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A B S T R A C T
Tailoring genotypes for the variety of environmental scenarios associated with climate change requires modelling of 

the genetic variability of adaptation mechanisms to environmental cues. A  large number of physiological mechanisms 
have been described and modelled, e.g. at transcript, metabolic or hormonal levels, but they remain to be assembled into 
whole-plant and canopy models. A ‘bottom-up’ approach combining physiological mechanisms leads to a near-infinite 
number of combinations and to an unmanageable number of parameters, so more parsimonious approaches are required. 
We propose that natural selection has constrained the large diversity of mechanisms into consistent strategies, in such a 
way that not all combinations of mechanisms are possible. These constraints, and resulting feedbacks, result in integrative 
‘meta-mechanisms’, e.g. response curves of traits to environmental conditions, measurable via high-throughput phenotyp-
ing, and resulting in robust and stable equations with heritable genotype-dependent parameters. Examples are provided 
for the responses of developmental traits to temperature, for the response of growth and yield to water deficit and evapora-
tive demand, and for the response of tillering to light and temperature. In these examples, it was inoperative to combine 
upstream mechanisms into whole-plant mechanisms, whereas the evolutionary constraints on the combinations of physi-
ological mechanisms render possible the use of genotype-specific response curves at plant or canopy levels. These can be 
used for a new generation of crop models capable of simulating the behaviour of thousands of genotypes. This has signifi-
cant consequences for plant modelling and its use in genetics and breeding.

K E Y W O R D S :  abiotic stress; genetics; mechanisms; model; selection.

1 .   I N T R O D U C T I O N
Optimal use of genetic resources is required for food security in 
a changing climate (Tester and Langridge 2010; IPCC 2014). 
Appropriate methods are therefore required to predict how a given 
genotype would behave in the variability of climates that characterizes 
climate change, including the increased frequency of extreme events. 
Process-based crop models are potentially relevant for that (Harrison 
et al. 2014; Hammer et al. 2020). Combined with models describing 
the changes in allelic composition in breeding populations as a result 
of selection pressure, they have even been used to predict the result 

of breeding programs on yield in a range of environmental scenarios 
(Chapman et  al. 2003; Messina et  al. 2011). Nevertheless, the cur-
rent use of crop models for simulating the genetic variability of yield 
is limited to either experimentally tested effects of a limited number 
of genes, such as those affecting flowering time (Bogard et  al. 2011; 
Zheng et al. 2013) or canopy development (Chenu et al. 2009), or to 
approaches that incorporate crop models in whole-genome prediction 
algorithms (Messina et al. 2018).

The main difficulty for the use of process-based crop models in 
genetics and breeding is the representation of genetic effects. In contrast 
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to regressive models, which can statistically link yield to allelic values 
at genome markers and to environmental indicators (Millet et al. 2019; 
van Eeuwijk et al. 2019), two steps are needed in process-based mod-
els: (i) link allelic values to genotype-specific parameters of functional 
equations and (ii) compute yield by integration of these equations, 
using genotype-specific parameters together with environmental vari-
ables. However, it is not currently feasible to build mechanistic models 
of action of every gene on traits in different environmental conditions, 
together with their integrative effect on yield (Hammer et al. 2019b). 
This contradiction is the basis of controversies, in particular among the 
communities of plant biology, genetics and modelling. We believe that 
these controversies are healthy and that it is essential that crop mod-
ellers question their own models for being ‘science, snake oil, educa-
tion or engineering’ (Passioura 1996). In particular, we address here 
the question of why crop models, based on simplistic concepts, allow 
prediction of yield in diverse conditions in spite of the enormous com-
plexity of the combinations of physiological mechanisms that under-
pin adaptive traits.

2 .   W H I C H  M O D E L S ,  AT  W H I C H  S C A L E S , 
TO  R E P R E S E N T  A L L E L I C  E F F E C T S 

O N  P L A N T  T R A I T S  I N  F LU C T UAT I N G 
E N V I R O N M E N TA L  C O N D I T I O N S ?

We do not review here regressive models, based on a statistical 
relationship between a final, integrative variable (e.g. yield, final 
biomass or accumulated transpiration) and allelic values at genome 
markers (van Eeuwijk et al. 2019). They are discussed, in comparison 
to process-based models, at the end of this paper.

All process-based dynamic models begin at a certain time at 
which initial environmental conditions are provided to the model 
(e.g. soil water reserve), together with the initial status of plant traits 
(e.g. physiological status of the apex or organ size). From this first 
time point onwards, the new status of traits is computed at the end 
of each time step (lasting typically seconds for some process mod-
els to 1  day for most crop models). This computation is based on 
environmental conditions during step i and the status of plant traits 
and cumulative environmental conditions at the end of step i − 1. The 
latter variables are computed and updated for step i and fed to the 
model for step i + 1. This process is repeated until the end of the sim-
ulation. While this general principle is common to process models at 
all scales, the nature of objects handled in the model, the time steps 
and the involved equations greatly change between four categories of 
models presented in Fig. 1.

-  Models used in molecular physiology (Fig. 1A) take individual 
genes into account, each with a few allelic variants. These models 
have in common short time scales, typically minutes, and 
explicit objects, genes and metabolites (i.e. names can be given 
to each considered leaf, root, gene or metabolite). In the resulting 
equations, each term and parameter is in principle measurable 
but, in practice, parameters are often optimized, i.e. inferred to 
minimize the error on the output variable (e.g. yield, leaf number 
or organ shape). Except in the case of developmental models, the 
plant is not considered as changing in size, shape or physiological 

status over time. Some of these models simulate the translation 
and transduction phases from alleles to proteins, often as networks 
of genes (Bertheloot et  al. 2020). In other models, genotypes 
carrying each allele are considered as qualitative variants, based 
on mutant analyses, for which the plant behaviour is simulated. 
For example, a model that relates alleles (expressed as mutations) 
to the oscillations of Ca+ concentration in the symplast has 
been used to infer stomatal aperture (Vialet-Chabrand et  al. 
2017). Another model considers the interplay of gene action, 
tissue growth and mechanical processes to predict the shape of 
sepals or leaves (Hervieux et  al. 2016). A  development model 
involving several genes (FLC, FRI, FT) considers the effects of 
several proteins on several promoters of other genes, but results 
in a relatively simple behaviour (perennial, vernalizer or rapidly 
cycling plants) depending on the respective timings of the 
expression of the FLC gene and of cold episodes (Whittaker and 
Dean 2017).

-  Transport models (Fig. 1B) consider the fluxes between the 
soil, several compartments in the plant and the atmosphere. 
Their time step is also seconds to minutes. They use differential 
equations that predict the fluxes based on differences in potential 
(water, chemical or heat potentials) and on the conservation 
of mass and energy (Caldeira et al. 2014; Meunier et al. 2017). 
The studied objects are discretized for such simulations, either 
by finite element methods or by considering explicit regions 
of organs or soil. Here, the allelic differences are represented 
via their effect on parameters of conductance or capacitance, 
established via measurements or optimization for mutants or 
accessions. As in the former case organs most often do not 
change in size, shape or physiological status with time. Whole-
plant hormonal or hydraulic effects on fluxes are considered with 
this category of model, for instance with coupled transport of 
solutes, hormones and water as a function of the conditions at 
the system boundaries (e.g. transpiration demand, water status 
or temperature).

