope ranges 0–20% 
and increased for slopes higher than 20%, with an increase on the RMSE of 63 cm for 
model 2 and 19 cm for the model RFHRH. Nonetheless, the effect of the terrain slope was 
more pronounced on the estimation of V, and a decrease in accuracy (RMSE) was ob-
served for slopes as low as 10% (e.g., for the RFVRH model, the RMSE decreased from 26.55 
m3·ha−1 for terrain slopes lower than 10% to more than 46 m3·ha−1 for terrain slopes higher 
than 10%). These results indicate that the SRTM DEM with its 30-m resolution is not ade-
quate for the 25-m wide GEDI footprints. Therefore, a finer resolution DEM, for example 
10 m, is required for the 25-m GEDI footprints. However, the results showed that for V, 
the R2 remained high and that the highest volumes were underestimated for high values 
for all slope classes. The difference in RMSE between the slope classes may therefore come 
from the fact that there were proportionally more data with high V for the two slope clas-
ses 10–20% and 20–45% than for the 0–10% class. 

The methodology proposed by Wang using metrics generated from either simulated 
or fitted ground returns provided the best results, as both approaches showed that the 
effects of slopes were minimized for all slope classes available in this study. Indeed, 
among all the generated metrics from GEDI waveforms, the 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛 metrics were 



Remote Sens. 2021, 13, 2136 18 of 22 
 

 

the only metrics that were independent from the slope. Figure 11 shows that the distribu-
tion of errors (GEDI-in situ) of 𝑅𝑅𝐻𝐻100 (Figure 11.a) and 𝑅𝑅𝐻𝐻𝑇𝑇100 (Figure 11.b) was slope de-
pendent, especially for slopes higher than 10% with an intercept of, respectively, ~0.04 and 
~0.07. In contrast, the distribution of errors for 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇100  and 𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇100  (Figures 11.c, and 
11.d) was constant across all slope gradients (intercept ≈ 0.003). Nonetheless, the estima-
tion of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑  and V using 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛  and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛  was slightly less accurate than 𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 
𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛 . The uncertainties on the estimation of both variables using the 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛  and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 
metrics could be attributed to two factors. Firstly, the simulated ground return used to 
calculate the 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛 is dependent on the slope of the studied waveform, which 
is calculated from the SRTM DEM. Given the 30-m resolution of the SRTM DEM, and the 
25-m footprint diameter, terrain information within the footprint could not be accurately 
calculated. This is evident in Figure 12 which compares the full width at half maximum 
(FWHM) of the simulated and fitted ground returns. The results presented in Figure 12 
show that the FWHM of both the simulated and fitted ground returns are highly corre-
lated for slopes lower than 10% but for slopes higher than 10%, the FWHM of the simu-
lated ground returns are lower than the FWHM of the fitted ground returns, leading to 
the uncertainties on the estimation of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and V. Secondly, in the formulation of Wang 
et al. [26], the ground returns were simulated using a symmetrical Gaussian function 
[39,40] assuming a plane slope within the 25-m footprint. Nevertheless, this formulation 
is not always satisfactory as the return echo components recorded by FW LiDAR systems 
are asymmetrical. Thus, the fitting process has lower accuracy when the echoed asymmet-
rical components are fitted using a symmetrical Gaussian function. Moreover, GEDI 
waveforms display a sharp rising part and a slower descending one. As such, a lognormal 
function, which is characterized by a short rise time and a tailing, could be a better fit for 
the simulation of the ground echo than a Gaussian.  

 
Figure 11. Distribution of several GEDI metric height errors by slope gradient. 
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Figure 12. Difference between the mean FWHM of simulated and fitted ground return by slope 
class. The vertical bars represent one standard deviation. 

Finally, while the metrics proposed by Wang et al. [26] seem to greatly minimize the 
effect of slopes over our study area, there are several uncertainties still unaccounted for. 
First, within the Eucalyptus stands, tree heights are very homogeneous (i.e., the tree 
height is evenly distributed within the footprints). However, it was reported by Hyde et 
al. [41] that the uneven distribution of canopy structure could increase the uncertainty on 
the estimation of canopy structure with FW LiDAR as the dominant trees at the edge of 
the LiDAR footprint might not be detectable due to the lower laser energy at the edge of 
the footprint in comparison to its center. Therefore, in a future work, the metrics proposed 
by Wang et al. [26] should be assessed with GEDI acquisitions over natural forests. An-
other source of uncertainty could be present for slopes higher than 20%. In this study, 
there were very few acquisitions with slopes higher than 20%, and while the slope effects 
were greatly reduced for slope ranges 0–20%, it is necessary to analyze the pertinence of 
the Wang et al. [26] methodology for high slopes. 

