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Abstract

Integrated Pest Management (IPM) provides an illustration of how crop protection has (or has not) evolved over the past six
decades. Throughout this period, IPM has endeavored to promote sustainable forms of agriculture, pursued sharp reductions in
synthetic pesticide use, and thereby resolved myriad socio-economic, environmental, and human health challenges. Global
pesticide use has, however, largely continued unabated, with negative implications for farmer livelihoods, biodiversity conser-
vation, and the human right to food. In this review, we examine how IPM has developed over time and assess whether this
concept remains suited to present-day challenges. We believe that despite many good intentions, hard realities need to be faced.
1) We identify the following major weaknesses: i) a multitude of IPM definitions that generate unnecessary confusion; ii)
inconsistencies between IPM concepts, practice, and policies; iii) insufficient engagement of farmers in IPM technology devel-
opment and frequent lack of basic understanding of its underlying ecological concepts. 2) By diverting from the fundamental IPM
principles, integration of practices has proceeded along serendipitous routes, proven ineffective, and yielded unacceptable
outcomes. 3) We show that in the majority of cases, chemical control still remains the basis of plant health programs.
4) Furthermore, IPM research is often lagging, tends to be misguided, and pays insufficient attention to ecology and to the
ecological functioning of agroecosystems. 5) Since the 1960s, IPM rules have been twisted, its foundational concepts have
degraded and its serious (farm-level) implementation has not advanced. To remedy this, we are proposing Agroecological Crop
Protection as a concept that captures how agroecology can be optimally put to the service of crop protection. Agroecological Crop
Protection constitutes an interdisciplinary scientific field that comprises an orderly strategy (and clear prioritization) of practices
at the field, farm, and agricultural landscape level and a dimension of social and organizational ecology.

Keywords IPM - Crop protection - Agroecology - Agroecological crop protection - Reduction of pesticides - Social ecology -
Food systems - Research approaches - Pesticides
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1 Introduction

Since the end of the Second World War, in the Northern
hemisphere, agriculture has undergone a significant intensifi-
cation faced with demands for increased production. The
Green Revolution proposed by William Gaud in 1968 advo-
cates substantial use of inputs, in particular synthetic pesti-
cides (Jain 2010), and this trend continues today in the
Global north and Global south countries. Since the 1990s,
the concept of a “doubly” green revolution demonstrates the
desire to embrace environmental concerns (Conway 1997; de
Schutter and Vanloqueren 2011), but production, perfor-
mance, and profitability remain the priority (Horlings and
Marsden 2011). Today, the concept of sustainable intensifica-
tion proposed by Sir Gordon Conway (Conway 1999) and the
“Montpellier Panel” (Conway et al. 2013) has been put for-
ward for Africa (Pretty et al. 2011; Ratnadass 2020). This
sustainable intensification has been under development since
then, reflecting the various degrees of agricultural sustainabil-
ity, as well as the different levels of inputs. Struik and Kuyper
(2017) believe that there are today two main options for the
sustainable intensification of agriculture: one which aims to
“de-intensify” agroecosystems with high inputs, and the other
which aims to increase the level of inputs in situations where
there is a need to increase yields. Participatory modeling ap-
proaches which combine expert and scientific knowledge
(Aubertot and Robin 2013; Vayssicres et al. 2011) have the
potential to promote innovation in such options because they
allow 1) uncertainties to be explicitly in these contexts recog-
nized; ii) local factors to be incorporated; and iii) a broader
study framework including the social and ecological scope of
agricultural activities (Thérond et al. 2015). These approaches
allow a rigorous scientific framework to be applied which
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combines expert knowledge (from practitioners such as
farmers and advisers) and scientific knowledge (scientific
and technical publications, datasets obtained from field exper-
iments, or diagnoses of commercial fields, and existing simu-
lation models).

Sustainability is at the heart of the debates about agriculture
debate. However, for several decades, and in particular since
the Rio de Janeiro Conference in 1992, it has been recognized
that the sustainability of ecosystems in general, and
agroecosystems in particular, depends on ecosystem health
and functioning, of which the driving force is biodiversity
(namely plant, animal and microbial communities—the latter
represented by fungal, bacterial and viral organisms). That was
nearly 30 years ago and we can make identical observations
today (see the UN SDGs, about IPBES' bleak assessment in
2019 of biodiversity loss). This is also confirmed by significant
recent references (Dainese et al. 2019). The different compo-
nents of agroecology—social movements, sets of practices, and
scientific approaches (Altieri 1995; Dalgaard et al. 2003;
Gliessman 1997; Wezel et al. 2009)—take in hand this ecolog-
ical issue which supports ecosystem services. The United
Nations (UN) recommend agroecology both as a new approach
to development and as a comprehensive alternative to the mas-
sive and hazardous use of pesticides, in order to meet the chal-
lenges of food rights and human rights (UN (United Nations)
2017). Other concepts have highlighted the importance of pro-
moting ecological processes in agroecosystems while increas-
ing agronomic performance: ecologically intensive agriculture
and ecological intensification (Doré et al. 2011; Griffon 2013;
Ratnadass and Barzman 2014) and other forms of agriculture
using the word “green” in a variety of forms, e.g., “making
agriculture green again” (Kuyper and Struik 2014). Today, ag-
roecology provides the main thrust of functional biodiversity to
enhance ecological function and the ecosystem services which
result from it (Ahmed et al. 2016; Bommarco et al. 2013;
Demestihas et al. 2017; Duru et al. 2015; Gaba et al. 2015;
Isbell et al. 2017; Petit and Lescourret 2019; Tilman et al.
2006) notably through spatio-temporal diversification of
agroecosystems (Duru et al. 2015; Gaba et al. 2015;
Malézieux et al. 2009; Ratnadass et al. 212; Tittonell 2014). It
is also important that on-farm management action is significant:
one can diversify at the extra-field level, but its impacts on-farm
are also important and variable (Karp et al. 2018). However, the
implementation of these proposals in terms of agricultural prac-
tices and the design of agroecological farming systems is still
far from being effective in practice, despite investment in re-
search (Simon et al. 2017c), and in the field despite public
policies promoting “greener” agriculture (Caron et al. 2014;
Wezel et al. 2014). The lack of practical examples of biodiver-
sity at the service of agriculture is no doubt due to uncertainties
about the effects of agricultural practices, the ecological pro-
cesses and the associated ecosystem services (Reid et al. 2005;
Thérond et al. 2015; Zhang et al. 2007).
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Today, intensive farming has been shown to have
reached its limits. In pest management, questions relating
to the questions of sustainability have often been raised (van
Lenteren 1998), in particular, the many harmful conse-
quences of the massive use of pesticides: farmers, con-
sumers and society in general face more socio-economic
difficulties (Bourguet and Guillemaud 2016; Sheahan
et al. 2017); there is mounting pollution of water, soil and
the atmosphere (Aubertot et al. 2005; Burdon et al. 2019);
biodiversity is being eroded, particularly that of insects
(Foucart 2019; Hallmann et al. 2017; Sanchez-Bayo and
Wyckhuys 2019) and birds (Chamberlain and Fuller 2000;
Hallmann et al. 2014). Researchers are increasingly
pointing out the risks and consequences for public health
(Baldi et al. 2013; Bassil et al. 2007; Eddleston et al. 2002;
Fantke et al. 2012; Hedlund et al. 2020; Hoppin and
LePrevost 2017; Robinson et al. 2020; Sheahan et al.
2017; Wyckhuys et al. 2020a); even human rights are men-
tioned (UN 2017). This really is the breaking point that must
bring about change among farmers. Also, to give more
weight to this statement, mankind not only pollutes the
planet and puts his health in danger, but the polluters them-
selves run economic losses. This system cannot be sustain-
able. The 17 Sustainable Development Goals (SDG)
adopted in 2015 by the United Nations (https://
sustainabledevelopment.un.org/topics/
sustainabledevelopmentgoals) can be used as a framework
to orient research towards sustainable pest management
(Dangles and Casas 2019; Struelens and Silvie 2020).

Integrated Pest Management (IPM) is the model of crop
protection that has prevailed since its creation in the late
1950s. According to the Food and Agriculture Organization
of the United Nations (FAO), “Integrated Pest Management
(IPM) means the careful consideration of all available pest
control techniques and subsequent integration of appropriate
measures that discourage the development of pest populations
and keep pesticides and other interventions to levels that are
economically justified and reduce or minimize risks to human
health and the environment. IPM promotes the growth of a
healthy crop with the least possible disruption to agro-
ecosystems and encourages natural pest control mechanisms”
(FAO 2020). Initially known as Integrated Control, IPM has,
by virtue of its broad principles, contributed to helped improve
crop protection around the world. These core principles and
guidelines of IPM, as clearly defined back in the 60s (e.g.,
Bottrell and Bottrell 1979) are the following: i) potentially
harmful species will continue to exist at tolerable levels of
abundance; ii) the ecosystem is the management unit; iii) use
of natural control agents is maximized; iv) any control proce-
dure may produce unexpected and undesirable effects; v) an
interdisciplinary approach is essential. In addition, the main
guidelines are as follows: 1) analyze the pest status and estab-
lish thresholds; ii) devise schemes to lower equilibrium

positions; iii) during emergency situations, seek remedial
measures that cause minimum ecological disruption; iv) de-
vise monitoring techniques. Finally, the “IPM pyramid” con-
cept provides a reminder that IPM is not only about “integrat-
ing pest management technologies” but that there should
equally be a hierarchy or prioritization of practices (in which
pesticides are listed as a measure of last resort) (Naranjo
2001). In the absence of this prioritization, one can never
achieve sustainable pest management and leave everything
to chance while causing unacceptable environmental external-
ities (Pedigo 1989). However, without questioning the merits
of the concept (Barzman et al. 2015), and beyond its worthy
principles, there are grounds today to question its performance
in the field particularly when faced with current and future
agricultural challenges.