-  Functional–structural plant models (FSPMs; Fig. 1C) consider 
whole-plant developmental changes, with explicit individual 
organs appearing, growing and senescing as a function of time and, 
usually, environmental conditions (Prusinkiewicz and Runions 
2012). Their time step is often 1  day. Organs have positions 
in the 3-dimensional space and interact, for example causing 
self-shading for light or local depletions of water or nutrients 
in the soil (de Dorlodot et  al. 2007; Perez et  al. 2019). Three-
dimensional representations are coupled with models of diffusion 
of light, water or nutrients, but frequently with less detail than in 
the former case. Genetic variants are considered qualitatively with 
accessions or mutants described per se, in particular they consider 
hormonal or solute effects via qualitative genotypic effects.

-  Finally, crop models are more abstract than the above three 
categories (Fig. 1D). Here, organs are not explicit but 
represented by virtual objects such as whole-plant leaf area, 
root biomass or rooting depth, or by cohorts of organs such 
as leaves (Lacube et al. 2020) or ovaries (Messina et al. 2019). 
These objects change in size and physiological status over time 
(e.g. thermal time-driven leaf growth and senescence, or root 
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system characteristics). Genetic differences are represented 
by vectors of parameters, most often not explicitly linked to 
allelic values at markers (Hammer et  al. 2010). Equations 
involve (i) the progress of developmental stages with thermal 
time, in some cases corrected for other effects such as light, 
water status or photothermal coefficients that consider the 
ratio between available light and temperature (Kim et  al. 
2010), (ii) conservation of mass, for instance with water, 
carbon or nitrogen balances at each time step, (iii) response 
curves of key processes, such as leaf growth or the progression 
of development stages to environmental conditions such as 
water, carbon or nitrogen availabilities.

3 .   W H I C H  O F  T H O S E  M O D E L S  A R E 
‘ M E C H A N I S T I C ’ ?

Each category of model is preferred by a given scientific community 
(although more categories, and also intermediate categories may 
be identified). The biological community often considers the first 

category as the only one qualified as mechanistic, because it involves 
gene action and control mechanisms at molecular level. Communities 
involved in water or nutrient transfer consider that only the second 
category has the necessary properties for mechanistic calculations of 
fluxes at canopy level, whereas the FSPM community considers that 
characterization of 3D objects is essential for a rigorous model. Crop 
models are widely used by the agronomic community but often con-
sidered as empirical by other communities. However, these views are 
challenged by several facts:

-  The four categories of models are each based on simplifications, 
but of different natures, and often involve parameters that 
are optimized. For example, the rate of RNA synthesis and 
degradation is often fitted and constrained based on limited 
measurements. Parameters are therefore associated with a similar 
degree of empiricism as integrative parameters fitted in a crop 
model. Furthermore, the first two categories of model are usually 
tested over short time periods, in such a way that the change in 
shape and physiological status of organs is not considered. While 
this is valid when the model is run over short time periods, it 

Figure 1. Examples of models at different levels of organization. Each column displays typical models. (A) Models used in 
molecular physiology; (B) models of water, heat or nutrient transport; (C) functional–structural plant models (FSPMs); (D) 
crop models. ‘Scale’ denotes the objects the model applies to, the time step and the duration over which the model is run. 
‘Mechanisms’ denote examples of principles on which equations are based. The first lines in ‘models’ show typical equations in 
each category of model, illustrated by examples. ‘Genetic complexity’ denotes the number of genes taken into account, from 
combinations of single genes in (A) to allelic composition in (D). ‘Abstraction level’ presents what is explicit and what is used as 
proxies in considered models. The last two lines illustrate the respective importance of individual mechanisms versus constrained 
meta-mechanisms derived from evolutionary processes. Displayed example: (A) Vialet-Chabrand et al. (2017), (B) Tardieu et al. 
(2015), (C) a composition of Perez et al. (2019) for shoots and Mairhofer et al. (2012) for roots, (D) Hammer et al. (2019a).
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is tempting to extend conclusions to longer periods, thereby 
involving strong scaling assumptions.

-  The number of parameters does not greatly differ in the four 
categories of models. It ranges from 50 to 100 in the stomatal 
model of Vialet-Chabrand et al. 2017 or in the developmental 
model of Hervieux et  al. 2016, which is a similar number of 
parameters as in most crop models (Hammer et  al. 2010) 
and FSPM (de Dorlodot et  al. 2007; Perez et  al. 2019). In 
practice, many of these parameters are fixed, so the number of 
parameters for representing the genetic variability is of a few 
tens, in all categories of models.

-  The phenotypic distribution, the narrow-sense heritability 
and the number of quantitative trait loci (QTLs) for explaining 
30 % of the genetic variance were similar for traits at different 
levels of integration in the diversity panel analysed in Millet 
et  al. 2019 and Alvarez Prado et  al. 2018 (Fig. 2). This was 
the case for a physiological trait like maximum stomatal 
conductance, for whole-plant leaf growth rate in optimum 
conditions, for a still more integrated trait such as radiation 
interception efficiency and for field-measured grain number 
(Fig. 2). Even the amount of transcripts in the same panel 
had similar patterns, with a normal-like distribution and a 
heritability similar to those in Fig. 2. This is counter-intuitive, 
because a reduced number of controlling genes could be 
expected to result in non-normal (e.g. bimodal) distributions, 
in a higher heritability and a lower number of stronger QTLs.

We raise the possibility that potent simplifying rules, linked to evo-
lutionary constraints, operate at the integrated levels of whole plant 

and canopy, potentially rendering these levels simpler and more 
reproducible than the combination of underlying mechanisms cap-
tured by detailed models. In the following, we illustrate this view 
with three cases: (i) the response of developmental processes to 
temperature (Parent et al. 2012), (ii) the response of plant growth 
and grain number to water deficit (Tardieu et  al. 2018)  and (iii) 
the control of tillering according to carbon availability (Alam et al. 
2014a).

3.1  First example: from diverse individual 
responses to temperature to a coordinated response 

at plant level, unique for a range of genotypes
Temperature affects processes as different as C or N metabolisms (Xu 
and Zhou 2006; Usadel et al. 2008), tissue expansion rate (Ong 1983), 
cell division rate (Granier et al. 2000), organ appearance rate (Yin and 
Kropff 1996), duration of phenological phases (Ravi Kumar et al. 2009) 
or flowering time (Tirfessa et al. 2020). Each process involves different 
temperature-dependent signalling pathways, enzymes activities and 
gene actions. The temperature response of protein abundance largely 
depends on the considered protein, and on whether the temperature at 
sampling differs from growth temperature (Fig. 3A) (Campbell et al. 
2007). Similarly, the activities of 10 enzymes had markedly different 
responses to temperature in three species (Fig. 3B) (Parent et  al. 
2010). The response of transcript abundance to temperature largely 
varies between considered genes (Fig. 3C) (Penfield 2008). Hence, 
the response to temperature is extremely complex at a molecular level, 
with each transcript, protein or activity displaying different responses, 
either positive or negative, depending on the timing of temperature 
changes for protein abundances.

