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Abstract

Pedometrics, the application of mathematical and statistical methods to the study of the distri-
bution and genesis of soils, has broadened its scope over the past two decades. The primary focus
of pedometricians has traditionally been on spatial and spatio-temporal soil inventories with nu-
merical soil classification, geostatistical modelling of spatial variation and mapping. The rapid
development of remote and proximal soil sensing as well as data-driven statistical modelling tech-
niques have had a major impact on pedometrics over the past decades. During this time, a general
demand for quantitative digital soil information for environmental modelling and management
has compelled pedometricians to address other soil-related questions from a quantitative point of
view: soil genesis and utility and quality of soil. While scientific progress is largely an autonomous
process that is difficult to steer, research efforts could benefit from an agenda with pressing pedo-
metric research topics. This paper defines and discusses ten recent or longstanding pedometrics
challenges, with the attempt to identify knowledge gaps and suggest new concepts and methods to
overcome them. The ten challenges were selected through a collaborative effort and may serve as
a guidance for future pedometrics research and to foster collaboration among soil scientists. The
challenges discussed in this paper are also indicators of the current understanding and state of
knowledge from which progress can be measured in the future.

Keywords: Soil science, Pedology, Knowledge gaps, Research questions, Scientific agenda
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• Foster collaboration among soil scientists to solve the challenges.

1. A research agenda for pedometrics

Pedometrics currently finds itself in the same situation as many other scientific disciplines which
are experiencing a fast growth, stimulated by a rapid development in digital data availability and
new tools and techniques in statistics, machine learning and information systems. Although geo-
statistical modelling of soil variation, and later digital soil mapping (DSM) have been the primary
focus of pedometricians for nearly three decades (McBratney et al., 2019b), DSM is one facet of
pedometrics only. Pedometrics also encompasses, among other endeavours the study of sampling
designs and their optimization, the integration of process models with observations, the quantifica-
tion of uncertainty in model output, the use of mathematical methods to elucidate variation of the
soil at multiple scales and new approaches to experimental design, particularly at the landscape
scale. Pedometrics as a knowledge and data provider has a key role to play in participating in a
broader soil science agenda and in solving global environmental issues (Finke, 2012), such as food
security, land degradation and climate change. The rapid growth of pedometrics among pedolog-
ical subdisciplines observed since 20 years (Hartemink et al., 2001) and the diversity of activities
with a pedometrical dimension, both inside and outside the scope of spatio-temporal soil mapping,
calls for a better coordination of the pedometrics research agenda.

In a number of disciplines, researchers have identified a research agenda and work towards its
realization. The twenty-three problems in mathematics formulated by David Hilbert in the early
19th century (Hilbert, 1902) invigorated mathematical research for a century and stimulated the
development of mathematical sub-disciplines. Following this example, researchers have formulated
challenges and important questions facing their own discipline, such as in ecology (e.g. Sutherland
et al., 2013), plant sciences (e.g. Grierson et al., 2011) and geology (e.g. Gudmundsson, 2013).
In each of these cases, identifying important research questions has focused attention, pressing
scientists to find solutions which eventually led to a leap forward in their respective discipline.

In soil science, Adewopo et al. (2014) listed 25 top-ranked priorities related to ecosystem functions,
health and well-being, soil nutrients/microbial interactions, soil formation and degradation, and
soil information systems. A similar exercise was made in soil physics by Jury et al. (2011). In this
paper, eight research areas containing key challenges are identified and linked to potential appli-
cations in agriculture and environment. Pedometrics has also been the subject of self-reflection
studies (e.g. Webster, 1994; Zhu et al., 2012; Rossiter et al., 2018) and identifications of important
research topics for the foreseeable future (e.g. Burrough et al., 1994; Heuvelink & Webster, 2001;
Finke, 2012; McBratney et al., 2019b).

Building on these previous efforts, Murray Lark’s invited talk at the “Pedometrics 2017” confer-
ence presented three important pedometrics questions for the next 25 years. This was followed
by Gerard Heuvelink’s proposal in the Pedometron newsletter (Heuvelink, 2019), of having the
pedometrics community jointly define a list of ten key pedometrics problems. Responses by pe-
dometricians were published in the next Pedometron issue (Bouma et al., 2019a). A community
initiative was then initiated to identify ten key challenges for pedometrics research, with partial
solutions to solve them. Contributing scientists were invited to define the relevance of each chal-
lenge followed by a short review and a proposed agenda. The result of these activities provides an
overview of pedometrics research on a much broader scope than just DSM, and may serve as a list
to be regularly reassessed and from which progress can be measured.

In the following, we address the ten challenges individually, each time explaining why the challenges
matters, providing a review of current status, and defining a research agenda by listing key research
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questions. The challenges are grouped into three main sections: 1. How to better understand soil
formation? 2. How to improve methods to obtain relevant soil data? 3. How to improve our
ability to address demands by soil users? Finally, a conclusion is provided in Section 3.

2. The challenges

2.1. How to better understand soil formation?
Challenge 1: Can we produce quantitative models of the complex short and long-term processes
of soil formation in the landscape which are predictive of the spatio-temporal variation of soil
properties?
Why the challenge matters. Pedologists and field practitioners usually explain the soil spatial
variation with hypotheses on the processes of soil formation. Digital soil mapping, conversely,
make use of quantitative (numerical) techniques to express the soil pattern over an area. The
development of DSM was in part driven by the need for quantitative and spatially exhaustive
information on soil properties and classes. However, soil maps only provide information on the
current state of the soil. How the soil pattern has evolved over time, and how it will change in the
future, cannot be readily understood from the soil map, and interpretation is speculative at best.
To model the soil as the product of multiple and interacting processes, we need quantitative models
of soil formation that can predict the current state of the soil system from time series information
about soil forming factors, and serve as input to model changes in soil under different scenarios of
human intervention, land degradation and climate change.