Several problems are highlighted. Indeed, some authors
call into question the relevance of IPM in a sustainable agri-
culture world. These problems include i) modest reductions or
increase in quantities of pesticides used, contrary to the aim of
the past 70 years; ii) the swarm of definitions and interpreta-
tions of IPM, which mean we no longer know what we are
referring to when we talk about IPM; iii) the gap that exists
between IPM concepts and practices in the field; iv) the fre-
quent lack of ecological sciences, although they have been the
focus for several decades. The objective of this article is to
propose a general assessment of IPM. Its concrete implemen-
tation in the field is too often still based on the systematic and
widespread use of synthetic pesticides. To illustrate the gap
between the “virtuous” concept of IPM and unsustainable
practices (Pedigo 1995), we have borrowed the phrase “good
intentions and hard realities” from Anderson and Feder (2004)
that they used in their analysis of agricultural extension. At the
end of this review, we propose a change of course in crop
protection, in line with the current social, economic, environ-
mental, sanitary, and ecological challenges to tackle in agri-
culture worldwide.

2 Sixty years of IPM
2.1 Conception and development of IPM

After the emergence of modern fungicides in the eighteenth
century, and herbicides and insecticides in the nineteenth cen-
tury, research on chemical weapons during the two world wars
(in particular on gases) led to the discovery of new organic
compounds whose insecticidal properties were then put to use
in agriculture. The development of crop protection since the
end of the Second World War took place in several stages.
Work began in the late 1940s by Californian entomologists,
who developed the concept of “supervised control” of crop
pests (Smith and Smith 1949). This involved monitoring the
population levels of pests in the field, to inform the choice of
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Fig. 1 Biological control: adult of Cheilomenes sulphurea eating aphids
in Réunion (France). Photo: © Antoine Franck—CIRAD

(essentially chemical) protection methods. At the end of the
1950s in the US, Stern et al. (1959) proposed the concept of
Integrated Control, defined as “applied pest control which
combines and integrates biological control and chemical con-
trol.” This concept emphasized the need to take on board
environmental concerns and to conciliate biological control
(Fig. 1) and chemical control (Fig. 2). This was the time when
the general public began to become aware of the harmful
effects of pesticides on the environment (Carson 1962) and
when the first scientific considerations were given to integrat-
ing biological control and chemical control (van den Bosch
and Stern 1962), and these studies have continued since.

In the 1940s and 1950s, the overuse of pesticides, both in
terms of treatment frequency and in the doses of active ingre-
dients applied, led to ecological disasters and the impossibility
of controlling pest populations due to build-up of pesticide
resistance. Such situations have been encountered, for exam-
ple, in Latin America (Wille 1951). In Peru’s Canette valley,

Fig. 2 Chemical control: insecticide treatment in a peach orchard in
South of France. Photo: © Christophe Maitre—INRAE
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in 1956, it had become practically impossible to control out-
breaks of cotton pests despite repeated applications (15 to 25
per season). In Central America (El Salvador, Nicaragua), 30
to 50 treatments in 90 days were recorded (Barducci 1972;
Deguine et al. 2008). In these desperate situations, IPM has
emerged as a suitable and recommended crop protection strat-
egy. However, this did not last.

In the 1960s, pest management was concerned with man-
aging populations of pests in a crop. In the 1970s, especially in
continental Europe, the FAO and the IOBC (International
Organization for Biological and integrated Control of noxious
animals and plants) promoted Integrated Pest Management.
For the FAO, Smith and Reynolds (1966) defined IPM as “a
pest population management system that utilizes all suitable
techniques in a compatible manner to reduce pest populations
and maintain them at levels below those causing economic
injury.” Currently, the FAO definition relies on these tech-
niques and provides a broader view on the health of
agroecosystems. The IOBC defined Integrated Pest
Management in 1973 as “a pest control system that uses a
set of methods that satisfy economic, ecological and toxico-
logical requirements by giving priority to natural control and
by respecting tolerance thresholds” (Ferron 1999). The con-
cept of IPM, for English speakers, Manejo Integrado de
Plagas for Spanish speakers and Protection Intégrée des
Cultures for French speakers (Lucas 2007), has since become
a benchmark in crop protection around the world. Note that
the first two translations are pest-oriented while the latter is
crop-oriented.

In the early 1990s, the IOBC and the LEAF (Linking
Agriculture and Farming) Group proposed extending the prin-
ciples and objectives of IPM to integrated production, respec-
tively under the names Integrated Farming (El Titi et al. 1993)
and Integrated Crop Management (Leake 2000). This implies
that crop protection should not be disconnected from other
objectives expected from agroecosystems. In integrated pro-
duction, preservation of resources (soil, water, energy, and
labor) is associated with limiting pest damage and increasing
agronomic performance (quantity and quality of agricultural
production) (Boller et al. 2004). However, the term
“Integrated Production” has been overused. In fact, it has been
used to describe so-called “virtuous” production or agricultur-
al practices, even if it sometimes departs significantly from the
IOBC directives, and occasionally from its concept and spirit.
This is particularly the case for Integrated Fruit Production in
France with regard to environmental issues (Bellon et al.
2006). In addition, anxious that the term “integrated produc-
tion” might be badly received by the French agricultural pro-
fession due to possible confusion with economic integration,
the FARRE network (Forum of Farmers Responsible and
Respectful of the Environment) chose to translate the
English term Integrated Farm Management (within the frame-
work of the European Integrated Farming Initiative) into
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Agriculture Raisonnée [close to responsible agriculture (Goss
and Barry 1995)], which suffers from the same semantic is-
sues as IPM (Bonny 1997; Lucas et al. 2017). It is therefore
ultimately only in Switzerland, the Czech Republic, and
Northern Italy that Integrated Production has been developed
(and there solely in fruit production), as well as in Reunion
(France), e.g., Integrated Mango Production (Vincenot and
Normand 2009).

This example illustrates the semantics of the various con-
cepts of IPM, in particular their translation to French and other
languages (mostly European and American, the continents
where these concepts appeared). In addition to the ambiguity
of the term “integrated” (vs. “harmonized,” even the notion of
economic integration) is the meaning of the term “manage-
ment” (vs. “control”), and “pest” [vs. bioagressors(s), dis-
ease(s)]. For example, IPM has long been translated in French
as Lutte Intégrée, an almost literal translation of “Integrated
Control,” but the term adopted by consensus is now
Protection Intégrée des Cultures (Integrated Crop Protection)
(Ferron 1999). In German and Dutch, the notion of “control” is
advanced (integrierte Schddlingsbekdmpfung and
Geintegreerde bestrijding) (Wildbolz 1962), while in Spanish,
besides “control,” it resembles the English in that “manage-
ment” is stressed (Manejo integrado de plagas) (Nilda and
Vazquez 2004). This reflects differences in orientation (“pest’:
single pest or set of pests; “crop”: single crop vs. cropping
system vs. agroecosystem vs. production system).

2.2 A quasi-infinite number of definitions and
interpretations

A lot has been written about IPM, but capturing all the differ-
ent interpretations is not the purpose of this review. Instead,
we refer the reader to the following noteworthy publications
or reference works: Abrol 2014; Abrol and Shankar 2012;
Dent 1995; Ehler 2006; Ferron 1999; Heinrichs et al. 2009;
Kogan 1998; Kogan and Heinrichs 2020; Koul et al. 2004;
Maredia et al. 2003; Norris et al. 2003; Peshin and Dhawan
2009; Prokopy and Kogan 2003; Radcliffe et al. 2009;
Rapisarda and Cocuzza 2018; Smith and van den Bosch
1967; Wearing 1988; Wyckhuys et al. 2021).

Over the years, IPM has seen its definitions multiply to the
point where Bajwa and Kogan (2002) identified 67 between
1959 and 2000. Coll and Wajnberg (2017b) give a choice of
42 definitions, based in part on the Bajwa and Kogan (2002)
list, spanning the period 1959-2016, reflecting the diversity of
elements, concepts, and criteria. It is likely that there are more
than a hundred definitions of IPM today.

For a three-word concept, there are as many definitions as
there are authors and for each definition that emphasizes one
particular feature of IPM, another can be found contradicting
it (Jeger 2000). This has led to confusion and to highly

inconsistent levels of implementation in the field (Lucas
et al. 2017; Stetkiewicz et al. 2018).

It is therefore pretentious to offer a single definition of
IPM. Further to Bajwa and Kogan (2002) and Coll and
Wajnberg (2017b), Stenberg (2017) considers that IPM is:
“a holistic ‘approach’ or ‘strategy’ to combat plant pests and
diseases using all available methods, while minimizing appli-
cations of chemical pesticides.” “Approach” refers to the sci-
entific and conceptual approach and “strategy” to its imple-
mentation in the field, depending on the definition of IPM
used or levels of practice complexity [e.g., the four levels of
IPM according to Prokopy 1994], adoption of IPM ranges
from 0 to 100% (Shennan et al. 2001).