Scale
Leaf cm2

Minutes / days
Cell- Organ
Minute/days

Plant or Canopy
Minute to weeks

Canopies in a range of 
environments

Days to months

Trait Maximum stomatal
conductance Leaf growth rate Radiation interception 

efficiency Grain number

Phenotypic
distribution

Narrow sense
heritability

(proportion of variance 
accounted for by

markers)

0.44 0.63 0.73 0.57

6 5 5 6QTL # for explaining 
30% of gen. variance

Figure 2. Genetic characteristics of traits at four levels of integration, in a panel of 240 maize hybrids analysed in an in-door 
phenotyping platform and in a multisite field experiment. The distribution of trait values is shown for each trait, together with 
the narrow-sense heritability, i.e. the proportion of variance accounted for by 758 863 SNP markers on the genome, and with the 
number of QTLs that were necessary to take into account for explaining 30 % of the phenotypic variance. Maximum stomatal 
conductance was calculated at canopy level by inversion of the Penman Monteith equation for near-saturation light intensity 
(Alvarez Prado et al. 2018), leaf growth rate was calculated from whole-plant leaf area over time, the value displayed is that at the 
inflexion point (Cabrera Bosquet et al. 2016; Alvarez Prado et al. 2018), radiation interception efficiency is the ratio between 
incident and intercepted light, calculated with a functional structural plant model (Perez et al. 2019); grain number is the 
genotypic mean value calculated with a mixed model by Millet et al. (2019).
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The situation is simpler at an integrated level. Indeed, the tem-
perature response of several developmental processes (e.g. cell divi-
sion, tissue expansion, reciprocal of time to flowering or of time to 
germination; Fig. 3E) is remarkably similar, within each species, in 72 

literature references if normalized by the value at a given temperature 
(Warrington and Kanemasu 1983; Parent and Tardieu 2012). Counter-
intuitively, the integrated response is therefore simpler and more stable 
than underlying mechanisms. A  possible explanation of this paradox 
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Figure 3. Complexity of temperature responses of transcripts or protein amounts, and enzyme activities (A), (B), (C), compared 
with the commonality of responses between genotypes (D) and between 17 developmental processes in different studies (E). (A) 
Amount of three proteins involved in light signalling, photosynthesis or respiration, relative to the amounts at 21 °C (Campbell et al. 
2007), as a function of the temperature during plant growth. Black and white symbols refer to experiments in which the temperature 
at sampling was the same, or different, compared to the growth temperature. (B) Activities of five enzymes involved in carbon 
metabolism, plotted against temperature during the reaction (Parent et al. 2010). (C) Amount of cold-inducible gene transcripts 
as a function of temperature during plant growth (Penfield et al. 2008). (D) Response to temperature of leaf elongation rate in nine 
maize hybrids, with either temperate or tropical origins (Parent et al. 2012). (E) Response to temperature of 17 developmental rates, 
namely of cell division, tissue expansion, reciprocal of time to flowering or of time to germination, resulting from a meta analysis of 
72 published studies (Parent et al. 2012). In (D) and (E), see the latter reference for the meaning of individual symbols.
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is that if each process followed its own response, a plant which expe-
riences fluctuating temperatures would display severe disorders due 
to a lack of coordination of the growth and development of different 
organs. Furthermore, plants of a given genotype growing under differ-
ent temperature scenarios would differ in architecture and organ shape. 
This is observed in the extreme case of chilling temperatures, which 
results in appreciable changes in cell size, protein content, leaf thickness 
and the root/shoot ratio (Atkin et al. 2006). It is not observed in non-
stressing ranges of temperature, so architectural variables and timing 
of development have a high heritability (reproducible values for each 
genotype, with large genotypic differences) in different experiments 
with contrasting temperature scenarios (Alvarez Prado et  al. 2018; 
Millet et  al. 2019; Lacube et  al. 2020). This suggests that the com-
monality of integrated temperature responses is the result of natural 
selection rather than of a gene-driven coordination between tempera-
ture responses. Interestingly, the temperature responses did not differ 
among genotypes of either maize, rice or wheat, whereas they did differ 
among 17 species. It was argued (Parent et al. 2016) that this might also 
be due to selection pressure. If plant viability requires that the tempera-
ture response of several developmental processes remains coordinated, 
this considerably reduces the rate of evolution. In the domain of model-
ling, this commonality of temperature response of developmental pro-
cesses is the base for the use of thermal time, considered as common 
to all processes and stages of development (Porter and Gawith 1999; 
Sánchez et al. 2014). This would be impossible if each process followed 
its own temperature response. An argumentum ad absurdum suggests 
that the wide use of thermal time would not have been possible if tem-
perature responses clearly differed among processes.

3.2  Second example, the response to water deficit 
and evaporative demand, a robust and heritable 

meta-mechanism
Integrated plant responses to water deficit are the result of a large range 
of mechanisms including cell division, hydraulics, cell wall mechan-
ics, primary and secondary metabolism and reactive oxygen species 
detoxification (Bray 1997; Todaka et al. 2017). Several hormones are 
involved, in particular the stress hormone ABA, but also ethylene, 
cytokinins, strigolactones or jasmonic acid (Huang et al. 2008; Tardieu 
2016). A layer of molecular control involves changes in transcription 
factor expression and small RNA or chromatin status (Seki et al. 2007). 
Responses at transcript level involve under- or overexpressed genes, 
with an expression that rapidly changes with time of the day, together 
with light and evaporative demand. Furthermore, transcriptional 
changes are striking when a plant undergoes a rapid change in evapo-
rative demand or soil water potential, whereas they are less straight-
forward under stable conditions (Baerenfaller et al. 2012). Phenotypic 
responses are also changing over minutes, for instance leaf elongation 
rate can vary from a near-zero value to its maximum genotypic value 
over 2 h (Caldeira et al. 2014). Based on these observations and as in 
the former paragraph, one could expect that the integrated response to 
water deficit is nearly unpredictable.

However, the response to water deficit becomes predictable 
if considered as the quantitative relationship between soil water 
potential, as sensed by plants, and integrative traits such as leaf 

growth or grain number. The responses of leaf elongation rate to 
soil water potential or evaporative demand are common between 
different experiments carried out in the field, in a greenhouse or a 
growth chamber, and markedly differ among genotypes (Fig. 4B) 
(Reymond et  al. 2003). At the whole-plant level, the response of 
leaf area to soil water potential was heritable in a panel of 240 maize 
hybrids (Fig. 4C). At a still more integrated level, the response of 
grain number to soil water potential, considered in a multisite field 
experiment, is heritable and predictable, provided that the effects 
of light interception and temperature are also considered in the 
analysis (Fig. 4C) (Millet et al. 2019). In the latter study, the regres-
sive model between allelic values and response curves also applied 
to genotypes that were not considered in the initial parameteriza-
tion. As above, the simplicity of the integrated behaviour, compared 
with the complexity of individual mechanisms, could be linked to 
natural selection. Plant fitness and survival requires that the rapid 
changes in water potential and carbon status associated with diurnal 
and day-to-day variations of light and evaporative demand are buff-
ered to avoid deleterious water and carbon status during hours with 
most severe conditions. Plants therefore need that the diversity of 
mechanisms of response to water deficit is constrained into con-
sistent strategies avoiding such deleterious events. We can therefore 
propose that the simplicity of integrated responses in Fig. 4B is due 
to the fact that plants which did not constrain individual mecha-
nisms into strategies were eliminated by natural selection during 
periods with severe stresses and produced no offspring.