Review. Many modellers and soil scientists consider the spatial variation of soil properties in the
landscape using empirical, statistical and machine learning models (Scull et al., 2003). These mod-
els are based on the correlation among soil observations and soil forming factors (e.g. climate or
organisms/vegetation). Pedometricians have since long recognized the limitation of this approach:
i) it is of limited use in complex terrain with few observations, and ii) it assumes a steady state
equilibrium of the soil landscape. Ideally, we should use dynamic mechanistic models of the process
of soil formation instead of empirical, statistical approaches to express the soil spatial variation
(Ma et al., 2019b).

Soil scientists have relied on the quantification of the most important pedogenic processes occur-
ring in a landscape for soil mapping. These processes include physical and chemical weathering;
fine clay formation; clay translocation and bioturbation, among others (see also Challenge 6). Var-
ious soil-landscape evolution models that are capable to model long-term soil change based on soil
forming factors (e.g. landform) have already been developed (e.g. Veldkamp et al., 2017). The
LAPSUS model (Schoorl et al., 2000) and LandLab (Hobley et al., 2017; Barnhart et al., 2020)
proved suitable to model rock weathering and the relocation of soil (i.e. erosion and sedimenta-
tion processes). The LORICA model includes empirical equations describing the effect of tillage,
landslides and creep while also modelling soil profile development over time and thus quantifying
soil genesis (Temme & Vanwalleghem, 2016). Other examples of models are DNDC (Giltrap et al.,
2010) for nutrient cycling, DEMENT (Tompkins et al., 1968) for biological activities, and WaSim-
ETH (Schulla & Jasper, 2007) for water cycling, among others (Vereecken et al., 2016).

The soil spatial variation arising from short-term variation in soil processes (e.g. soil carbon change,
aggregation, compaction) due to human intervention, such as leaching, acidification, erosion and
compaction have also been modelled. The use of these models for mapping has been illustrated by
Défossez et al. (2003) and Cerri et al. (2007).
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Proposal and agenda. Few attempts have been made to explain the spatial variation of the soil
with models that account for the co-evolution of a large number of soil processes, interacting at
both short- and long-term time scales. There is a need for quantitative models which are robust
but which encompass sufficient processes to explain the variation of soil in the landscape. There is
a need to collaborate with geomorphologists, soil biologists hydrologists and physicists to develop
quantitative pedological models not only for mapping but also for predicting trends of the spatial
and temporal variation of soil processes and soil properties. We need to answer the following
questions:

• Will we ever be able to obtain accurate information about the past state of all soil forming
factors, and by extension to the future state of these factors?

• Can we make evolutionary models that account for the uncertain information of past soil
forming factors?

• Can we find effective ways in which process understanding can be combined with statis-
tical modelling so that we can use mechanistic knowledge but also handle the inevitable
uncertainty in obtaining paste and future soil conditions?

• Can we make models that account for both short- and long-term soil variation in the land-
scape?

• Should we account for the evolutionary pathways in soil classifications, for example, to clas-
sify soils based on either origin (genetic) or only on overall similarity regardless of their
evolutionary relation (phenetic), as is often done in practice?

Challenge 2: Can we develop a quantitative and numerical global soil classification that unifies the
existing systems and enables transfer between them?
Why the challenge matters. Soil classifications have been derived for more than a century to
create conceptual models of complex soil processes based on observations. Numerous regional
soil classification systems have been developed, each fulfilling a specific function and adapted to
the regional soil characteristics. With the current growing demand for global soil information,
soil scientists are confronted with the difficulty to successfully convey a unified message between
the many disjoint soil classification systems. This is largely due to a lack of communication,
synchronization, and transfer between regional soil classification systems around the world. Current
regional soil classifications are too narrowed to be used at a global level and are not accepted by all
countries or organizations. Global soil classification systems exist, but are deficient for many areas
of the world and for local use. An effective communication of soil information requires a unified
global soil classification that provides an objective (unbiased) basis to regional soil classifications
and enables synchronization between soil taxonomic systems around the world.

Review. Taxonomic systems have traditionally been driven by national soil surveys, resulting in a
myriad of independent classification schemes. In France, for example, soil classes are defined from
morpho-genetic soil characteristics (Baize & Girard, 2009) while in the United States (USDA-
SCS, 1986) soil classification focuses on quantifiable and observable soil properties and processes.
Examples of country-specific and local soil classifications schemes are found in Australia (Isbell,
2016), Brazil (dos Santos et al., 2018), New-Zealand (Hewitt, 2010), China (Xi, 1998), Zimbabwe
(Nyamapfene, 1991), and Germany (Mückenhausen & Vogel, 1962).

The World Reference Base (WRB, IUSS Working Group, 2015) and USDA Soil Taxonomy (ST,
Soil Science Division Staff, 2017) are considered international soil classifications. Despite their
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similarities, a direct linkage between the two systems is complex. The WRB was sought to har-
monize ongoing soil classifications, by collective agreement on key grouping. These grouping are
quantitatively defined, from properties and morphological characteristics measurable in the field
as an expression of pedogenesis. The system contains two hierarchical levels (reference soil groups
and uniquely defined qualifiers for specific soil characteristics) and does not consider climate or
pedogenesis as differentiating criteria in the classification. The USDA Soil Taxonomy contains six
levels (order, sub-order, great group, sub-group and family) and uses soil properties and climate
in classifying soils as expressions of pedogenesis.

Research has shown that despite the interest to use both classifications as an international stan-
dard, problems remain with various examples in the literature describing their shortcomings in
local applications, for example in Australia (Morand, 2013) and Benin (Diekkrüger et al., 2015).
Attempts have been made to harmonize soil classification systems (e.g. Michéli et al., 2016), for ex-
ample through communication between systems (Simonson, 1959; Bockheim & Gennadiyev, 2000)
and standardization using taxonomic distance (Verheyen et al., 2001; Carré & Jacobson, 2009).
Numerical methods allow for the quantification of the similarities between soil profile descriptions
at different levels of taxonomy using membership functions (e.g. McBratney & De Gruijter, 1992),
soil profile descriptions (e.g. Hughes et al., 2017a,b, 2018a,b) and between genetic horizons using
probabilistic functions (e.g. Beaudette et al., 2016). Soil classifications have been evaluated in
the multivariate space of the soil data, by using data dimensionality reduction and by calculating
centroids for recognizing classes in any system (e.g. Hughes et al., 2017b, 2018a).