It is difficult to find characteristics common to all definitions
of IPM. However, we offer some of them below. IPM’s prima-
ry aim is to integrate the different pest management techniques
(regular cropping practices along with genetic, physical, biolog-
ical, and chemical means). It also promotes socio-economic
viability and a reduction in use of chemical pesticides, especial-
ly after 1962 and the publication of Carson (1962), to minimize
the risks to the environment and public health. IPM also aims to
make these techniques (notably chemical and biological)
compatible and synergistic. This highlights the need for
multidisciplinary and interdisciplinary research on different
techniques and their interactions. Finally, the use of chemical
pesticides is authorized only as a last resort and, if necessary,
based on intervention thresholds, part of the guidelines of [IPM
and implied in the universally accepted FAO definition. The
first and stated last characteristics we mentioned were also
identified by Hurley and Sun (2019) as two key elements fre-
quently found in definitions.

Coll and Wajnberg (2017b) point out that the definitions
fail to mention that integration relates to all the pests of a
particular crop (phyto-pathogenic microorganisms, arthropod
pests, phyto-pathogenic/pest nematodes, weeds/parasitic
plants). For them, integration is about controlling a single or
a small number of pest species. This is sometimes called “ver-
tical integration,” as opposed to “horizontal integration”
which entails simultaneous management of several pest clas-
ses (Aubertot et al. 2005; Ehler 2006; Lamichhane et al. 2017,
Weiss et al. 2009). Finally, Young (2017) calls attention to the
fact that insects are the most studied type of pests in [PM (75%
of publications, based on a meta-analysis of the last 40 years).

3 IPM roadblocks and adoption barriers

During its 60-year history, clear successes have been achieved
in IPM implementation in both Western nations and in the
Southern hemisphere, involving concrete reductions in pesti-
cide use, altered farming patterns and wide-ranging socio-eco-
nomic benefits (Norton and Mullen 1994; Pretty 2005; Pretty
and Bharucha 2015). In Southeast Asia, farmer training
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programs attained a staggering 92% pesticide reduction in rice
(Bangladesh) or 50-70% reduction in tea and cabbage
(Vietnam) (van den Berg 2004). In addition, the
International Rice Research Institute (IRRI) attained 50—
80% cuts in insecticide use on millions of rice farms without
any noticeable yield loss (Bottrell and Schoenly 2012). In the
US, the Huffaker project for IPM and the IPM consortium
(1972—1985) attained a 70-80% reduction of a wide set of
pesticides on > 5 million hectares—resulting in more than
$500 million annual savings (Pimentel and Peshin 2014). In
a review of more than 500 IPM programs from across the
globe, 13% and 19% respective increases in crop yields and
farm profits were logged (Waddington and White 2014) with
even partial I[PM adoption delivering concrete benefits
(Norton et al. 2019). Irrespective of possible difficulties in
impact assessment (Puente et al. 2011; Rejesus and Jones
2020), IPM has certainly had a positive impact on farmer
livelihoods and environmental integrity.

Particularly in the Southern hemisphere, millions of small-
holder farmers successfully adopted IPM (Hammig et al.
2008; Ngin et al. 2017; Pretty 2005; Rejesus et al. 2009),
though these achievements were routinely undone following
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program termination, political change, altered priorities, or
agroindustry meddling (Pretty 2005; Thorburn 2015; Wilson
and Tisdell 2001). Also, several (top-down) IPM programs
failed to account for local agroecological or socio-economic
contexts (Ruesink 1980; Smith 1983; Uneke 2007).
Participatory training programs such as the UN-endorsed
Farmer Field Schools (IPM-FFS) were criticized for their pro-
hibitive cost, needs in personnel requirements and insufficient
scalability (Rajotte et al. 2005; Tripp et al. 2005; van den Berg
and Jiggins 2007; Waddington and White 2014; Waddington
et al. 2014). However, the FAO Farmer Field Schools pro-
gram has covered millions of farmers across Southeast Asia,
and average reductions of 70-75% in pesticide use were
attained (with reductions in some districts in Indonesia of up
to 99%). Yet, once supportive policies and funding were re-
moved, pesticide use surged again (Bottrell and Schoenly
2012; Heong and Escalada 1997; Thorburn 2014 and 2015).

More than half a century after its conception, [PM has not
been adopted to a satisfactory extent and has largely failed to
deliver on its promise (Bottrell 1996; Corbet 1981; Ehler
2006; Ehler and Bottrell 2000; Orr 2003; Pimentel 1982;
Sherman and Gent 2014; van den Bosch 1965; Willey
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1978). The low levels of farmer adoption and insufficient [IPM
technology diffusion are invariably ascribed to different fac-
tors, some of which closely related to local farming contexts.

We summarize reasons for low adoption and spread of IPM
in both the Northern and Southern hemispheres (Fig. 3).
While certain factors apply across innovations (Juma 2016),
others are inherent to crop protection or the broader agricul-
ture sector. In the following paragraphs, we examine each of
these IPM roadblocks through a lens of sustainability transi-
tions, which help in understanding social, technical, institu-
tional and ecological aspects of shifts towards sustainability
(Loorbach et al. 2017).

3.1 Weak farmer knowledge base

“What farmers don’t know can’t help them,” so wrote the
anthropologist Jeffery Bentley when outlining farmers’ tech-
nical knowledge regarding plant health (Bentley 1989). A key
factor hampering uptake of (knowledge-intensive) IPM is
farmers’ deficient ecological literacy and incomplete under-
standing of its constituent processes (Horgan 2017; Murray
et al. 2021; Rajotte et al. 2005; van Mele 2008; Wyckhuys
et al. 2019a). This particular barrier applies across countries
and farming contexts, comprises technical aspects and basic
ecological concepts, and manifests as an undervaluation of
certain IPM components (Zhang et al. 2018). For example,
while the active conservation or in-field augmentation of ben-
eficial organisms is an important IPM technology, many
farmers are totally unaware of the existence of biological con-
trol agents such as parasitic wasps, predaceous mites or insect-
killing nematodes (Wyckhuys et al. 2019a). In early attempts
to promote IPM, e.g., through training & visit (T&V) exten-
sion schemes or other top-down technology transfer initia-
tives, farmers were indeed insufficiently empowered to make
decisions based on such ecological information. Yet, partici-
patory training efforts such as FFS included “hands-on” expe-
riential learning modules and effectively removed this con-
straint (van de Fliert 1993; van Schoubroeck 1999).

FFS experiences also revealed a need for farmers to be
sufficiently involved in IPM development, from design up till
in-field validation (Andrews et al. 1992; Geertsema et al.
2016; Morse 2009; van Huis and Meerman 1997; Way and
van Emden 2000). Collaborative FFS facilitate changes in
farmers’ practices and trajectories compared to consultative
FFS (Bakker et al. 2021). Participatory research and two-
way dialogues between scientists, extension officers, and ex-
perts are of critical importance (Bentley et al. 2003; Deguine
and Ratnadass 2017). Building these elements into extension
programs helps blend practical experience with scientific in-
sights, thus filling knowledge gaps and circumventing the
disciplinary silos that pervade in academia (Feder et al.
2004; Untung 1995; van Huis and Meerman 1997).
Moreover, the communication tools delivering IPM

information can also be used to deliver pesticide information
(CAVAC 2014; Flor et al. 2018). IPM practitioners still need
to critically examine how these tools, especially digital media,
will disseminate IPM practices. Moreover, there is only limit-
ed uptake in the use of communication tools in certain cultural
and linguistic contexts. Experiences vary from country to
country. The benefits of participatory extension have primar-
ily been reaped in the Southern Hemisphere, where (often
illiterate) smallholder farmers operate in heterogeneous farm
settings and thus have diverse needs (Alwang et al. 2019;
Morse and Buhler 1997). Group-based learning processes,
e.g., as promoted through FFS take time and the ensuing in-
novation tends to proceed at a slow pace (Rebaudo and
Dangles 2011), but ongoing experimentation by individual
farmers can yield valuable, locally adapted technologies
(van Mele et al. 2005). Rebaudo et al. (2014) suggest that
“new approaches in pest management extension practices
should include topics such as group decision making, inter-
group relations, commitment, and persuasion which deal di-
rectly with how other farmers influence each other’s thoughts
and actions.” On the other hand, in the Northern Hemisphere,
there appears to be much confusion among farmers regarding
whether certain technologies are [IPM-compatible or not
(Stetkiewicz et al. 2018). Moreover, farmers are targeted in
communications about biological control, but there is less en-
gagement of other types of stakeholders such as policymakers
(Barratt et al. 2018).

3.2 User preferences and risk aversion

End-users’ perceptions are a key obstacle to IPM diffusion,
and several IPM constituent technologies are perceived as
inflexible, difficult to implement and incompatible with (deep-
ly engrained) farming habits (Cowan and Gunby 1996; Parsa
et al. 2014). IPM implementation can easily be perceived as
risky considering how its benefits in terms of technological
reliability, sustained yield or enhanced profit, are often unclear
to farmers (Fernandez-Cornejo and Kackmeister 1996; Jors
et al. 2017; Lefebvre et al. 2015; Marrone 2009). Social and
psychological elements (e.g., prevailing beliefs or attitudes;
Morales and Perfecto 2000; Wyckhuys et al. 2019a) further
tilt the balance in favor of risk-averse practices such as pre-
ventive use of agrochemicals (Despotovi¢ et al. 2019;
Munyua 2003; Vasileiadis 2017). Also, many farmers place
disproportionate emphasis on potential pest-induced losses or
the relative role of crop protection within overall farm man-
agement (Heong and Escalada 1997; Ohmart 2008; Palis
2006), while they are far less clear about the “insurance” ben-
efits provided by, for example, insect biodiversity (Lamarque
et al. 2014). As such, the ensuing decision-making is guided
by “worst case” scenarios and further reinforced by marketing
campaigns of agrochemical suppliers (Heong and Escalada
1999). Yet, such misconceptions can easily be mitigated by
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relatively cheap, small-scale experiments, e.g., within FFS
programs (Heong and Escalda 1999).