3.3  Third example: the meta-mechanism control-
ling tillering in sorghum links to hormonal and plant 

sugar status drivers
The extent of tillering affects crop adaptation in cereals. Outgrowth and 
survival of tillers regulates the canopy leaf area (Klepper et al. 1982; 
Kirby et al. 1985; Lafarge et al. 2002) so that the temporal dynamics of 
light interception and use of available water through the life cycle are 
affected. Reduced tillering and canopy size are advantageous in water-
limited conditions, but disadvantageous in more favourable seasons 
(Fig. 5; van Oosterom et al. 2011; Hammer et al. 2019a). Hence, for 
enhanced fitness in an evolutionary context, an ability for the plant to 
react to the environmental context and tune its adaptive strategy for 
tillering is advantageous.

Bud outgrowth is regulated by a complex gene network involving 
interplay among the hormones auxin, cytokinin, and strigolactone 
(Barbier et  al. 2019; Bertheloot et  al. 2020). Auxin originating from 
the apical bud indirectly inhibits the outgrowth of axillary buds of the 
same stem via cytokinins and strigolactones. Auxin represses cyto-
kinins, which stimulate bud outgrowth, and stimulates strigolactones, 
which repress bud outgrowth. The behaviour of this network is also 
influenced by sugar signalling. Mason et al. (2014) showed that sugar 
demand of the growing apex, not auxin, is the initial regulator of apical 
dominance through its influence on plant sugar status in axillary buds. 
Further, Wang et al. (2020) found that the circadian clock integrates 
sugar signalling and regulates expression of strigolactone pathway 
genes to control tillering in rice. While this gene network is becoming 
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better understood qualitatively, its ability to predict tillering as a func-
tion of environmental conditions is limited, and will probably remain 
so in view of the amount of parameters required to model all above-
mentioned interactions.

In contrast, predicting tillering at whole-plant level for diverse 
sets of genotypes across diverse environments has been achieved 

successfully using quantitative relationships between integrative traits 
via an index of plant sugar status and a background propensity to tiller 
(Alam et al. 2014a, 2017; Fig. 5). The expression of tillering propen-
sity, which is under strong genetic control, was assessed by growing 
entries at low plant density to ensure minimal plant–plant competi-
tion and high plant sugar status. The index of plant sugar status, which 
responds to both genetic and environmental factors, was derived by 
considering assimilate supply and the extent of internal plant competi-
tion for assimilate (Kim et al. 2010; Alam et al. 2014a). Assimilate sup-
ply was related to incident radiation and plant leaf area, while demand 
was related to the potential rate of growth of the main shoot (Lafarge 
and Hammer 2002). That demand was associated with organ size and 
the temperature-driven rates of leaf appearance and expansion. A high 
assimilate supply relative to demand during a critical period favoured 
tillering.

Quantitative trait locus analysis from experiments with multiple 
sorghum populations across a range of environments (Alam et  al. 
2014b) identified 34 QTLs for tillering with half of those co-locating 
with QTL for component traits underlying plant sugar status (i.e. 
phyllochron, leaf length, leaf width) or the derived estimate of 
propensity to tiller (Fig. 5). Quantitative trait locus co-locating with 
factors affecting plant sugar status is consistent with the hypothesis 
that availability of assimilate beyond the requirement of existing culms 
regulates tillering (Bos and Neuteboom 1998; Lafarge and Hammer 
2002; Kim et al. 2010). Quantitative trait locus for propensity to tiller 
co-located with genes involved with hormonal control of tiller bud 
outgrowth, such as the biosynthesis of strigolactones (Beveridge and 
Kyozuka 2010).

The simplicity of the integrated behaviour, compared with the 
complexity of the underlying gene networks, could again be linked 
to natural selection. Plant fitness and survival require that tillering 
best matches the environmental context to reduce the uncertainty 
associated with successful seed set for an annual plant. For example, 
there must be sufficient water available towards the end of the life cycle 
in dry seasons to support viable seed production. But the opportunity 
must be captured to be prolific in seasons when water is plentiful. 
Genetic control of propensity to tiller provides a background scaffold 
for selection to operate, but moderating this to the environmental 
context, via plant sugar status, provides a means to constrain this 
mechanism into an adaptive strategy with superior fitness. The 
integrated responses in Fig. 5 capture the adaptive strategy in a manner 
that is akin to ‘modelling hormone action without modelling the 
hormones’ (de Wit and Penning de Vries 1983).

4 .   F R O M  I N D I V I D UA L  M E C H A N I S M S  TO 
‘ M ETA- M E C H A N I S M S ’  C O N S T R A I N E D  B Y 

E V O LU T I O N :  S I M I L A R  C O M P L E X I T I E S  AT 
D I F F E R E N T  S C A L E S  O F  O R G A N I Z AT I O N

The three cases presented above show marked similarities in spite of 
their different natures. Controlling mechanisms considered for simu-
lating a canopy over months were reproducible, rigorous and heritable, 
as much as those controlling simpler objects such as a group of stomata 
or of cells over hours (Fig. 2). A first possible cause might be the lim-
ited ability of our brain to handle complex systems, thereby resulting in 

Le
af

el
on

ga
�o

n
ra

te
 

(m
m

 °C
d-1

)

B

A

C

h² = 0.7

0.0 -0.2 -0.4

0.0 -0.5 0.0 -1.5
0.0

0.5

1.0

1.5

Gr
ai

n 
nu

m
be

r
(g

ra
in

 m
-2

x 1
00

0)

0.0 -0.10 -0.15
Soil water poten�al (MPa)

-0.050.05

0

2

4

Le
af

ee
xp

an
sio

n
ra

te
 

Re
la

�v
e 

to
 v

al
ue

 a
t 0

 M
Pa

h2= 0.70

h2= 0.78

h2= 0.45

2

4

6

Figure 4. Response of integrated traits to soil water potential. 
(A) Leaf elongation rate plotted against predawn leaf water 
potential, a proxy of soil water status, for two genotypes (red 
and blue) in different experiments (Reymond et al. 2003), 
(B) whole-plant leaf expansion rate plotted against soil water 
potential for 240 maize hybrids, values of leaf expansion rate 
are normalized by their value at 0 MPa, (C) grain number 
plotted against soil water potential in the same panel of maize 
hybrids, values of soil water potential are normalized by mean 
values, and averaged during flowering time (Millet et al. 2019).
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a similar number of considered mechanisms and equations regardless 
of the real complexity of the system. However, this explanation does 
not easily explain the similarity in genetic architecture of either simple 
or integrative traits, nor the reproducibility of integrated mechanisms. 
We consider as more likely the possibility that, in the three cases, feed-
back loops and evolutionary constraints were the main cause of simpli-
fication at integrated scales.