Proposal and agenda. Pedometricians are familiar with many of the numerical methods for soil
data analysis, such as dimensionality reduction and computation of taxonomic distances. These
numerical methods could serve as a basis for building a system that facilitates translation be-
tween the existing taxonomic systems, and eventually lead to an international unifying global soil
classification by which all existing systems could subscribe. For achieving a global soil classifica-
tion, we propose a step-wise approach that need to be tackled with soil classification experts: i)
evaluate existing soil classification systems to understand and establish taxonomic relationships
of differentiated soil taxa and levels; ii) develop numerical algorithms and allocation procedures
for standardizing, linking harmonizing and transferring similar soil pedons from different classifi-
cation systems; iii) create a global reference taxonomic database populated in taxonomic space;
iv) develop taxonomically significant and harmonized soil property and spectra databases. This
approach needs to address the following specific questions:

• How can a new observation (a set of data on a particular soil profile) be allocated most
efficiently and consistently to a class in the system?

• How to incorporate the time dimension in soil classification?

• How to use modern proximal soil sensing techniques (estimating multiple soil properties) or
image analysis (digital soil morphometrics) in conjunction with the soil classification system
for near real-time soil classification?

• Can we develop pedogenetic models to classify soil profiles and properties at all points in
space-time? This would allow to assess how these classes evolve.

Challenge 3: In what ways can we use data-driven models to learn about pedological processes?
Why the challenge matters. Pedometricians make extensive use of data-driven models, i.e. empir-
ical, statistical and machine learning models, to predict soil classes and properties. These models
are particularly useful for their exploratory and predictive capabilities, and have demonstrated
to be very successful in situations where the soil data and the underlying soil forming processes

5



Ac
ce

pt
ed

are too complex to be modelled mechanistically (Heuvelink & Webster, 2001). In recent years,
popularization of complex statistical and algorithmic tools, which increasingly engage machine
learning, have steered pedometricians towards use of these models almost exclusively for predic-
tion. But pedometricians should not only be concerned with making good predictions (Wadoux
et al., 2020). They should also use models to increase understanding of soil forming processes.
We need techniques for interpretation of complex statistical learning models that can reveal the
system functioning and expose the role and importance of each driver of soil variation for a region,
sub-region, spatial location and depth, as well as in time.

Review. Modelling the soil with the aim to learn about soil processes using empirical, statistical
and machine learning models is not new to soil science. Yaalon (1975), for example, recommended
statistical and stochastic modelling when little is known about the soil system under study. The
functional relationships of a calibrated empirical model can suggest hypotheses or causal mecha-
nisms to the soil scientist. The functional relationships found among variables and their strength is
usually characterized by the variable importance of the environmental predictors, such as through
the standardized regression coefficients of a multiple linear regression, or other variable importance
statistics, such as the mean decrease in impurity (or gini importance) for tree-based models and
Garson’s algorithm for simple artificial neural network models (Olden & Jackson, 2002). Wadoux
& McBratney (2021) contended that the spatial pattern predicted by the data-driven model and
the correlation found among the covariates are an opportunity to formulate hypotheses. In digital
soil mapping our selection of covariates is driven by soil forming factors and when reporting variable
importance we often group them by these factors (e.g. Viscarra Rossel et al., 2015). Pedometricians
have since long complemented variable importance statistics with analysis and interpretation of
the spatial structure of the soil properties or classes, as is done in geostatistics with analysis of the
variogram parameters.

The relative effect of individual or interacting environmental variables can also be quantified by
sensitivity analysis. Sensitivity analysis shows how the model output varies under a change of its
inputs (e.g. Paul et al., 2003; McNicol et al., 2019). Several frameworks for model interpretation are
based on this concept. An alternative is to calibrate a surrogate (simpler) model to approximate
the prediction of a more complex model, as is done in LIME (Ribeiro et al., 2016). All these
techniques also work for machine learning models (e.g. Pham et al., 2019). However, there has
been limited interest to understand how such methods can serve pedological interpretation of
complex statistical models of soil variation. Some recent examples from soil microbiology (e.g.
DiMucci et al., 2018) soil and ecosystem respiration (e.g. Ilie et al., 2017) and pedology (e.g. Vos
et al., 2019) show that this is a challenging but promising line of future research.

Proposal and agenda. Machine learning has so far mainly been used to improve soil predictions,
but we should also explore its potential to assist in learning about soil processes. Pedometricians
have already implemented some of the available methods for interpretation of complex empirical
models, but there is a lack of understanding on how these methods can help us understand and
explain why soil varies the way it does. We need to integrate these methods into a framework
that formalizes pedological interpretation of complex statistical models. Some important research
questions are:

• How can we better interpret the rule sets generated by methods for prediction which do not
use explicit statistical models (e.g. machine learning) to gain insight into soil processes?

• Can we use machine learning models to study and interpret causal factors of soil variation
in time?

• How can sensitivity analysis of complex machine learning models help us understand soil
processes better?
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• Can we delineate carefully the study areas so that they match to well-defined pedological
systems, whose variations and relationship with landscape features are readily interpretable?

• How does the relation between model inputs and outputs of complex statistical models vary
spatially and in time?