In both the Northern and Southern hemispheres, a key hur-
dle is the overall absence (or insufficient farmer awareness) of
IPM decision thresholds for particular crops and the convolut-
ed monitoring schemes that are required to assess on-farm pest
pressure (Murray et al. 2021; Ohmart 2008; Sivapragasam
2004). Often, the cumbersome nature of threshold-based
IPM decision-making leads farmers to confuse different man-
agement concepts or to favor more user-friendly options and
convenient application methods, e.g., insecticide-coated
seeds, calendar-based sprays (Horgan 2017; Mdhring et al.
2020). Conversely, straightforward messaging, simple deci-
sion rules and heuristics such as “no early spray” or “3 reduc-
tions, 3 gains” can help steer farmers towards more environ-
mentally friendly crop protection schemes (Heong and
Escalada 1997; Huan et al. 2005). Other constraints that apply
primarily to the Southern hemisphere include inadequate
meaningful participation and a lack of consideration for the
ultimate needs and preferences of end-users (Igbal 2010;
Samiee et al. 2009).

3.3 Vested interests and corporate responsibility

The adoption of IPM is shaped by extensive lobbying, mar-
keting, and wide-ranging manipulation by the agrochemical
industry (Goulson 2020). Across the globe, IPM technologies
struggle to find fertile ground and flourish in settings where
farm advisers are paid (or decision-support tools are designed)
by this industry, where farmers annually draw loans from
chemical suppliers, or where the only accessible source of pest
management information is to be found behind the counter of
the pesticide shop (Ehler 2006; Flor et al. 2020; Wagner et al.
2016; Wyckhuys and O'Neil 2007). Biased information about
IPM and pesticide safety thus abounds while the only behav-
ior change that is fervently pursued is the one leading to
sustained or enhanced company profits (Murray and Taylor
2000). There are now innumerable accounts of direct and
covert interference by agrochemical companies and concerted
efforts to sustain IPM beliefs that are aligned with their busi-
ness plans (Goulson 2020; Hutchins 1995; Murray and Taylor
2000; Pretty and Bharucha 2015; Untung 1995; van den
Bosch 1989). In the meantime, alternative IPM products face
diverse bureaucratic barriers to proper registration and farmer
access (Barratt et al. 2018; Cowan and Gunby 1996;
Vanloqueren and Baret 2009).

The above trends are sustained by schemes that support
pesticide subsidies and which create confusion (Parsa et al.
2014). None of the above is unique to the present-day pesti-
cide problem, but are typical features of the struggle by pro-
ducers of incumbent technologies (i.e., synthetic pesticides) to
maintain a “status quo” when faced with the emergence of
potentially “disruptive” innovations such as biological
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control, agroecology, or robotic weeding (Juma 2016).
Indeed, today’s agrochemical industry is walking along sev-
eral of the well-trodden paths that, for example, the Horse
Association of America chose when resisting farm mechani-
zation during the 1920s.

Though the agrochemical industry is omnipresent in both
hemispheres, the rudimentary registration processes in several
developing countries have led to high pesticide loads, a con-
tinued use of banned and restricted-use substances and a lack
of water-tight regulation (Wesseling 2005). In settings with
resource-poor smallholders, subsistence farming systems, no
organic certification schemes, or lagging demand for high-
value commodities, the availability of cheap pesticides hin-
ders adoption of IPM (Orr 2003; Pretty and Bharucha 2015).
Conversely, in areas where consumers are willing to pay a
premium price for pesticide-free produce or where non-
chemical alternatives are widely available (e.g., biological
control in Europe’s greenhouse sector; van Lenteren 2012)
certain IPM barriers can be removed (Lefebvre et al. 2015;
Marrone 2009; Onillon and Gullino 1999). In either case, for
innovation and eventual “creative destruction” to proceed
(Juma 2016), there are clear and outspoken vested interests
and very few signs that the agrochemical industry is commit-
ted to regulate itself and take responsibility for its actions
(Goulson 2020). A sign of hope is that comprehensive policy
frameworks are emerging, e.g., the EU Farm-to-Fork program
that will help the agrochemical industry prioritize environ-
mental health instead of limitless profit (European
Commission 2020).

3.4 Traditional practices and emerging IPM
technologies

Despite the decades of committed basic and applied research
that have gone into developing and validating its constituent
technologies, insufficient implementation of IPM advances
have been made for a number of crops in the Southern hemi-
sphere (Cowan and Gunby 1996; Goodell 1984; Rajotte et al.
2005; Uneke 2007; Way and van Emden 2000; Wyckhuys
et al. 2013). Also, the decades-long research on non-
chemical crop protection has not resulted in changes in farmer
behavior or in tangible socio-ecological outcomes in either
hemisphere (Gonzalez-Chang et al. 2020). On the other hand,
much can be learned from centuries of experience of tradition-
al farmers and the wealth of preventative, agroecological prac-
tices that are already in place in a myriad of cropping systems
(Altieri 2004). For most broad-acre crops, there is currently a
range of effective, locally validated IPM alternatives including
biological control, decision-support tools, innovative pesticide
delivery modes (e.g., attract-and-kill) or agronomic measures
such as diversified crop sequences, implementation of cover-
crops, and inter-cropping (Veres et al. 2020). For example, in
78% of the authorized usage cases for neonicotinoid
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insecticides in France, at least one non-chemical alternative
method can immediately replace chemical compounds (Jactel
etal. 2019). A global analysis recently demonstrated how IPM
technologies such as biological control can alleviate the food
safety and environmental health hazards linked to
neonicotinoid insecticides (Wyckhuys et al. 2020a). The tech-
nological progress and implementation readiness of various
biological control and biopesticide approaches bodes well
for ongoing efforts to phase out these compounds in a range
of fruit and vegetable crops in Europe and North America.
Genetically engineered crops producing Bacillus
thuringiensis (Bt) endotoxins and host-plant resistance also
fit under the IPM umbrella and have ample potential to reduce
pesticide use, though the former technology does carry certain
risks (Bharucha 2015; Peshin and Zhang 2014; Romesis et al.
2019). In recent years, the rise in artificial intelligence, remote
sensing, and autonomous agricultural vehicles (e.g., solar-
powered mechanical weeding robots) has created golden op-
portunities for a sharp reduction, or even outright suspension,
of pesticide use (Filho et al. 2020). Notwithstanding the rapid
technological advances and IPM innovations, one should en-
sure that smallholder farmers in the Southern hemisphere are
not bypassed, that context-specific solutions are offered and
that a full integration of indigenous ecological knowledge is
pursued (Abate et al. 2000; Nampeera et al. 2019; van Huis
and Meerman 1997).

3.5 Hard and soft policy levers

Effectively influencing farmer behavior is difficult (Kanter
et al. 2019). However, to ease this process, different “pressure
points” can be identified to drive along agri-food value chains
and both soft (i.e., certification schemes, food safety labelling)
and hard policy options (i.e., conditional financial assistance)
can be considered. Still, [IPM-related policies are faced with
three common constraints. First, diverging IPM definitions
and connotations complicate the formulation and interpreta-
tion of clear policies (Ehler 2005; Ehler and Bottrell 2000;
Hoy 2020; Jeger 2000; Ohmart 2008; Untung 1995).
Second, where IPM is codified into legislation, there are un-
intended effects and vested interests which move towards an
improvement in pesticide efficiency (Matyjaszczyk 2019;
Rola and Pingali 1993; Trumble 1998). Third, a risk-averse
policy environment exists around some IPM solutions with,
for example, disproportionate attention given to the eventual
non-target risk of ecologically based alternatives such as bio-
logical control (Barratt et al. 2018; van Wilgen et al. 2013).
These concerns are often translated into overly stringent reg-
ulatory processes that tend to obscure positive benefits and
prevent the timely implementation of and farmer access to
science-based solutions, which are primarily aimed at allevi-
ating the well-documented adverse ecological impact of con-
ventional control practices.

In countries or geopolitical entities where IPM has been
made mandatory (e.g., the EU), the operationalization, moni-
toring, and expectations for immediate conversion limited the
effectiveness of IPM-based policies (Barzman et al. 2015;
Matyjaszczyk 2019). There are cases where sustainability
and IPM are explicit in policy, but these become blurred by
notions of food security or intensification that ultimately again
legitimize reliance on pesticides (Flor et al. 2018; Untung
1995). Furthermore, there are cases of delayed policies that
hamper IPM adoption: underfinanced extension systems that
provide inadequate support to farmers in pest diagnosis and
IPM implementation (Pretty and Bharucha 2015; Rola and
Pingali 1993). In the Northern hemisphere, knowledge-
deficit interventions and policy mismatches lead to an ineffec-
tive response to the pressing needs of some novice farmers,
farm incubators, and small-scale marketing innovators where
locally validated IPM represents a desirable technological ad-
vantage (Calo 2018).