Changes in environmental conditions affect plant growth and 
development at various levels of biological organization, for example 
from cell division to whole-plant biomass accumulation. However, 
natural or breeding selections operate at the organism level of organi-
zation, based on emergent phenotypes, essentially yield for agronomic 
species and fitness for wild species. Those traits derive from the inte-
grated expression of genes and gene networks, of the translation into 
proteins, and of metabolic chains affected by protein activities, with 
environmental or developmental controls at each of these steps. We 
suggest that, whereas the interaction between individual molecular 
mechanisms may result in a near-infinite number of situations, inte-
grated adaptive traits are constrained into strategies by evolution, 
and are largely driven by feedback loops at high levels of integration, 
resulting in the simpler ‘meta-mechanisms’ presented in the above 
examples (Figs 3–5). These meta-mechanisms are unique and repro-
ducible across a range of situations and their parameters have a herit-
ability as high as those of equations describing detailed physiological 
mechanisms.

The view of simpler behaviour at an integrated level was also pro-
posed for other complex adaptive biological systems (Gell-Mann and 
Lloyd 1996), which use contextual information to control responses at 
the integrated level. In particular, Flack (2019) suggested that complex-
ity and the multiscale structure of biological systems are the predict-
able outcome of evolutionary dynamics driven by the minimization of 
uncertainties in the face of a wide range of possible events. She argues 
that hierarchical organization facilitates information extraction and 

enables biological systems to tune their strategies at the aggregate level. 
While such ‘meta-mechanisms’ can be linked directly to phenotypic 
consequences for the organism, they are also linked to the underlying 
mechanisms and genetic architecture (Barghi et al. 2020).

The ‘meta-mechanisms’ ultimately depend on dynamic interac-
tions and feedbacks operating among mechanisms at cell/molecular 
level (Tardieu and Parent 2017). They characterize the interdepend-
ence across scales of biological organization and provide the avenue for 
mechanistic modelling at all levels. This overcomes the complexities of 
working via a linear dependence across scales of biological organiza-
tion from transcription, to metabolism, to cellular responses, to effects 
at organ scale. Tardieu et  al. (2018) have reviewed the interdepend-
encies of short-term mechanisms and long-term acclimation strate-
gies resulting in varying performance under specific water-limitation 
scenarios. They found that avenues for improving production under 
drought conditions varied with the situation, as the utility of plant traits 
of interest was context-dependent. It was necessary to move beyond 
the reductionist approach of associating plant performance with the 
time course of one particular process. They argued that breeding for 
drought tolerance would benefit from an approach that optimizes the 
conflict between minimization of risk, similar to the general case sug-
gested by Flack (2019), and expectation of maximum performance.

5 .   I N  T H I S  C O N T E X T,  S H O U L D  O N E  U S E 
P R O C E S S - B A S E D  O R  R E G R E S S I V E  M O D E L S ?
The above paragraphs suggest that one might want to go one step 
further in abstraction and consider the use of regressive models, 
unashamedly simplistic, rather than process-based models for pre-
dicting the genetic variability of yield in a range of environmental 
conditions. Indeed, regressive models have shown successful pre-
dictions of genome effects on yield, based on synthetic indicators 
of environmental conditions and on allelic values at thousands of 
markers (Navarro et al. 2017; van Eeuwijk et al. 2019). For instance, 
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QTN_S4_7_1
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Figure 5. The interplay of environmental and genetic regulation of tillering in sorghum via internal plant competition for sugars 
and hormonal regulation of propensity to tiller (Alam et al. 2014a, 2017), the simulated consequences of reduced tillering 
on yield difference relative to standard tillering (Hammer et al. 2019a), and the association of component traits with QTL for 
tillering (Alam et al. 2014b).
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Millet et al. (2019) proposed a model based on measured environ-
mental conditions and on the genomic prediction of the sensitivity 
of plants to three environmental indicators, namely the amount of 
light intercepted during the vegetative phase and the mean temper-
ature and soil water potential during flowering time. This model 
allowed prediction of yield for experiments and genotypes that 
were not taken into account for parameterizing the model.

However, regressive models also show limitations, in particular in 
the context of climate change. First, their validity is limited to those 
environmental scenarios in which they were established, whereas 
scenarios of climate change may present combinations of events 
that are not represented in current scenarios (e.g. higher concentra-
tion of CO2 combined with higher evaporative demand and limited 
access to soil nitrogen). Secondly, short extreme events of high tem-
perature and drought, which are expected to increase in frequency, 
cannot be easily represented by environmental indicators calculated 
over key phenological periods of the crop cycle. Using a crop model 
potentially avoids the difficult step of clustering environmental con-
ditions over a series of sites and years in the considered target popu-
lation of environments. Another potential advantage of crop models, 
compared with statistical models, is the possibility of exploring 
the multiscale phenotypic space resulting from the combination of 
traits (Chenu et al. 2009), itself resulting from allelic values. This is 
hardly possible in a regressive model because of the limited number 
of trait combinations in experimental data sets, whereas it is with 
a process-based crop model that considers the effect of many trait 
combinations via model parameters (Hammer et al. 2005; Messina 
et al. 2011). Indeed, it is now possible to measure genotype-depend-
ent traits for hundreds of genotypes, from which model parameters 
such as transpiration efficiency, radiation use efficiency or sensitivity 
of growth to environmental conditions can be calculated and their 
genetic correlations taken into account (Tardieu et al. 2017; Alvarez 
Prado et al. 2018).

6 .   C O N C LU D I N G  R E M A R K S , 
I M P L I C AT I O N S  F O R  M O D E L L I N G  A N D 

C R O P  I M P R O V E M E N T
We propose here an approach with a ‘fractal’ complexity, in which the 
mechanisms at plant or canopy level are as reproducible, rigorous and 
heritable as those at organ or cell level. Hence, the categories of models 
presented in Fig. 1 may be considered as equally mechanistic and 
rigorous, but differing in the degree of simplification associated with 
the scale of plant organization. This view implies that potent feedback 
loops operate at high level of integration, so natural selection or 
breeders have selected plants in such a way that the many mechanisms 
involved in the short-term responses to environmental cues underpin 
successful ‘meta-mechanisms’. Most upstream physiological 
mechanisms tend to buffer rapid changes in water, nutrient and carbon 
status, to different extents depending on environmental scenarios, and 
scale up into reproducible long-term controls by which plants manage 
the soil water and nutrient reserves, so they can produce viable seeds. 
These upstream physiological mechanisms are therefore considered 
as jointly contributing to consistent acclimation strategies to specific 
environmental scenarios. The genetic architecture of parameters 

describing these strategies may be relevant to crop adaptation and to 
modelling, with the same legitimacy as mechanisms at cell or organ 
level, which can also be considered as simplifications in relation to still 
more detailed levels of organization.