2.2. How to improve methods to obtain relevant soil data?

Challenge 4: Can we measure soil properties more efficiently?
Why the challenge matters. Soil scientists have recently witnessed a growing demand for quanti-
tative soil information for feeding agro-environmental models and decision-making tools. Further-
more, the lack of such information is actually the major limiting factor of the production of maps
of soil properties. Current routine laboratory techniques and field observation protocols will not be
able to fulfill this demand because most soil properties are too costly to measure at the appropriate
spatial support (e.g. available water capacity) while others are not easily or readily measurable
(e.g. soil structure), or not measured at the correct support for the intended use (Challenge 5). To
model the soil and derive accurate products that match user’s demand, we need new technologies
and methods that allow us to better measure soil properties at the right support, more efficiently
and more precisely.

Review. Several ways of extending the acquisition of quantitative soil data have been explored in
the past: soil sensing, pedotransfer functions, the translation of qualitative soil information and
citizen science.

Numerous successful attempts have been made of using sensing techniques for estimating ba-
sic physical and chemical soil properties, both at the local level by laboratory techniques (Vis-
carra Rossel & McBratney, 2008), at field level by in situ technologies (Adamchuk et al., 2004;
Kuang et al., 2012) and at larger extent using remote sensing techniques (e.g. Lagacherie & Gomez,
2018). Sensing techniques have also been applied to estimate available water capacity using remote
sensing images and inverse modelling (e.g. Sreelash et al., 2017), geophysical data (e.g. Jiang et al.,
2007) and vegetation indices (e.g. Coulouma et al., 2020). Other soil properties like soil surface
hydraulic conductivity (e.g. Goldshleger et al., 2002) and soil structural stability (e.g. Franz et al.,
2018) have also been considered by combination of sensing techniques.

Pedotransfer functions (Bouma, 1989) have been developed to relate simple soil properties (e.g.
texture) to more complex soil characteristics such as hydraulic conductivity. Pedotransfer func-
tions were later included in a Soil Inference System (SINFERS, McBratney et al., 2002) to populate
digital soil databases. In a SINFERS, the uncertainty of the simple soil properties is propagated
in the estimation of the complex soil characteristics. This requires methods for measurement error
quantification using expert elicitation or quantitative approach (Brown & Heuvelink, 2006).

Research has also attempted to translate traditional qualitative soil information into a quantitative
one (see also Challenge 2). Lagacherie (2005), has translated descriptions of soil profiles and soil
classes that were coded in soil databases into a numerical format using possibility theory (fuzzy
sets). Furey et al. (2019) have translated description of soil profiles in text form into a numerical
format using natural language processing.

Pedometricians have recognized that citizens could assist in producing soil data using a network
of non-specialist volunteers. Rossiter et al. (2015) details some examples for digital soil mapping.
Examples of such initiatives are mySoil for collecting soil data using smartphones, the OPAL Soil
and Earthworm Survey (Bone et al., 2012) and the tea bag index to assess decomposition rate and
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litter stabilisation (Keuskamp et al., 2013).

The development of efficient sampling strategies that may reduce measurement costs independent
of the measurement technique has received much attention from pedometricians, such as for digital
soil mapping using geostatistical (e.g. Brus & Heuvelink, 2007) and machine learning approaches
(e.g. Wadoux et al., 2019; Lagacherie et al., 2020). Sampling for modelling several soil properties
has also been considered (e.g. by Vašát et al., 2010).

Proposal and agenda. While Pedometricians have developed and implemented some techniques for
efficient soil data collection, we need to develop new technologies and develop standardized methods
to collect more soil data, more precisely and more efficiently than with present-day methods and
techniques. Important research questions are:

• Can we design a protocol to make traditional description of soil profile more quantitative
involving faster and cheaper instruments and techniques to measure in-situ soil properties?

• Can we estimate measurement error of various measurement methods, and propagate the
uncertainty to applications and functions.

• Could we consider sensing of classical soil attributes and sensing of soil functions to be
conducted together within a coherent soil sensing inference system that would involve the
synergistic and multi-scale coupling of several sensing techniques?

• To which degree can information from citizen science or farmers be used for applications and
soil monitoring?

• Can we develop new sampling strategies, mapping models and decision making tools that can
synergistically use and consider different sources of soil data (qualitative soil profiles descrip-
tions, soil maps, soil sensing data, citizen data) that have different precision, geographical
supports, resolutions and extents?

Challenge 5: Can we develop workable techniques to derive predictions of soil characteristics at
scales appropriate for modelling and decision making, by up- and downscaling observations in 3D
space and time? These techniques should account for complex non-linearities and interactions, and
quantify the associated prediction uncertainty.
Why the challenge matters. Soil properties and processes vary at spatial scales from the atomic
to the global, and in time. The factors causing variation at one scale may be different from those
at other scales, which has implications for modelling. We often measure soil properties in the field
at much finer support scales than required by users and modellers, while remote sensing may yield
observations of soil properties and environmental soil forming factors at too coarse resolution and
support. To synthesize different sources of information and deliver appropriate soil information to
users, we need up- and downscaling techniques for soil properties and processes that can accomplish
a change of support in all dimensions (2D, vertical, and time).

Review. The concept of scale has multiple meanings in soil science, but here we consider it to be
the triplet of extent, resolution (i.e. grain) and support (Western & Blöschl, 1999; Bierkens et al.,
2000). Of these three the support, i.e. the area, volume or time period over which an observation
or prediction is made, is the most challenging from a pedometrics point of view. The support scale
is important because it determines the character and degree of soil variation (Burrough, 1983)
and consequently influences the assumptions made in mechanistic and statistical modelling of the
soil (Heuvelink, 1998). For instance, variation in soil carbon at the farm-scale is largely driven
by texture and micro-organisms while these factors are less important at continental scale, where
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climate and vegetation are dominant (Wiesmeier et al., 2019).

Geostatistics has since long developed block kriging to aggregate from fine to coarse support (e.g.
Burgess & Webster, 1980b), while spatial disaggregation using area-to-point kriging developed
much later (e.g. Kerry et al., 2012). Techniques to spatially disaggregate polygon soil type maps
were also developed (e.g. Odgers et al., 2014). Non-linear aggregation can be achieved using spa-
tial stochastic simulation (Goovaerts, 1999). Handling vertical change of support may be solved
using equal-area splines (Bishop et al., 1999), although this is not the ultimate solution because it
ignores the uncertainty induced by this process (Orton et al., 2016).