3.6 Cultural barriers and the decline of public interest
science

For decades, systems-approaches have been advocated to ad-
vance the development and implementation of IPM, while
integrated multi-stakeholder, multi-level projects are increas-
ingly seen as vital to attain measurable change at scale (Altieri
et al. 1983; Lewis et al. 1997; Rodenburg et al. 2015; Schut
etal. 2014). Yet, the bulk of IPM scientists continue to operate
in silos, adopt a pest-centric perspective, exhibit increasing
‘niche’ specialization and tend to focus on their “mandatory”
crop and/or pest system (Alwang et al. 2019; Coll and
Wajnberg 2017b; Ehler 2006; Morse and Buhler 1997;
Rosenheim and Coll 2008; Vanloqueren and Baret 2009;
Warner et al. 2011). Also, reaching out across disciplinary
boundaries is still an unusual act: even though economic or-
nithology experienced a bonanza during the late nineteenth
century (Kronenberg 2014), only scant attention is now paid
to valuing the contribution of bird- or insect-mediated biolog-
ical control to IPM (Garcia et al. 2020; Naranjo et al. 2015).
Another aspect that is routinely forgotten is how IPM can
entail collective decision-making, coordination, or shared
norms and values; these are not automatically generated in
communities (Castella et al. 1999; Cowan and Gunby 1996;
Palis 2006; Parsa et al. 2014; Rebaudo et al. 2014). Yet, a
perceived need for collective decision-making in certain farm-
ing systems should not preclude a push for behavioral change
at the individual level. Indeed, when addressing highly mobile
polyphagous pests or noxious weeds, land-use or pest man-
agement decisions of just a handful of farmers can bring about
often dramatic positive change at the agrolandscape level
(Bagavathiannan et al. 2019; Vreysen et al. 2007). Also, even
when only a fraction of farmers within a given community is
trained on IPM, this information invariably gets put into
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practice, triggers further innovation, and disseminates filters
through existing social networks (Rebaudo and Dangles 2013;
Wyckhuys and O'Neil 2007).

In the Southern hemisphere, government extension agents
and crop advisors unaffiliated with the pesticide industry are seen
to have low status because of their comparatively limited opera-
tional funds (Teoh and Ooi 1986). For many of these actors,
sectoral bureaucracies further impede their work (Untung
1995). These are part of the human or institutional mechanisms
that keep pesticide use locked into pest management routines
(Spangenberg et al. 2015). Finally, the institutional reconfigura-
tion of universities and the accompanying decline in public in-
terest science should be of concern to all (Warner et al. 2011).
Since its heydays in the 1960s, biological control science (as a
key constituent of IPM) has been removed from core curricula in
the University of California (UC) system while favouring more
“fancy,” prestigious disciplines such as transgenic engineering.
Conversely, many countries in the Southern hemisphere continue
to lag behind their northern counterparts in building the necessary
institutional capacity on public interest science domains that un-
derpin IPM and agroecology.

4 Inconsistencies between concepts
and practices in IPM

4.1 Integration or juxtaposition of practices?

IPM has often been considered a sphere of integration (de
facto by the words that make up its name). Prokopy (1994)
and Kogan (1998) defined 3 levels of integration in IPM: an
initial level of single pest management techniques, a second
level of strategies for the management of a group of pests and
a third level of integration of management techniques for pop-
ulations of several pests as part of the overall strategy of ag-
ronomic management of cropping systems. Figure 4 presents
an ideal situation of integrated protection in an apple orchard.

Fig. 4 Integrating different
methods to achieve pome fruit
protection against pests, diseases,
and weeds (adapted from Simon
etal. (2017a))

Tree density,
tree training

This theoretical range of integration has rarely been tested in
the field. In reality, IPM has often been a juxtaposition of
different crop protection techniques (Ehler 2005; Lucas et al.
2017; Stenberg 2017). Frison et al. (1999) confirms that inte-
gration at several levels (i.e., control of a single pest on a
particular crop; control of several pests on the same crop;
several crops; several farms) is not common. This lack of
integration means that practices “superimposed” on each other
do not result in any synergy and are not optimized (Ehler
2006; Hoy 2020). They are sometimes incompatible, or barely
compatible with each other (Reteau 2017; Suckling et al.
2014), with instances of synergy occurring by pure chance.
In the goal of demonstrating that this integration is not obvious
in practice, Ohmart (2009) draws a clear distinction between
two areas of IPM: on the one hand, the academic sphere,
research and knowledge, and on the other, the field and
production area. Long before him, Hutchins (1995) distin-
guished an “idealistic IPM” of theory and a “realistic IPM”
for farmers. There is little interaction between these two
spheres: reasons include farmers' ignorance of the science be-
hind the techniques; there is a confusion of principles due to
different definitions; insufficient consideration of ecological
issues in research; insufficient links between researchers and
practitioners (Deguine and Ratnadass 2017). In addition, there
is a deficit in the roll-out of incentives which are clearly nec-
essary to encourage farmers to adopt IPM, for example at the
European level where it is compulsory (Lefebvre et al. 2015).

The search to coordinate chemical and biological control in
the 1950s was the driving force behind Integrated Control, the
forerunner to IPM, and the conditions for integration were
quickly reviewed (van den Bosch and Stern 1962). Today,
however, their compatibility is widely questioned (Ehler and
Bottrell 2000; Lucas et al. 2017; Stenberg 2017; Suckling
et al. 2012). Analysis of the history of research and crop pro-
tection practices shows that chemical and biological control
have undergone concomitant and continuous changes, but
most often, these changes have been concomitant and

Selective pesticides
to minimize detrimental
effects

‘ ﬁ Pest damage &
risk evaluation

| Low-susceptibility

" wgultivar,

Fertilisation,
irrigation...

INRAZ

@ Springer

3 | Scouting

Weather
station



Agron. Sustain. Dev. (2021) 41:38

Page 11 0f 35 38

d

Fig. 5 Geographical representation of public interest in different pest
management topics at a global and country-specific level. Online public
interest (or so-called salience; Wyckhuys et al. 2019b) was assessed over
2004-2020 by running Google Trends queries for different search terms.
More specifically, searches were performed for “Integrated Pest
Management” (a), “Biological Pest Control” (b), “Agroecology” (c), and

independent from one another (Reteau 2017). Figure 5 sug-
gests that one can simply indicate how scientific and public
interest in different types of pest management strategies dif-
fers widely, with rapidly emerging attention. Examples of this
are biological control in the Andes region (particularly
Colombia) and eastern Africa, biopesticides in China,
Western Europe and India, or agroecology in a number of
countries in Africa and Latin America. In addition, Perrin
(1997) suggests that both chemical and biological approaches
have resulted in better cooperation between public and private
sectors and are both considered as possible solutions. In the

Fig. 6 Frequencies (yearly 0.0000800%

counts, normalized to the
maximum counts for the term
“Integrated Pest Management”)
of four key terms—Integrated
Pest Management, Agroecology,
Biopesticide, and Biological Pest
Control—found in sources
printed between 1960 and 2019.
Analysis performed on https://
books.google.com/ngrams on
March 12, 2021

0.0000400%

“Biopesticide” (d). Within a given map, darker colors reflect a higher
proportion of internet queries for a given search term relative to the total
number of internet searches in that country over the 16-year time period.
Gray represents insufficient data. All maps are drawn based on non-back-
corrected outputs. Google Trends queries can be run on https:/trends.google.
com

rare instances where these forms of control were used concur-
rently, there was a lack of clear planning and of a strategy
regarding levels of intensity; results were disappointing,
underlining their incompatibility (De Bach 1974; Deguine
and Ratnadass 2017).

In addition to Fig. 5, a research on Google Books Ngram
Viewer shows the temporal evolution of several terms, includ-
ing “Integrated Pest Management” and “Agroecology” (Fig.
6). There has been a steady decline of IPM in books since the
mid-1990s and an increase in Agroecology since the early
2000s. These curves suggest that the application of
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Biopesticide
Biological Pest Control
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agroecology to crop protection (Agroecological Crop
Protection, see Section 7) is underway and that a paradigm
shift, at least in the books, is taking place. This paradigm shift
is probably an abandonment of the pest “enemies/allies” con-
cept, shifting towards a vision based on Sustainable
Development Goals (SDG) (Dangles and Crespo-Pérez
2020). It is noticeable that biological control remains a narrow
area of publication, but it is perfectly compatible with
agroecology.

It is important to draw attention to the fact that despite the
strict guidelines and rules of IPM and the clear need for a
hierarchy different technologies, as identified in the late
1960s/early 1970s and described in the IPM pyramid
(Naranjo 2001), this has been diluted. Thus, when IPM was
first developed, there was no room for subjective assessments
and differing interpretations—as to fit individual companies’
business plans. As indicated by Pedigo (1989): “In order to
integrate several tactics into the overall pest management pro-
gram, a set of principles is needed as a guide. Without princi-
ples, integration may proceed along some serendipitous routes
- which is usually ineffective and generally unacceptable.” In
pepper and tomato production in greenhouses, Dader et al.
(2020) insist that the combination of biological and chemical
control requires a schedule in their implementation and a good
knowledge of the interactions: early establishment of benefi-
cials, then chemical control, with or without compatibility
depending on the beneficials and the molecules. Hokkanen
(2015) considers that today there is a significant gap between
the traditional principles of IPM, which are described in the
IPM pyramid, and the current situation. The use of chemical
pesticides, which was supposed to represent only a small part
of this pyramid, represents the majority of cases, which can
result in an upside down pyramid. For Hokkanen (2015), “it
becomes obvious that this method of pest management will
neither be stable nor sustainable.”

It has also long been noted that there is no proposed
strategy for the implementation of practices in the field. It
will have taken more than half a century since the advent
of IPM for a sequential logic to be proposed for IPM
implementation in the European Union (Barzman et al.
2015). While these authors suggest using chemical control
as a last resort, after exhausting all other techniques (i.e.,
biological control, cultural control, physical control, vari-
etal control), chemical control as a first resort is still com-
monplace and still observed in the field in the vast major-
ity of farms not only in Europe, but also around the world
(Lucas et al. 2017).