Representing adaptive strategies via sets of equations at plant or 
canopy levels is considerably simpler than representing them by a 
combination of equations representing each physiological mechanism 
and how these mechanisms are coordinated. We propose here that 
this approach is also more robust, and is now made possible by the 
progress of high-throughput phenotyping. Indeed, each genotype 
can be represented by a vector of parameters calculated from direct 
measurements in field or in-door phenotyping platforms. Plant or crop 
models constructed in this way provide an avenue (i) for predicting 
consequences at phenotypic scale of manipulating adaptive traits and 
their underlying physiological mechanisms, (ii) for unravelling the 
complexity of genetic control of adaptive traits and linking it with 
that of individual mechanisms and, ultimately, (iii) for supporting 
advanced breeding strategies that improve breeders’ abilities to handle 
complex trait–environment interactions.

S O U R C E  O F   F U N D I N G

G.L.H.  contribution was supported by Australian Research Council 
Centre of Excellence for Plant Success in Nature and Agriculture 
(CE200100015). F.T., I.S.C.G.  and B.P.  were supported by the EU 
projects FP7-244374 (DROPS) and H2020-731013 (EPPN2020), 
the Agence Nationale de la Recherche projects ANR-10-BTBR-01 
(Amaizing) and ANR-11-INBS-0012 (Phenome).

C O N T R I B U T I O N S  B Y  T H E  AU T H O R S

GF.T. and G.L.H. wrote the paper, I.S.C.G., E.J.V.O. and B.P. provided 
elements and discussed the contents

ACKNOWLEDGEMENTS
The authors acknowledge John Wiley and Sons, OUP, ASPB 
and Springer Nature for permissions to reuse figures.

L I T E R AT U R E   C I T E D
Alam  MM, Hammer  GL, van  Oosterom  EJ, Cruickshank  AW, 

Hunt CH, Jordan DR. 2014a. A physiological framework to explain 
genetic and environmental regulation of tillering in sorghum. The 
New Phytologist 203:155–167.

Alam  MM, Mace  ES, van  Oosterom  EJ, Cruickshank  A, Hunt  CH, 
Hammer  GL, Jordan  DR. 2014b. QTL analysis in multiple sor-
ghum populations facilitates the dissection of the genetic and 
physiological control of tillering. Theoretical and Applied Genetics 
127:2253–2266.

Alam MM, van Oosterom EJ, Cruickshank A, Jordan DR, Hammer GL. 
2017. Predicting tillering of diverse sorghum germplasm across 
environments. Crop Science 57:78–87.

Alvarez  Prado  S, Cabrera-Bosquet  L, Grau  A, Coupel-Ledru  A, 
Millet EJ, Welcker C, Tardieu F. 2018. Phenomics allows identifica-
tion of genomic regions affecting maize stomatal conductance with 
conditional effects of water deficit and evaporative demand. Plant, 
Cell & Environment 41:314–326.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa011/6015538 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 02 June 2021



10 • Tardieu et al.

Atkin OK, Loveys BR, Atkinson LJ, Pons TL. 2006. Phenotypic plas-
ticity and growth temperature: understanding interspecific vari-
ability. Journal of Experimental Botany 57:267–281.

Baerenfaller  K, Massonnet  C, Walsh  S, Baginsky  S, Bühlmann  P, 
Hennig  L, Hirsch-Hoffmann  M, Howell  KA, Kahlau  S, 
Radziejwoski  A, Russenberger  D, Rutishauser  D, Small  I, 
Stekhoven  D, Sulpice  R, Svozil  J, Wuyts  N, Stitt  M, Hilson  P, 
Granier C, Gruissem W. 2012. Systems-based analysis of Arabidopsis 
leaf growth reveals adaptation to water deficit. Molecular Systems 
Biology 8:606.

Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. 2019. An 
update on the signals controlling shoot branching. Trends in Plant 
Science 24: 220–236.

Barghi  N, Hermisson  J, Schlötterer  C. 2020. Polygenic adaptation: 
a unifying framework to understand positive selection. Nature 
Reviews Genetics 21:769–781.

Bertheloot  J, Barbier  F, Boudon  F, Perez-Garcia  MD, Péron  T, 
Citerne S, Dun E, Beveridge C, Godin C, Sakr S. 2020. Sugar avail-
ability suppresses the auxin-induced strigolactone pathway to pro-
mote bud outgrowth. The New Phytologist 225:866–879.

Beveridge CA, Kyozuka J. 2010. New genes in the strigolactone related 
shoot branching pathway. Current Opinion Plant Biology 13:34–39.

Bogard  M, Jourdan  M, Allard  V, Martre  P, Perretant  MR, Ravel  C, 
Heumez  E, Orford  S, Snape  J, Griffiths  S, Gaju  O, Foulkes  J, 
Le  Gouis  J. 2011. Anthesis date mainly explained correlations 
between post-anthesis leaf senescence, grain yield, and grain protein 
concentration in a winter wheat population segregating for flower-
ing time QTLs. Journal of Experimental Botany 62:3621–3636.

Bos HJ, Neuteboom JH. 1998. Morphological analysis of leaf and tiller 
number dynamics of wheat (Triticum aestivum L.): responses to 
temperature and light intensity. Annals of Botany 81:131–139.

Bray EA. 1997. Plant responses to water deficit. Trends in Plant Science 
2:48–54.

Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu 
F. 2016. High-throughput estimation of incident light, light inter-
ception and radiation-use efficiency of thousands of plants in a 
phenotyping platform. New Phytologist 212:269–281.

Caldeira CF, Bosio M, Parent B, Jeanguenin L, Chaumont F, Tardieu F. 
2014. A hydraulic model is compatible with rapid changes in leaf 
elongation under fluctuating evaporative demand and soil water 
status. Plant Physiology 164:1718–1730.

Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, 
Hurry  V. 2007. Acclimation of photosynthesis and respiration is 
asynchronous in response to changes in temperature regardless of 
plant functional group. The New Phytologist 176:375–389.

Chapman S, Cooper M, Podlich D, Hammer G. 2003. Evaluating plant 
breeding strategies by simulating gene action and dryland environ-
ment effects. Agronomy Journal 95:99–113.

Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL. 
2009. Simulating the yield impacts of organ-level quantitative trait 
loci associated with drought response in maize: a “gene-to-pheno-
type” modeling approach. Genetics 183:1507–1523.

de  Dorlodot  S, Forster  B, Pagès  L, Price  A, Tuberosa  R, Draye  X. 
2007. Root system architecture: opportunities and constraints 
for genetic improvement of crops. Trends in Plant Science 
12:474–481.

de Wit CT, Penning de Vries FWT. 1983. Crop growth models without 
hormones. Netherlands Journal of Agricultural Science 31:313–323.

Flack  JC. 2019. Life’s information hierarchy. In: Krakauer  DC, ed. 
Worlds hidden in plain sight: The evolving idea of complexity at the 
Santa Fe institute. Santa Fe, NM: The Santa Fe Institute Press, 
201–225.

Gell-Mann  M, Lloyd  S. 1996. Information measures, effective com-
plexity, and total information. Complexity 2:44–53.

Granier C, Inzé D, Tardieu F. 2000. Spatial distribution of cell division 
rate can be deduced from that of p34(cdc2) kinase activity in maize 
leaves grown at contrasting temperatures and soil water conditions. 
Plant Physiology 124:1393–1402.