Research has also shown that the optimal support of soil forming factors used in digital soil map-
ping (e.g. elevation data) is often greater than the support of the soil observations and predictions
(e.g. Behrens et al., 2010).

Many modellers and users consider fine-scale soil variation a nuisance and eliminate it using block
kriging or composite sampling. But some modelling studies need information at scales even finer
than a soil sample to do better justice to the underlying mechanistic processes. Examples are water
flow (Šimůnek et al., 2003), nitrification (Boyer et al., 2006) and soil organic matter dynamics (Six
et al., 2004). Such processes are often characterized by partial differential equations that can only
be realistically represented using very fine model scales. As a result, scaling techniques (Pachepsky
& Hill, 2017) are required to apply these models at landscape, regional and continental scales.

Proposal and agenda. Pedometricians have tackled some of the scaling issues in soil science, but
there are many more that await us, some of which are best solved in collaboration with soil
physicists, chemists and biologists:

• Can we improve our understanding on what defines the optimal scale of explanatory envi-
ronmental variables used in soil prediction models?

• How to account for the vertical support in soil modelling and digital soil mapping? We need
solutions that account for the depth and thickness of soil samples and that recognize that
soil vertical variation is often greatest at the boundaries of soil horizons.

• How to deal with temporal scale issues in modelling soil change and space-time soil variation?

• Can we contribute to the development of scaling techniques to support the use of fine-scale
mechanistic models at landscape, regional and continental scales? And can we do so such
that associated uncertainties are quantified?

• Can we develop statistical validation techniques for models that make predictions at a much
larger support than that of the validation measurements?

Challenge 6: Can we incorporate mechanistic pedological knowledge in digital soil mapping?
Why the challenge matters. Most digital soil mapping models are to a high degree empirical, and
this is only increasing, now that we rely heavily on statistical models and machine learning algo-
rithms for mapping. The models generated in this way depend almost exclusively on observations,
and make no or little use of existing pedological knowledge on soil processes. In many situations,
however, mechanistic knowledge on soil processes and the pedologist tacit knowledge of an area
learned through experience is available and should be used. Making use of this knowledge in DSM
has two important advantages: i) interpretation of the DSM model and its outputs increases insight
into dominant soil processes in the area of interest (see also Challenge 3), and ii) it supports extrap-
olation of the model to areas and times with similar soil characteristics and conditions. Existing
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techniques for including pedological knowledge into DSM models are very limited. Pedometricians
need to develop techniques and models that can include existing knowledge from different sources,
including subjective and qualitative soil information.

Review. We usually distinguish between mechanistic and functional (empirical) models to map the
soil (Hoosbeek & Bryant, 1992). Pedometricians have extensively used static, functional models
that make use of empirical relationships between soil characteristics and environmental covariates
(Heuvelink & Webster, 2001; Ma et al., 2019a). These approaches, despite being widely applied
and often providing accurate predictions, do not represent the underlying dynamic processes be-
cause their model structures at best are a poor representation of the true physical, chemical and
biological mechanisms. Mechanistic models for soil mapping, conversely, have a structure based
on mechanisms derived from our knowledge on physical processes and soil chemical and biologi-
cal reactions. Examples of mechanistic models for mapping soil variation in space and time are
soil erosion/deposition models (e.g. Milne, 1936; Minasny & McBratney, 2006; Cohen et al., 2010;
Stumpf et al., 2017), soil-landscape evolution (e.g. Temme & Vanwalleghem, 2016), soil thickness
(e.g. Follain et al., 2006) and soil carbon and nitrogen models (e.g. Wang et al., 2020; Hendriks
et al., in Press), see also Challenge 1. The main problems with these models are that they require
adequate mechanistic understanding of major soil processes, need a lot of input data that are
often not available, have many parameters that are difficult to infer, are computationally challeng-
ing, and typically do not quantify prediction uncertainty. This last problem may be tackled using
state-space modelling and the space-time Kalman filter (e.g. Heuvelink et al., 2006; Lin et al., 2017).

Walter et al. (2006) detailed five ways of incorporating mechanistic knowledge into empirical DSM
models, the most basic of which is using expert knowledge to choose covariates that are proxies
of the soil forming factors in regression, as done for example in Nussbaum et al. (2018). Hybrid
solutions that take incorporation of mechanistic knowledge a step further are structural equation
modelling (SEM, Angelini et al., 2016) and Bayesian belief networks (BNN, Mayr et al., 2010;
Taalab et al., 2015). SEM converts a conceptual soil-landscape model into a statistically explicit
model that does more justice to underlying mechanistic processes than conventional regression
models. Bayesian belief networks formulate expert knowledge into rules that define relations
between soil properties and between the soil and the environment. Other solutions are to include
constraints and correlations in the empirical model structure, for example by constraining the joint
prediction of soil properties to realistic co-occurrences (pH and carbonate content) or to clay, silt
and sand contents summing to 100 percent (e.g. Wadoux, 2019).

Proposal and agenda. While pedometricians have developed some solutions to include mechanistic
knowledge in DSM, this is only the beginning of a new subdomain within pedometrics. We need a
tangible framework that formalizes the integration of mechanistic knowledge in DSM, for different
soil properties and processes, and different existing types of knowledge (e.g. tacit, conceptual).
Some important research questions for future research are:

• Can we use expert elicitation and/or Bayesian statistics to extract pedological knowledge
from soil surveyors such that they provide useful input and/or boundary conditions to DSM?

• Can we extend SEM from static to dynamic model structures, whilst avoiding some of the
five major impediments of mechanistic models?

• Can we help address and solve some of the limitations of mechanistic models by finding a
workable compromise between mechanistic and empirical models?