4.2 The pervasiveness of chemical protection
There are calls for sustainable agriculture, whether at a global

level or in circular circuits (Byerlee et al. 2009; LaCanne and
Lundgren 2018); in these contexts, there is a legitimate place
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for crop protection strategies that respect the environment and
that take into account the ecological functioning of
agroecosystems. Yet, we are still facing increasing levels of
pesticide use (Guichard et al. 2017). It should be stressed that
there are even negative impacts on farm-level economics—
e.g., farmer revenue and profitability (Lechenet et al. 2017a, b;
Mourtzinis et al. 2019). Pesticide use not only remains a dom-
inant practice, but it has steadily increased over the past 60
years and overall toxicity has also increased (Bernhardt et al.
2017; DiBartolomeis et al. 2019; Enserink et al. 2013).
Hedlund et al. (2020) speak of “ever-increasing” use, and even
in highly developed countries there is no sign of reduction,
especially in large-scale field crops (Piwowar 2021). This is
exactly what has been observed in most agricultural produc-
tion systems, with an ongoing proliferation of chemical con-
trol at best complemented with some other measures (Coll and
Wajnberg 2017a; Lucas et al. 2017; Peshin and Zhang 2014).

Farmers are often reluctant to give up agropharmaceuticals
because of their ease of use, their proven short-term effective-
ness, their cost-effectiveness in most of the production situa-
tions, and because they are seen to guarantee fewer production
losses. There have been cases where a well-established IPM
was abandoned in favor of uncontrolled pesticide use.
Toleubayev et al. (2011) give the example of Kazakhstan after
the fall of the Soviet Union in 1991. The systematic reappear-
ance of pesticides is linked to brutal changes in organizational
and institutional frameworks which disrupted research, train-
ing and collaborative work. However, the phytosanitary train-
ing and monitoring of farmers is often undertaken by repre-
sentatives of the agrochemical industry (Ohmart 2009). This
explains why farmers remain dependent on pesticides (Epstein
and Zhang 2014; Matyjaszczyk 2019) and why pesticide use
has not declined is even increasing in some countries. This is
true for Europe (Buckwell et al. 2020), under the directive on
the sustainable use of pesticides (2009/128/EC), despite na-
tional plans to reduce the use of pesticides; in France, there
was a 25% increase in the use of agricultural pesticides be-
tween 2011 and 2018 (Guichard et al. 2017). This is also the
case in the US (Mechan and Gratton 2016), China (Zhang
et al. 2011), India (Peshin and Zhang 2014) and in most de-
veloping countries. For Ehler (2005), IPM can be considered
as Integrated “Pesticide” Management (Peshin and Zhang
2014) and it remains the dominant practice in California, the
birthplace of IPM (Rosenheim et al. 2020). In this American
state, Epstein and Bassein (2003) do not record any decrease
in pesticide use. Despite some successful experiences [e.g.,
IPM on Bemisia tabaci on cotton in Arizona (Naranjo and
Ellsworth 2009)], there an increase in insecticide use in the
United States between 1997 and 2012 (Meehan and Gratton
2016).

The example of the development of IPM in the European
Union deserves to be described. IPM is now the cornerstone of
crop protection, since European Directive 2009/128/EC made
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the application of IPM principles mandatory in 2014
(Barzman et al. 2014). This directive raises questions of sub-
stance. Firstly, the IPM principles it promotes did not corre-
spond to an explicit and orderly description of practices,
which were only presented later (Barzman et al. 2015).
Second, there is no explicit document on the operational of
an ordered phytosanitary strategy in the field describing the
content of practices. This makes it difficult, if not impossible,
to monitor the application of IPM in the field (Matyjaszczyk
2019; Thiel et al. 2021). Thirdly, the application of this direc-
tive, which took effect on 1 January 2014, “transformed” all
areas that were not considered to be in IPM on 31 December
2013 (e.g., that were cultivated with a conventional chemical
protection program) into areas cultivated in IPM the following
morning. Should not this be an eye-opener? Fourthly, apart
from principles 1 (prevention), 2 (monitoring), and 3 (prefer-
ence to non-chemical methods, which is not applied in the
field) proposed by Barzman et al. (2015), the other principles
concern agrochemical protection, with priority given to the
search for efficiency in the use of agrochemicals. Moreover,
itis to be feared that the efforts made to improve the efficiency
and good conditions of pesticide use, in the drafting of most of
the IPM principles of the European directive, paradoxically
contribute to legitimizing and facilitating their use in the field
even more. Since the [IPM was made mandatory by directive
2009/128/EC (i.e., “compulsory IPM”), Matyjaszczyk (2019)
highlights the difficulties encountered in the field: no available
alternatives to pesticide treatments; lack of available interven-
tion thresholds for triggering these treatments; lack of effec-
tive biopesticides; lack of farmers’ knowledge on preventive
measures; low economic profitability. Buckwell et al. (2020)
point out that the strategy to reduce farmers’ dependence on
pesticides is not working well in practice. Lefebvre et al.
(2015) consider that it is necessary to implement public incen-
tive policies so that farmers are truly motivated to adopt IPM,
without favoring agrochemical practices.

However, relevant ways of looking at IPM and experiences
that have worked well in the real world should be mentioned.
Thus, in order to control pest populations within a delimited
area, a variant of IPM, the “area-wide IPM” (AW-PM) has
been proposed (Vreysen et al. 2007), and has been widely
developed as a complement to the more frequent "field-by-
field IPM" approach mentioned by Spurgeon (2007). The
AW-PM delimited area can be large (landscape, region, coun-
try, several countries), but it can also be, in principle, a closed
environment such as a greenhouse. AW-PM has existed for a
long time and has shown undeniable success on a large scale
(Vreysen et al. 2007). This is the case of suppression or erad-
ication of fruit flies, where a first phase of reducing pest pop-
ulations using different techniques, sometimes chemical, is
then followed by a second phase of eradication using other
techniques, sometimes biological, such as the Sterile Insect
Techniques. The suppression of different species of fruit flies

in Hawaii (Vargas et al. 2008) and the eradication of the
Mediterranean fruit fly (Ceratitis capitata Wiedemann) in
Mexico (Enkerlin et al. 2015) are perfect illustrations of such
a technical, economic and social success. This is also the case
of the transgenic cultivation of cotton plants in China (plants
integrating up to 3 genes coding for Bt toxins), which were
given free of charge to smallholder farmers for the manage-
ment of Helicoverpa armigera Hb. which had become resis-
tant to insecticides (Tabashnik et al. 2010). Even if there have
been outbreaks of non-target mirid bugs (Lu et al. 2010; Li
et al. 2020), this strategy allowed a large-scale return of ben-
eficial arthropods to horticultural crops adjacent to cotton
crops, allowing the reduction of pesticide use (Lu et al.
2012) and promoting arthropod pest suppression (Li et al.
2020). These AW-PM successes have been made possible
by the involvement of governments or governing bodies in
decisions taken on a large scale in the regions under consid-
eration, but also sometimes collectively by several countries,
while involving various actors, particularly citizens, who have
arole to play. In these movements, smallholder farmers have
been encouraged to participate in the cooperative management
of pest populations. While IPM is often considered in the field
as a toolbox (often chemical) in a curative approach on a local
scale, AW-IPM, a combination of large-scale top-down pre-
ventive approach and bottom-up field by field curative ap-
proach, has proved to be particularly suitable for insects that
are highly mobile on large scales, whether they are crop pests
or vectors of animal or human diseases (Wyss 2006). It is a
promising way to maintain populations within their functional
area (Birch etal. 2011), but it also requires detailed knowledge
of the biology and ecology of the pests concerned (Brévault
and Bouyer 2014). In such an approach, the different tech-
niques can show a real synergy if they are cleverly integrated
in a well delimited spatial context (Tabashnik et al. 2010).
Even if it plays a significant role, the field-by-field scale is
inadequate on its own.

4.3 The IPM nebula

For over 50 years, the numerous definitions of IPM have
given rise to different interpretations, confusion and even
abuse. Many appellations have tried to embody the systems
observed in the field, depending on the level of chemical pres-
sure or the importance of techniques alternative to chemicals:
conventional IPM, bio-intensive IPM, preventive IPM, com-
munity IPM, zero IPM, low IPM, high IPM, ultimate IPM,
etc. Figure 7 presents, in the form of a word cloud, the thirty
most frequently encountered IPM wordings in the literature.
This confirms that [IPM can be adapted to all contexts and that
a qualifier is often required to identify the system being re-
ferred to. By way of illustration, IPM is considered compatible
both with conventional farming (Dufour 2001), which is the
case in most countries, but also with organic farming (Baker
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Fig. 7 Word cloud representing
the diversity of Integrated Pest
Management (IPM) expressions
found in the literature
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etal. 2020; Haldhar et al. 2014). Perrin (1997) speaks of “zero
pesticide IPM” compatible with principles of crop protection
in organic farming (Boisclair and Estevez 2006; Muneret et al.
2018; Zehnder et al. 2007).

Alongside the success story of AW-IPM in the examples
above, Ehler and Bottrell (2000) question if the philosophy
of IPM is actually applied in the field, speaking of “the
illusion of IPM”; Coll and Wajnberg (2017b) discuss “dis-
illusionment with IPM.” Spurgeon (2007) discusses the
nebulous terms of [IPM.

Ehler (2006) distinguishes “True IPM,” which uses
chemical control only as a very last resort, from “False
IPM,” which is largely based on chemical control, and is
much more widespread (Foucart 2019; Lucas et al. 2017),
both in countries with intensive agriculture and in develop-
ing countries (especially on rice and cotton). The acronym
“IPM” has sometimes been parodied to reflect agrochemical
reality in the field, where it is simply a euphemism for pes-
ticide management: “Integrated Pesticide Management”
(Peshin and Zhang 2014), “Intelligent Pesticide
Management” (Nicholls and Altieri 2004), or “Improved
Pesticide Marketing” (Dufour 2001).