Hammer  G, Chapman  S, van  Oosterom  E, Podlich  D. 2005. Trait 
physiology and crop modelling as a framework to link phenotypic 
complexity to underlying genetic systems. Australian Journal of 
Agricultural Research 56:947–960.

Hammer  GL, McLean  G, van  Oosterom  E, Chapman  S, Zheng  BY, 
Wu A, Doherty A, Jordan D. 2020. Designing crops for adaptation 
to the drought and high-temperature risks anticipated in future cli-
mates. Crop Science 60:605–621.

Hammer G, McLean G, Doherty A, van Oosterom E, Chapman S. 
2019a. Sorghum crop modelling and its utility in agronomy and 
breeding. In: Prasad V, Ciampitti I, eds. Sorghum: state of the art and 
future perspectives. Agronomy Monographs. Madison, WI: ASA and 
CSSA. 58:215–239. doi:10.2134/agronmonogr58.c10

Hammer G, Messina C, Wu A, Cooper M. 2019b. Biological reality and 
parsimony in crop models – why we need both in crop improve-
ment! In Silico Plants 2019:diz010; doi:10.1093/insilicoplants/
diaa010.

Hammer  GL, van  Oosterom  E, McLean  G, Chapman  SC, Broad  I, 
Harland  P, Muchow  RC. 2010. Adapting APSIM to model the 
physiology and genetics of complex adaptive traits in field crops. 
Journal of Experimental Botany 61:2185–2202.

Harrison  MT, Tardieu  F, Dong  Z, Messina  CD, Hammer  GL. 2014. 
Characterizing drought stress and trait influence on maize yield 
under current and future conditions. Global Change Biology 
20:867–878.

Hervieux  N, Dumond  M, Sapala  A, Routier-Kierzkowska  AL, 
Kierzkowski D, Roeder AHK, Smith RS, Boudaoud A, Hamant O. 
2016. A mechanical feedback restricts sepal growth and shape in 
Arabidopsis. Current Biology 26:1019–1028.

Huang  D, Wu  W, Abrams  SR, Cutler  AJ. 2008. The relationship of 
drought-related gene expression in Arabidopsis thaliana to hor-
monal and environmental factors. Journal of Experimental Botany 
59:2991–3007.

IPCC. 2014. Summary for policymakers. In: Field  CB, Barros  VR, 
Dokken  DJ, Mach  KJ, Mastrandrea  MD, Bilir  TE, Chatterjee  M, 
Ebi  KL, Estrada  YO, Genova  RC, Girma  B, Kissel  ES, Levy  AN, 
MacCracken  S, Mastrandrea  PR, White  LL, eds. Climate change 
2014: impacts, adaptation, and vulnerability. Part A: global and secto-
ral aspects. Contribution of Working Group II to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge, 
UK and New York, NY: Cambridge University Press, 1–32.

Kim HK, van Oosterom E, Dingkuhn M, Luquet D, Hammer G. 2010. 
Regulation of tillering in sorghum: environmental effects. Annals of 
Botany 106:57–67.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa011/6015538 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 02 June 2021

https://doi.org/10.2134/agronmonogr58.c10


The nexus between mechanisms and adaptive strategies • 11

Kirby EJM, Appleyard M, Fellowes G. 1985. Leaf emergence and tiller-
ing in barley and wheat. Agonomie 5:193–200.

Klepper B, Rickman RW, Peterson CM. 1982. Quantitative characteri-
sation of vegetative development in small cereal grains. Agronomy 
Journal 74:789–792.

Lacube S, Manceau L, Welcker C, Millet EJ, Gouesnard B, Palaffre C, 
Ribaut  JM, Hammer  G, Parent  B, Tardieu  F. 2020. Simulating 
the effect of flowering time on maize individual leaf area in con-
trasting environmental scenarios. Journal of Experimental Botany 
71:5577–5588.

Lafarge  TA, Broad  J, Hammer  GL. 2002. Tillering in grain sorghum 
over a wide range of population densities: identification of a com-
mon hierarchy for tiller emergence, leaf area development and fer-
tility. Annals of Botany 90:87–98.

Lafarge TA, Hammer GL. 2002. Tillering in grain sorghum over a wide 
range of population densities: modelling dynamics of tiller fertility. 
Annals of Botany 90:99–110.

Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney SJ, 
Pridmore  T. 2012. RooTrak: automated recovery of three-
dimensional plant root architecture in soil from x-ray microcom-
puted tomography images using visual tracking. Plant Physiology 
158:561–569.

Mason  MG, Ross  JJ, Babst  BA, Wienclaw  BN, Beveridge  CA. 2014. 
Sugar demand, not auxin, is the initial regulator of apical domi-
nance. Proceedings of the National Academy of Sciences of the United 
States of America 111:6092–6097.

Messina CD, Hammer GL, McLean G, Cooper M, van Oosterom EJ, 
Tardieu  F, Chapman  SC, Doherty  A, Gho  C. 2019. On the 
dynamic determinants of reproductive failure under drought in 
maize. In Silico Plants 2019:diz003; doi:10.1093/insilicoplants/
diaa003.

Messina CD, Podlich D, Dong Z, Samples M, Cooper M. 2011. Yield-
trait performance landscapes: from theory to application in breed-
ing maize for drought tolerance. Journal of Experimental Botany 
62:855–868.

Messina CD, Technow F, Tang T, Totir R, Gho C, Cooper M. 2018. 
Leveraging biological insight and environmental variation to 
improve phenotypic prediction: Integrating crop growth models 
(CGM) with whole genome prediction (WGP). European Journal 
of Agronomy 100:151–162.

Meunier F, Couvreur V, Draye X, Zarebanadkouki M, Vanderborght J, 
Javaux M. 2017. Water movement through plant roots - exact solu-
tions of the water flow equation in roots with linear or exponen-
tial piecewise hydraulic properties. Hydrology and Earth System 
Sciences 21:6519–6540.

Millet  EJ, Kruijer  W, Coupel-Ledru  A, Alvarez  Prado  S, Cabrera-
Bosquet  L, Lacube  S, Charcosset  A, Welcker  C, van  Eeuwijk  F, 
Tardieu  F. 2019. Genomic prediction of maize yield across 
European environmental conditions. Nature Genetics 51:952–956.

Navarro JAR, Wilcox M, Burgueno J, Romay C, Swarts K, Trachsel S, 
Preciado E, Terron A, Delgado HV, Vidal V, Ortega A, Banda AE, 
Montiel  NOG, Ortiz-Monasterio  I, Vicente  FS, Espinoza  AG, 
Atlin  G, Wenzl  P, Hearne  S, Buckler  ES. 2017. A study of allelic 
diversity underlying flowering-time adaptation in maize landraces 
(vol 49, pg 476, 2017). Nature Genetics 49:970-970.

Ong  CK. 1983. Response to temperature in a stand of pearl millet 
(Pennisetum typhoides S.& H.). IV. Extension of individual leaves. 
Journal of Experimental Botany 34:1731–1739.

Parent  B, Tardieu  F. 2012. Temperature responses of developmental 
processes have not been affected by breeding in different ecological 
areas for 17 crop species. The New Phytologist 194:760–774.