• Can we steer machine learning DSM models into directions that make sense mechanistically
by incorporating mechanistic knowledge in the loss function that is minimized?

• How to incorporate uncertainty in mechanistic knowledge when using it to support DSM?
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2.3. How to improve our ability to address demands by soil users?

Challenge 7: How to recognize, quantify and map soil functionality?
Why the challenge matters. As soil scientists, pedometricians spend a lot of effort on modelling and
mapping soil types and basic soil properties. However, most end-users perceive soils through how
they behave and what they do for satisfying human needs, which has been expressed in recent years
by various sets of soil functions related to ecosystem services (Dominati et al., 2014). Therefore,
we urgently need to move towards modelling and mapping these soil functions. Beyond fulfilling
a strong end-users demand, this evolution is necessary for enabling soil science to participate in
interdisciplinary studies on the key issues of sustainable development (Bouma, 2014). Furthermore,
this represents an opportunity to feed models and validation datasets with new data such as citizen
observations of soil functions or soil function sensing outputs.

Review. Converting soil maps into mapping products that better match the end-user’s demand
(e.g. land evaluation maps, irrigation requirement maps) has long been practiced by many soil sur-
vey staffs (e.g. FAO, 1977; McKenzie et al., 2008; Soil Science Division Staff, 2017). This tradition
has been prolongated and amplified recently with the need to link soils to ecosystem services (e.g.
Adhikari & Hartemink, 2016). Quantitative soil functions assessments (SFA) have been proposed
by various authors (see a review by Greiner et al., 2017).

One can distinguish two approaches to quantify soil functions. The first uses empirical rules com-
bining basic soil properties while the second uses biophysical model-based approaches that better
account for the dynamics of the soil environment (climate, land use, agricultural practices) but
are by far the most data-demanding and time-consuming. Another important distinction is made
between SFAs that consider the intrinsic potential of soil to fulfill various functions and SFAs that
evaluate its actual state for doing so (Vogel et al., 2019; McBratney et al., 2019a). This clearly
corresponds to different scales (in time and space) that should be considered (see also Challenge 7).

SFA has been often coupled with existing soil databases to produce maps of soil functions. However,
the lack of fine resolution soil data is acknowledged as a severe limiting factor (Greiner et al., 2017).
Although the principle of using digital soil mapping approaches for mapping soil functions has been
proposed and evaluated by previous works (e.g. Carré et al., 2007), few applications (e.g. Kidd
et al., 2012; Greiner et al., 2017, 2018) of this principle have been undertaken. Recent research
(e.g. Styc & Lagacherie, 2019) has investigated the best inference strategy between two choices, i)
assessing the soil function at point support and then mapping (i.e. first calculate then interpolate),
and ii) mapping of soil properties and then inserting the soil property maps into a soil function
(i.e. first interpolate then calculate). The best strategy depends upon the correlation between soil
properties, which can be addressed by moving from univariate to multivariate mapping of basic soil
properties (e.g. Wadoux, 2019). DSM is already able to provide uncertainty assessment that could
be propagated to the soil function maps, which combined with an increase in spatial resolution,
will help in decision making (Challenge 9).

Proposal and agenda. To move toward the operational quantification and mapping of soil functions,
useful for different users and scales, the following questions need to be answered:

• Can we develop new SFA approaches based on bio-physical models that account for spatial
and temporal variation in the soil environment? This requires a critical evaluation of soil
models, organizing such models in user-friendly modelling platforms (e.g. Lafolie et al., 2013)
and developing meta-modeling approaches to simplify the further mapping.

• Can we develop specifications for the production of standardized soil function maps at
field/farm, regional, national and global scales, as was done in the GlobalSoilMap project for
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the production of basic soil property maps? Considering the target scales, these functions
should deal only with intrinsic potentials rather than with actual states.

• Can we develop local SFA approaches that may be co-built with end-users for matching their
own perceptions of soil functions?

• How to build a versatile SFA assessment tool that can be parametrized through an interactive
user-friendly interface? This tool should match the users’ knowledge of the actual state of
the soil functions and of their variation in space in the area under study.

Challenge 8: Can we find ways to connect pedodiversity to soil biodiversity, and translate the
connections to relevant soil services and soil management practices?
Why the challenge matters. Soil macro- and microbial diversity is important for sustainable land
management and flexible response to environmental change. When the diversity is reduced the
soil and the services it provides are less resilient against disturbance and stress. Pedodiversity,
the inventory of the variety of pedological entities such as pedotaxa, pedogenetic horizon and soil
properties, as well as their spatial and temporal patterns influences soil biodiversity and species
richness by providing a heterogeneous habitat and supporting plant, flora and fauna biodiversity.
We need techniques to connect pedodiversity to soil biodiversity for varying spatial scales and
different habitat types and link these to scenarios of soil change (e.g. loss of soil diversity) and
maintenance of soil ecosystem functions.

Review. The concept of diversity contains two components: the richness, i.e. the variety of species
of soil types on a sample and the evenness, i.e. the relative number of each individual soil type
or specie (Huston, 1994; Ibañez et al., 1995). Most measures of diversity incorporate both com-
ponents into a single index, or tend to have more emphasis on one of the two. Pedologists have
measured and quantified pedodiversity with tools similar to those used by biologists and ecologists
to measure biodiversity (Ibanez et al., 2012): species richness indices, indices based on the pro-
portional abundances of species (e.g. the Shannon index) and species abundance models. These
indices have been used to quantify pedodiversity for local (e.g. Petersen et al., 2010) or larger areas
such as continents (e.g. Ibáñez et al., 1998) or the world (e.g. Ibáñez & Feoli, 2013). McBratney
& Minasny (2007) included taxonomic distance in the calculation of diversity indices.