6. Conclusions 
In this study, several approaches were tested in order to minimize the uncertainties 

due to the presence of slopes on the estimation of forest canopy heights and wood volume 
from GEDI data. The tested approaches can be classified into two groups. The first group 
are methods incorporating traditional GEDI waveform metrics (e.g., 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑅𝑅𝐻𝐻𝑛𝑛) and ancil-
lary SRTM DEM data (e.g., terrain slope S, surface roughness ROUG), while the second 
group is based solely on new GEDI waveform metrics. The results showed that the meth-
ods relying on ancillary SRTM DEM data provided limited correction capabilities for 
slopes higher than 20% and this for both canopy heights and wood volume estimates. 
Indeed, the random forest regression model (RFHRH) using the relative height metrics 
(𝑅𝑅𝐻𝐻𝑛𝑛) as well as the S and ROUG variables extracted from the SRTM DEM presented an 
increase of 14% in terms of RMSE (8% decrease in R2) on the 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 estimates for acquisi-
tions over terrain slopes between 10–20% and slopes higher than 20%. Moreover, the same 
model when used to estimate the wood volume (RFVRH) showed a decrease in accuracy 
(increase in RMSE) for slopes higher than 10%. Indeed, for the model RFVRH an RMSE 
increase on the estimation of the wood volume of 74% was reported between GEDI acqui-
sitions with terrain slopes between 0–10% and GEDI acquisitions with terrain slopes 
higher than 10%. These results indicate that the 30-m resolution SRTM DEM is not suitable 
for the 25-m wide GEDI footprints. 

Next, building on the model of Wang et al. [26], two sets of metrics were generated 
for GEDI waveforms, the first set of metrics (𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛) were generated using a 
simulated ground return that varied based on the slope of the GEDI footprint. The second 
set of metrics (𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛) were generated using a fitted Gaussian from the ground 
return. Estimation approaches of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and V using these sets of metrics and the Random 
Forest technique provided the most accurate estimates of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and V for all terrain slope 
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ranges. The (𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛)-based model showed an RMSE that ranged between 1.39 
and 1.66 m (between 26.76 and 39.26 m3·ha−1 for V) while the (𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛)-based 
method showed an RMSE that ranged between 1.26 and 1.34 m (between 26.78 and 36.29 
m3·ha−1 for V). Moreover, the dependency of the GEDI metrics on slopes (e.g., intercept of 
0.069 for 𝐻𝐻𝑇𝑇100) was greatly reduced for the two set of metrics (e.g., intercept of ≈ 0.003 for 
both 𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇100 and 𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇100). Nonetheless, the model based on the (𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛) per-
formed slightly worse than the (𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛)-based model for the estimation of both 
forest variables. The decrease in accuracy of the (𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛)-based model is due to 
the use of the 30-m SRTM DEM (the only available global DEM) for the 25-m GEDI foot-
prints. On the other hand, the (𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛) metrics rely on the presence of a distinct 
ground return in the received waveform which might not always be detectable over high 
sloping terrain. Therefore, it is recommended that for the estimation of 𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑 and V over 
moderately sloping terrain (i.e., presence of distinct ground peak) the (𝑓𝑓𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑓𝑓𝐻𝐻𝐺𝐺𝑛𝑛) 
metrics should be used, while the (𝑠𝑠𝑅𝑅𝐻𝐻𝑇𝑇𝑛𝑛 and 𝑠𝑠𝐻𝐻𝐺𝐺𝑛𝑛) metrics should be used for high slop-
ing terrain (i.e., undetectable ground return). 

Finally, the effect of slopes on the 25-m GEDI footprints is rather low as the estima-
tion on canopy heights degraded by a maximum of 1 m for slopes between 20 and 45%. 
In regard to the wood volume estimation, the effect of slopes was more pronounced, and 
a degradation on the accuracy (increased RMSE) of a maximum of 20 m3·ha−1 was observed 
for slopes between 20 and 45%. 
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