Parent B, Turc O, Gibon Y, Stitt M, Tardieu F. 2010. Modelling temper-
ature-compensated physiological rates, based on the co-ordination 
of responses to temperature of developmental processes. Journal of 
Experimental Botany 61:2057–2069.

Parent B, Vile D, Violle C, Tardieu F. 2016. Towards parsimonious eco-
physiological models that bridge ecology and agronomy. The New 
Phytologist 210:380–382.

Passioura JB. 1996. Simulation models: science; snake oil, education, 
or engineering? Agronomy Journal 88:690–694.

Penfield S. 2008. Temperature perception and signal transduction in 
plants. The New Phytologist 179:615–628.

Perez  RPA, Fournier  C, Cabrera-Bosquet  L, Artzet  S, Pradal  C, 
Brichet  N, Chen  TW, Chapuis  R, Welcker  C, Tardieu  F. 2019. 
Changes in the vertical distribution of leaf area enhanced light 
interception efficiency in maize over generations of selection. 
Plant, Cell & Environment 42:2105–2119.

Porter JR, Gawith M. 1999. Temperatures and the growth and develop-
ment of wheat: a review. European Journal of Agronomy 10:23–36.

Prusinkiewicz  P, Runions  A. 2012. Computational models of plant 
development and form. The New Phytologist 193:549–569.

Ravi  Kumar  S, Hammer  GL, Broad  I, Harland  P, McLean  G. 2009. 
Modelling environmental effects on phenology and canopy develop-
ment of diverse sorghum genotypes. Field Crops Research 111:157–165.

Reymond  M, Muller  B, Leonardi  A, Charcosset  A, Tardieu  F. 2003. 
Combining quantitative trait loci analysis and an ecophysiological 
model to analyze the genetic variability of the responses of maize leaf 
growth to temperature and water deficit. Plant Physiology 131:664–675.

Sánchez  B, Rasmussen  A, Porter  JR. 2014. Temperatures and the 
growth and development of maize and rice: a review. Global Change 
Biology 20:408–417.

Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory meta-
bolic networks in drought stress responses. Current Opinion in 
Plant Biology 10:296–302.

Tardieu  F. 2016. Too many partners in root-shoot signals. Does 
hydraulics qualify as the only signal that feeds back over time for 
reliable stomatal control? The New Phytologist 212:802–804.

Tardieu F, Parent B. 2017. Predictable ‘meta-mechanisms’ emerge 
from feedbacks between transpiration and plant growth and can-
not be simply deduced from short-term mechanisms. Plant Cell and 
Environment 40:846–857.

Tardieu  F, Cabrera-Bosquet  L, Pridmore  T, Bennett  M. 2017. 
Plant phenomics, from sensors to knowledge. Current Biology 
27:R770–R783.

Tardieu F, Simonneau T, Parent B. 2015. Modelling the coordination 
of the controls of stomatal aperture, transpiration, leaf growth, and 
abscisic acid: update and extension of the Tardieu-Davies model. 
Journal of Experimental Botany 66:2227–2237.

Tardieu F, Simonneau T, Muller B. 2018. The physiological basis of 
drought tolerance in crop plants : a scenario dependent probabilis-
tic approach. The Annual Review of Plant Biology 69:733–759.

Tester M, Langridge P. 2010. Breeding technologies to increase crop 
production in a changing world. Science 327:818–822.

Tirfessa A, McLean G, Mace E, van Oosterom E, Jordan D, Hammer G. 
2020. Differences in temperature response of phenological devel-
opment among diverse Ethiopian sorghum genotypes are linked 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa011/6015538 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 02 June 2021



12 • Tardieu et al.

to racial grouping and agro-ecological adaptation. Crop Science 
60:977–990.

Todaka  D, Zhao  Y, Yoshida  T, Kudo  M, Kidokoro  S, Mizoi  J, 
Kodaira KS, Takebayashi Y, Kojima M, Sakakibara H, Toyooka K, 
Sato  M, Fernie  AR, Shinozaki  K, Yamaguchi-Shinozaki  K. 2017. 
Temporal and spatial changes in gene expression, metabolite 
accumulation and phytohormone content in rice seedlings grown 
under drought stress conditions. The Plant Journal 90:61–78.

Usadel B, Bläsing OE, Gibon Y, Poree F, Höhne M, Günter M, Trethewey R, 
Kamlage  B, Poorter  H, Stitt  M. 2008. Multilevel genomic analysis 
of the response of transcripts, enzyme activities and metabolites in 
Arabidopsis rosettes to a progressive decrease of temperature in the 
non-freezing range. Plant, Cell & Environment 31:518–547.

van  Eeuwijk  FA, Bustos-Korts  D, Millet  EJ, Boer  MP, Kruijer  W, 
Thompson  A, Malosetti  M, Iwata  H, Quiroz  R, Kuppe  C, 
Muller  O, Blazakis  KN, Yu  K, Tardieu  F, Chapman  SC. 2019. 
Modelling strategies for assessing and increasing the effectiveness 
of new phenotyping techniques in plant breeding. Plant Science 
282:23–39.

van  Oosterom  EJ, Borrell  AK, Deifel  K, Hammer  GL. 2011. Does 
increased leaf appearance rate enhance adaptation to postanthesis 
drought stress in sorghum? Crop Science 51:2728–2740.

Vialet-Chabrand  SRM, Matthews  JSA, McAusland  L, Blatt  MR, 
Griffiths  H, Lawson  T. 2017. Temporal dynamics of stomatal 
behavior: modeling and implications for photosynthesis and water 
use. Plant Physiology 174:603–613.

Wang F, Han T, Song Q, Yea W, Song X, Chuc J, Li  J, Chen J. 2020. 
Rice circadian clock regulates tiller growth and panicle develop-
ment through strigolactone signaling and sugar sensing. Plant Cell 
32:3124–3138. doi:10.1105/tpc.20.00289.

Warrington IJ, Kanemasu ET. 1983. Corn growth response to temperature 
and photoperiod. III. Leaf number. Agronomy Journal 75:762–766.

Whittaker  C, Dean  C. 2017. The FLC locus: a platform for discov-
eries in epigenetics and adaptation. Annual Review of Cell and 
Developmental Biology 33:555–575.

Xu ZZ, Zhou GS. 2006. Combined effects of water stress and high tem-
perature on photosynthesis, nitrogen metabolism and lipid peroxi-
dation of a perennial grass Leymus chinensis. Planta 224:1080–1090.

Yin XY, Kropff MJ. 1996. The effect of temperature on leaf appearance 
in rice. Annals of Botany 77:215–221.

Zheng B, Biddulph B, Li D, Kuchel H, Chapman S. 2013. Quantification 
of the effects of VRN1 and Ppd-D1 to predict spring wheat 
(Triticum aestivum) heading time across diverse environments. 
Journal of Experimental Botany 64:3747–3761.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/2/1/diaa011/6015538 by IN

R
AE Institut N

ational de R
echerche pour l'Agriculture, l'Alim

entation et l'Environnem
ent user on 02 June 2021

https://doi.org/10.1105/tpc.20.00289