Pedologists have long ago found a positive correlation between pedodiversity and area size (see
also Beckett & Bie, 1978; Guo et al., 2003; Phillips & Marion, 2005), and that some areas are
less diverse than others. For example, at the global scale and based on the major soil groups,
some areas such as South-East Asia, Oceania or Middle-East are less diverse than North America
(McBratney et al., 2000).

Several studies have found that the patterns of soil biodiversity and pedodiversity have strong
similarities. The distribution pattern of soil micro- and macro-organisms is not random (Ranjard
et al., 2013; Karimi et al., 2020), it is a reflection of local and regional environmental heterogeneity
(Pino et al., 2019). Pedodiversity greatly influences soil biodiversity (Ibanez et al., 2012), and can
be used as a surrogate indicator of soil biodiversity.

Research has attempted to link detected communities in the soil and their associated changes to
relevant soil services and soil management practices (e.g. Bardgett, 2005). For example, cover crops
and fertilizer application impact the interaction among the species in microbial communities but
patterns may vary in different soil habitats (O’Brien et al., 2016; Zheng et al., 2018). Also, clear
linkages between soil microbial communities and forest restoration state were found (e.g. by Sun
et al., 2017). Moreover, the soil micro- and macrofauna are important for various soil services and
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are strongly linked to management practices (Hu et al., 1995). For example, earthworm abundance
and species have a large effect on the carbon cycle (Angst et al., 2019). Another example is found
in Van Den Hoogen et al. (2019), where the regional variations of nematodes abundance at the
global scale is shown to provide insights into local patterns of soil fertility and functioning.

Proposal and agenda. We should explore the link between soil biota species richness and edaphic
conditions and identify key soil properties that link them. Pedometricians should also take on the
task of developing quantitative ways to relate keystone species abundance and distribution to major
soil properties and taxa for specific environmental conditions. This can serve as a basis for land
management and ecosystem restoration. Pedometricians should become familiar with quantitative
methods for hyper-variate data of soil biodiversity analysis, similar to how they became familiar
with spectroscopy a decade ago. This approach needs to address the following specific questions:

• Can we develop a common language with ecologists to communicate about diversity?

• How are alpha, beta and gamma soil biodiversity influenced by pedodiversity? Are spatial
patterns of soil entities and micro-organisms similar and driven by the same factors? Is there
a co-evolution of patterns in time?

• What assemblage of soil properties (pedodiversity) drives the alpha diversity of the biota?

• Can pedometrics support the analysis of microbial properties at the microscale in soil by
combining the traditional tools used at the microscale and those used to study the soil
spatial variability?

• Can we use proximal soil sensing for estimating microscale biodiversity at a site? That is,
can we use spectroscopy to estimate a number of soil properties, which are the basis for
estimating soil pedodiversity and biodiversity at a site?

• Can we link pedodiversity and soil biodiversity to soil management?

Challenge 9: Can we find ways to express the uncertainty of predictions of soil properties or class
allocations which are meaningful to the users of those predictions? These should allow both the
quantitative assessment of risk associated with resulting decisions, and an assessment of the value
of further information which might be collected.
Why the challenge matters. Arguably the last measure of uncertainty in soil information developed
and applied by soil scientists, and routinely applied by the end-user of that information, was the
“purity”, of the conventional soil map, the probability that the soil class designated by the map
at a random location in the area mapped would be found there in the field. The application of
geostatistics in soil science was, in part, motivated by the need for robust measures of uncertainty
of quantitative predictions (Webster & Oliver, 2007; Webster, 2015), and the statistical or machine
learning methods now used for this purpose all generate uncertainty measures. However, these are
rarely linked directly to the decision-making process for which soil information is required. That
task is left to the user. This is a failure to communicate the uncertainty effectively. We contend
that pedometricians must engage actively with the decision-making processes of end-users if the
uncertainty in soil information is to be communicated, and this is essential if the information is to
be used.

In general, users of soil information will find it hard to assess the significance of abstract measures of
uncertainty (such as variances). Measures of uncertainty which relate directly to the soil behaviour
under consideration (e.g. a range of possible outcomes from an intervention), are more likely to
be understood. Such approaches are used, for example, in reports from the Intergovernmental
Panel on Climate Change (Mastrandrea & Mach, 2011). Additional challenges may be expected
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when dealing with “wicked” problems that have no single solutions, but, rather, a set of alternative
options from which a choice has to be made.

Review. Soil map purity (above) has been used as an uncertainty measure in studies of survey
methodology (e.g. Burrough et al., 1971) but has also been used to specify standards in contracts
for soil survey and in quality control (Western, 1978). The uncertainty in quantitative prediction
of soil properties can be characterized by the mean (expected) square error of the prediction (e.g.
kriging variance), or other statistics derived from the prediction distribution in a model-based set-
ting, be this frequentist or Bayesian (Diggle & Ribeiro, 2007). Non-linear geostatistical methods
have been applied to map the conditional probability that a soil property falls above or below a
management or regulatory threshold (e.g. Webster, 1991). When predictions are used as input
to process models the error propagates to model outputs (Heuvelink, 2018), which again may be
characterized by a statistical distribution.

Pedometricians have recognized that uncertainty measures can be mapped alongside predictions
(Burgess & Webster, 1980a; Vaysse & Lagacherie, 2017), and that the kriging variance can be com-
puted for prospective survey designs to guide decision making (McBratney et al., 1981). However,
there has been limited attention to whether such outputs serve the needs of end-users. How should
I interpret the uncertainty measure associated with a prediction on which I base a decision? Can
I make the decision robust, or should I postpone it until more data are collected, and how much
effort is it rational to devote to further sampling? Such questions fall under decision theory.

Decision theory has received limited attention from soil scientists. The consequences of alterna-
tive decisions under possible future outcomes can be modelled by a loss function (Ramsey et al.,
2002; Lark & Knights, 2015) in combination with a statistical model of the key input variables to
characterize their uncertainty. This allows the expected costs of those decisions to be compared
(Viscarra Rossel et al., 2001). Decision analysis allows the value of prospective information to be
estimated, including imperfect information. This has been illustrated for conventional soil surveys
(e.g. Giasson et al., 2000). We propose this is an area with much scope for further development.