In the ESR (Efficiency-Substitution-Redesign) approach to
move from conventional to sustainable agricultural systems
(Hill and MacRae 1995), most IPM definitions correspond
to stage E (improving the Efficiency of chemical protection)
or S (essentially the Substitution of chemical pesticides by
other means). The “true IPM” of Ehler (2006) and the “truly
IPM” of Thomas (1999), with its ecological bias, correspond
to the stage R (Redesign) because they imply a complete re-
design of the production system, as highlighted by Lechenet
etal. (2017a, b).

The fact that IPM is pest-centred inevitably requires addi-
tional details in its design when dealing with other trophic
groups. For example, in an attempt to optimize simultaneous
management of pests and beneficial pollinators, Flohr et al.
(2018) introduced the concept of IPPM (Integrated Pest and
Pollinator Management). To help farmers in decision making,
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they propose the concept of joint economic impact level
(GEIL), which takes into account the economic injury level
of pests, as well as the economic benefits of pollinators. This
direction is supported by Egan et al. (2020), who proposed a
systematic framework to integrate pollinator services into
IPM. They justify the existence of IPPM by the fact that
IPM does not explicitly favor pollinators. In this logic of in-
cluding more trophic groups in IPM, some authors have
proposed IPPPM (with predators as an additional element)
(Dangles 2020, personal communication). We could sug-
gest IPPPPM (including parasitoids) and could go even
further (e.g., IP°M including pathogens and parasitic
plants). This highlights the limitations of pest-centric
IPM definitions.

Benbrook (1996), Hollingsworth and Coli (2001), and
Ohmart (2009) consider IPM to be a “continuum” of practices
arising from the confusion created by its many definitions. We
begin with “low IPM,” equivalent to sustainable chemical
control, and “False IPM” (Ehler (2006), moving to "moderate
IPM” and “high IPM,” similar to “Genuine IPM” (Hill and al.
1999), and finally “ultimate IPM” and “true IPM” (Ehler
2006). Every crop protection practice on the planet fits into
the innumerable systems along this IPM continuum. This no-
tion of continuum has its limits, for example when IPM itself
becomes Integrated Pesticide Management—and becomes
intertwined with Integrated Resistance Management, as a
strategy to rotate synthesized active ingredients, i.e., an
efficiency-based approach heavily endorsed by the agrochem-
ical industry.

The acronym IPM is indeed so anchored in the minds of
scientists, farmers, decision makers, industry workers,
trainers, and teachers, that Zalucki et al. (2009) suspect that
whatever approach is used in future to protect crops, it will be
called IPM. In certain research institutes, it is not uncommon
to call “IPMists” all scientists working in the crop protection
domain.

Differences in perception have generated bottlenecks,
which have long been highlighted by Jeger (2000), meeting
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the challenges of sustainable development. Like him, other
authors (Barzman et al. 2014; Dara 2019; Ehler 2005;
Hokkanen 2015; Stenberg 2017) consider that IPM has a
political and commercial, as well as scientific and technical
component. Lucas et al. (2017) highlight the lack of coherence
between science, practices, and policies in IPM. Hokkanen
(2015) questions the rationale behind IPM: “IPM at the cross-
roads: Science, politics or business (as usual)?” Based on this
observation, IPM is not consistent and not compatible with
objectives of sustainability, particularly ecological, expressed
above.

5 Inadequate research on IPM
5.1 Gaps in research programs

The lack of integration in the field is also noted in scientific
research (Birch et al. 2011; Ehler 2006; Lucas et al. 2017,
Stenberg 2017). This disparity is primarily observed in the
field of academia, which is often engaged segmentally and
suffers from disconnected cognitive research: the acquisition
of biological knowledge, the study of control techniques, etc.
On the other hand, integrative, interdisciplinary research, for
example on aerial and soil biodiversity and its interactions
with agroecosystem components, landscape ecology and its
renewed scales (Begg et al. 2017; Brewer and Goodell 2012;
Redlich et al. 2018), socio-economic research bringing the
market closer to the field, social ecology, even psycho-
sociology (Hill 2014) or studies in farm support, are still very
rare (Deguine et al. 2017).

This lack of scientific integration has existed for decades
and continues today. Most of the recent works on IPM still
tend to list and describe tactical solutions separately, in spe-
cific contexts (Abrol 2014) rather than scientifically under-
stand the advantage of using them together to harness their
synergy (Capinera 2014; Stenberg 2017; Struelens and Silvie
2020). The same is true if we examine the experiences of the
past decade in which IPM has been a driving force for inno-
vation in crop protection. Most often, studies deal separately
with protection techniques and the results give rise to solu-
tions which can be juxtaposed but not integrated. In addition,
in the majority of situations, studies are based on a single pest,
a single crop, a specific context, without a broader approach
taking into account all pests, or even all management con-
straints faced by farmers, in a socio-technical non-generic
whole (Lamichhane et al. 2015; Lucas et al. 2017; Ricci
et al. 2011). There are, however, some notable exceptions,
such as the European “Pure” project on field crops, a multisite
project with comprehensive IPM solutions with diversified
crop sequences as an important tool (Vasileiadis et al. 2017).
Finally, in the aforementioned research, use of chemicals is
often widespread. Pesticide reduction policies favor, for

example, studies on those that are the least dangerous for
human health and the environment (Eddleston et al. 2002;
Farrar et al. 2018; Jepson et al. 2020; Robinson et al. 2020;
Whiteker 2019). This general trend, boosted by the plant pro-
tection industry, endorses and helps to legitimize the use of
synthetic pesticides in crop protection and in IPM schemes.
However, this is not necessarily the case: for example, Jepson
et al. (2020) list a fair number of new, highly hazardous prod-
ucts (e.g., neonicotinoids) that were initially developed for
their user-friendly application methods as coatings or prophy-
lactics. The industry is less committed to developing environ-
mentally friendly products than is commonly believed. Unless
it is pushed by restrictive policies, there will be no easy shifts.
Pesticide research is also accompanied by studies reforms the
eco-efficiency of IPM and developing biopesticides to better
account for agroecosystem sustainability (Magarey et al.
2019; Struelens and Silvie 2020). However, expanding re-
search into cropping system management with integrated crop
protection is needed in certain continental or national plans to
reduce pesticide use (Lamichhane et al. 2016; Lamichhane
et al. 2019). This need for integration also applies to IPM
components such as genetic leverage. It needs to be empha-
sized how host plant resistance is a part of the [IPM pyramid
and it is a central preventative measure. A European initiative
is trying to launch a new area of research, “breeding for IPM,”
by integrating varietal creation programs into the design of
cropping systems (Lamichhane et al. 2018).

Stenberg (2017) describes the needs of modern IPM, with
more studies on the different techniques, especially the compat-
ibility and optimization of techniques—integration-oriented re-
search that has seen less than satisfactory results in spite of a
few exceptions (Lescourret 2017). It is recognized that control
practices interact with each other and that they can have syner-
gistic or antagonistic effects when used together. Numerous
publications advocate such an approach, including, to cite but
one very striking example, that of Lewis et al. (1997).
Promoting these synergies is the challenge faced by IPM re-
search according to Birch et al. (2011). These authors add that
we can only speak of “truly integrative pest management” when
research focuses on a complete redesign of cropping systems
and promoting biodiversity at every scale. In the same vein,
other researchers suggest promoting cultivated or wild plant
biodiversity in agroecosystems, in order to strengthen not just
pest regulation but also other ecosystem services and
agroecosystem stability (Altieri and Nicholls 2004; Bianchi
et al. 2006; Duru et al. 2015; Ferron and Deguine 2005; Gaba
et al. 2015; Hoy 2020; Hufnagel et al. 2020; Isbell et al. 2017,
Kiritani 2000, 2020; Landis 2017; Lescourret et al. 2015a;
Lundgren and Fausti 2015; Malézieux et al. 2009; Ratnadass
et al. 2012; Tilman et al. 2006).

Frisbie and Smith Jr 1991 and Rutherford and Conlong
(2010) speak respectively of ‘biologically intensive IPM’
and “bio-intensive IPM,” which consider the interactions
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between the different elements of an agroecosystem and tri-
trophic interactions (pests—natural enemies—plants) on an
enlarged spatial scale. This is advocated by Ratnadass et al.
(2012) for crop pest control, as well as by Ahmed et al. (2016)
for the protection of beneficial insects.

5.2 Gaps in scientific approaches

The lack of research into IPM can also be seen in the ap-
proaches used. In addition to the interdisciplinarity shortcom-
ings mentioned above, it is often reported that IPM research
does not often use systemic and participatory approaches
(Barrera et al. 2020a and 2020b; Birch et al. 2011; Dara
2019; Deguine et al. 2017; Lucas et al. 2017; Stenberg
2017). In their study on biological control, Wyckhuys et al.
(2018) provide an effective and generic conceptual framework
to understand IPM diffusion/adoption; in particular, these au-
thors highlight how only scant attention is paid to social
sciences.