Proposal and agenda. We propose a research programme focused on the analysis of decisions made
by users of soil information and on how the uncertainties in that information can be assimilated
into these processes. Some specific questions to be addressed are:

• Can we analyse the decision processes of key users of soil information (e.g. in precision
agriculture or land remediation) in sufficient detail to quantify the impacts of uncertainty in
that information?

• How can we analyse decision processes which are more open-ended (e.g. policy decisions
about “wicked” problems, Bouma & McBratney, 2013)?

• How does the value of soil information, and the value of imperfect information, differ with
the support scale, and the extent of the studied region, and how does it relate to the costs
of providing information at these scales and over this extent?

• What are the typical diminishing returns to investment in soil information?

Challenge 10: How to quantify soil contributions to ecosystem services with a framework enabling
both local and regional soil management?
Why the challenge matters. For the world’s growing population to develop sustainably, we must
address six key existential environmental challenges: food, water and energy security, climate
change abatement, biodiversity protection and human health, as defined by the UN Sustainable
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Development Goals. Such challenges relate to contributions by soils to interdisciplinary ecosystem
services (e.g. Veerman et al., 2020). Soils play a pivotal role in each of these but this is not
reflected directly in sustainable management on enterprise level and on development policy. Efforts
to recognize and include the role of soil in the development of policies is diffuse due to the current
lack of targets and indicators that do justice to the essential input that soils can have (Bouma
et al., 2019b). The poverty of current data and modelling render significant uncertainty in the
assessments of threats to soil functioning across the globe (Bonfante et al., 2020). There is lack
of a comprehensive systematic soil monitoring system, and an overall quantitative framework for
assessing soil contributions to ecosystem services.

Review. Soil contributions to ecosystem services may be framed withing the UN Sustainable De-
velopment Goals (SDG). Soils have been recognized to make important contributions to ecosystem
services leading to at least: SDG 2 (food), SDG 6 (water), SDG 13 (climate) and SDG 15 (biodi-
versity) (Bouma, 2020a). Agronomists, hydrologists, climatologists and ecologists have published
widely in the four SDG areas mentioned above, each of which qualifying as focal areas for their
disciplines.

Empirical land evaluation schemes (Rossiter, 1996), developed in the 1970’s (e.g. the FAO frame-
work in 1976), and dynamic simulation models for the soil-water-atmosphere-plant system (Feddes
et al., 1978) are used to quantify soil contributions to ecosystem services (e.g. by Hack-ten Broeke
et al., 2019). Bonfante et al. (2020) have shown that application of soil-water-atmosphere-plant
simulation models can define soil contributions to ecosystem services for Italian conditions as well
as quantitative expressions for soil quality and soil health but more testing is needed in other
areas. The abstract notion of cooperation in interdisciplinary projects has been specified in these
simulation programs by asking which soil data can be provided to adequately represent dynamic
soil behavior in space and time as expressed by modeling, that also requires input by agronomists,
hydrologists, climatologists and ecologists (see also Challenge 7).

The soil security concept (McBratney et al., 2014; Field et al., 2016) has been developed as an
overall framework to explicitly connect soil with the other global existential challenges. It has
five dimensions, i) capability, ii) condition, iii) capital, iv) connectivity and v) codification. When
integrated, these dimensions reveal an overall biophysical, economic and sociological understanding
of soil for use for on-the-ground management and integration into policy and legal frameworks
(Bouma, 2020b).

Proposal and agenda. All the subjects detailed in the previous paragraphs have successfully been
studied by the pedometrics community for several years and they need to be, and can be, inserted
more effectively in the societal and political discourse. To do so, there is need for quantitative
linkages to and between the appropriate SDGs, the five dimensions of soil security, soil functions
(Challenge 7), and the global existential challenges (Bouma, 2014). Pedometricians will need to
actively cooperate in interdisciplinary projects to achieve this. Some important research questions
are:

• Can we build a quantitative framework connecting and assessing soil contributions to realizing
the SDGs and soil security which is relevant for both local-scale management decisions and
regionally or globally to support policy making?

• How to model and predict the change in soil conditions and optimize preemptive strategies
to maintain or improve soil conditions?

To illustrate the potential of pedometrics, case studies should be selected and initiated that clearly
demonstrate the impact of introducing quantitative soil measurements. Different approaches
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should be compared, showing limitations and potentials of each procedure, starting with empirical,
qualitative assessments in terms of traditional land evaluation up to innovative and quantitative
procedures. It is important to start with applying existing knowledge and expertise and focus new
research on gaps that appear when applying existing knowledge (Veerman et al., 2020). In this way
the advantages of new research can be clearly demonstrated when using the SDG as an ultimate
goal (the “point at the horizon”) so that the visibility and relevance of the work can be effectively
illustrated, aiming at the policy arena and the public at large.

3. Conclusion and Outlook

We have defined ten challenges reflecting the current state of knowledge but also many areas of
soil science where pedometrics can contribute. We hope that this exercise will aid pedometricians
to align their research to several new or long-term research questions of immediate importance to
soil science, on a much broader scope than just digital soil mapping. Soil science is at the interface
of several questions relevant to the sustainable growth of our society for which pedometricians can
bring expertise to the quantitative study of the soil. However, many of the challenges described in
this paper cannot be faced by pedometricians alone and need to be addressed jointly in inter- and
trans-disciplinary research efforts, i.e. also including collaborations outside soil science. Several
of the ten challenges are linked and development in one challenge can support development in
another.
In the past, defining key research questions and working as a community to solve them has been
done with different degrees of success in various fields of science. Scientific progress is largely an
autonomous process that is difficult to evaluate and even more so to steer. Nevertheless, the list
of challenges presented in this paper can serve as basis from which progress and change can be
assessed in the coming years.
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