Flaws in the systemic approach to IPM have long been
noted (Stenberg 2017). In an analysis of 107 publications
published between 1991 and 2012, Schut et al. (2014) show
that only a small number has systemic approach, the majority
being technical or technological. Only a quarter of the IPM
definitions identified by Bajwa and Kogan (2002) refer to the
word “system.” In IPM, there is a predominance of a “pest-
centric” perspective rather than an interdisciplinary systems/
holistic perspective (Chaplin-Kramer et al. 2019; Coll and
Wajnberg 2017b; Lewis et al. 1997; Rosenheim and Coll
2008; Teng and Savary 1992). In France, Ricci et al. (2011)
suggested “rethinking crop protection,” while retaining inte-
grated crop protection, the French equivalent of IPM. Ricci
and Messean (2015) argue for a systemic approach that “goes
beyond the framework” of a simple substitution for pesticides.
In their “holistic pest management’ approach, Barrera (2020a)
consider that IPM is essentially pest-oriented, not especially
crop-oriented and even less farmer-oriented. Hoy (2020) re-
calls that a recent query on the Web of Science for papers with
keywords “agroecosystem management” (or “agroecosystems
management”) and “Integrated Pest Management” (or “IPM”)
resulted in a single reference (a presentation on horticultural
pests from an ecological control conference). This lack of a
systemic and holistic approach is reflected in the narrowness
of the disciplinary spectrum of IPM, which has long lacked
significant investment in the humanities and social sciences
(Goodell 1989; Hill 2004 and 2014; Ruesink 1980). This is
really critical: IPM continues to be largely taken forward by
mono-disciplinarians. Maybe this also shows our inability to
effectively break “lock-ins” of farmers... Crop protection sci-
entists alone will never be able to “unlock” this, nor will social
scientists if they act alone. This lack also reflects the need to
fill the gap between researchers and farmers (Sherman and
Gent 2014; Zalom 1993). Dara (2019) goes even further and
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points out that no IPM model takes all factors into account,
such as farmers’ education level, socio-economic conditions,
environmental concerns, ethical values, regulatory frame-
works, public policies, availability of control techniques, ex-
tension and training, consumer preferences or market charac-
teristics. This author insists on the importance of research and
a move towards “New IPM,” which includes sustainability,
management and business.

IPM has also suffered from a lack of farmer involvement
during research (Ohmart 2008) both in the Southern hemi-
sphere (Litsinger et al. 2009; Parsa et al. 2014; Waage 1998)
and in the Northern hemisphere (Penvern et al. 2019; Vreysen
et al. 2007). With more involvement, farmers could contribute
to research with their wide and empirical knowledge on ben-
eficial insects, animal pests or other living organisms, and on
traditional protection methods (Altieri and Nicholls 2017;
Wyckhuys et al. 2019a). The latter authors believe that prop-
erly training farmers on natural enemies of pests and the im-
portance of ecosystem services would reduce their depen-
dence on pesticides. Furthermore, by bringing together the
issues faced by both researchers and farmers, they could be
trained on the different practices at their disposal and, above
all, on the importance of making them compatible and orderly.

6 Inadequate consideration of ecology in IPM

6.1 A move away from the roots of ecology towards
chemicals

Research on IPM does not sufficiently take ecological pro-
cesses in agroecosystems into account and therefore, their
resilience to pests (Lucas et al. 2017; Walter 2005).
“Whatever happened to IPM?” ask Peterson et al. (2018),
faced with the progressive disappearance of the primary aims
of IPM, regretting in particular, like Dufour (2001), the de-
cline in status of ecology since the “supervised control” of
Smith and Smith (1949). It may be added that there is also
no emphasis on agronomic considerations or non-chemical
prevention.

We note that there has been a focus on control methods in
IPM rather than on the agroecosystem as the object of [IPM
(Lescourret et al. 2016); this has resulted in the aforemen-
tioned lack of research integration, and pesticide use, driven
by the agropharmaceutical industry, is seen by farmers as
simple and easy to apply in the field.

Coll and Wajnberg (2017b) note the lack of ecology in the
various definitions of IPM identified by Bajwa and Kogan
(2002). In comparison, economic profitability is universal
(Onstad and Crain 2019). As a result, over the 60 years of
IPM’s existence, ecology, which is largely incompatible with
the use of chemicals, has been neglected. Moreover, in cases
where the concept of ecology is used in IPM,
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environmentalism is referenced more often than ecologys, i.e.,
the aim to reduce negative environmental impacts (Lucas et al.
2017), rather than using ecological processes to replace chem-
ical pesticides (Geiger et al. 2010; Lescourret et al. 2015b;
Ratnadass and Barzman 2014). At most, pest population dy-
namics (which indeed pertains to the scientific field of popu-
lation ecology) are studied in order to set economic thresholds.

Over several decades, Stuart Hill has highlighted a lack of
ecology in the humanities and social sciences: he has always
campaigned to promote social ecology and psycho-economics
in IPM (Hill 2004 and 2014; Hill et al. 1999) in order to
change food systems.

6.2 Calls for more ecology in crop protection

Since the start of the millennium, the harmful effects of
pesticides on human health have been assessed and have
become major concerns (Bourguet and Guillemaud 2016;
Eddleston et al. 2002; Hoppin and LePrevost 2017; UN
2017; Schiffer et al. 2018). Thus, today, the issues of eco-
logical sustainability of agroecosystems and respect for
health are as important as the “classic” issues of sustainable
development (social, economic, environmental) (Barbier
1987; Dasgupta 2007; Schiffer et al. 2018; Purvis et al.
2019) and a new paradigm of agriculture is needed which
recognizes agriculture's multiple roles in the development
of these fields (Byerlee et al. 2009).

For several decades, authors have called for greater focus
on ecology in IPM. Some have proposed an “ecologically-
based IPM” (Kennedy and Sutton 2000; Koul and Cuperus
2007), others a “truly IPM” (Thomas 1999). Other authors
suggest developing the relationship with Pest Management,
therefore a more pest-centred IPM: ecologically based pest
management (Altieri and Nicholls 2003; Brévault et al.
2014; Zhao et al. 2016). Finally, other authors propose similar
“Pest Management” approaches: a more environmentally
friendly approach [e.g., Environmental Pest Management
(Coll and Wajnberg 2017a)], a more agroecological approach
[e.g., ecological pest management; ecological pest control;
agroecological approaches for pest management (Altieri
1980; Altieri and Nicholls 2017; Brzozowski and Mazourek
2018; Hill 2004; Kogan and Jepson 2007; Lemos et al. 2011;
Reddy 2017; Zhao et al. 2016; Wyckhuys et al. 2020b)] or
even a more systemic and holistic approach such as holistic
pest management (Barrera 2020a, b; Malézieux 2017).

Deguine et al. (2009) endorse a “crop-centred” rather than
“pest-centred” approach and call for a major change of course,
transitioning from agrochemical crop protection to
Agroecological Crop Protection (ACP). This represents the
application of agroecology to crop protection, both scientifi-
cally and practically and is described in detail (Deguine et al.
2017).

7 Agroecological Crop Protection (ACP):
towards a paradigm shift

7.1 Origins and definition of ACP

The basic principles of ACP have different sources, but have
ecology as their foundation, as many authors have suggested
(see above). The biological and agronomic components of
ecology (Hénin 1966, cited by Sébillotte 2006) are also
superimposed on social and organizational ecology, which
can be described as social ecology (Hill 2004; Huxley
1964). In addition, the principles of ACP are identical to the
principles of agroecology from which they originate and they
are also inspired by certain principles of crop protection used
in organic agriculture or in permaculture. Finally, ACP takes
into account the lessons of half a century of crop protection
under the aegis of IPM.

ACP is a simple concept to define and to understand: it is
the application of agroecology to crop protection. Like agro-
ecology (Wezel et al. 2009), ACP has 3 dimensions. It is a
scientific discipline, an ordered strategy of cropping practices,
and a sociological movement within a socio-ecological frame-
work of food systems.

Scientifically, ACP is a concept of crop protection based on
cropping systems whose aim is to improve the sustainability
of agroecosystems by taking into account their ecological
functioning. ACP aims to promote the ecological health of
agroecosystems by directly or indirectly optimizing interac-
tions between living (plant, animal, microbial) communities
both below and above the ground. ACP is built on two pillars,
biodiversity (both aerial and edaphic) and soil health, in order
to make agroecosystem less susceptible to biotic stresses.
ACP aims to improve the health of agroecosystems by encour-
aging practices which enhance ecosystem services (Power
2010), such as pest regulation (Hoy 2020). Researchers have
known of these principles for a very long time, but have rarely
taken them into account.

The agronomic dimension of ACP is a strategy which is
applied in an explicit and orderly way on the ground (Deguine
and Ratnadass 2017). Here, absolute priority is given to pre-
ventive measures, both space- and time-wise, within a
redesigned agroecosystem framework (Ratnadass 2020) in-
cluding prophylaxis, varietal resistance or tolerance (Begg
etal. 2017; Simon et al. 2014), the improvement of soil quality
and health and, of course, biodiversity via habitat manage-
ment or diversified farming systems (Gurr et al. 2017;
Landis et al. 2000; Lichtenberg et al. 2017; Tilman et al.
2012); phytosanitary and cropping techniques such as preven-
tive physical control or direct seeding complementing a
phytosanitary and agroecosystem health assessment based
on field observations. If curative measures are to be used,
chemical pesticides should be mandatory should be governed
by regulations, and used within very strict criteria [(notably
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using active ingredients which are less harmful to the environ-
ment (Guedes et al. 2016)]; local applications to small areas
only). In addition, the broad and integrative approach of ACP
makes it possible to consider the use of, alongside agroeco-
logical practices, traditional physical, biological, and genetic
techniques as well as more recent technological innovations in
crop protection such as biocontrol products, decision support
tools, and robotics.

The third dimension of ACP is its role in agroecological
transition towards more robust food systems (Hamm 2009).
ACRP is a set of interactions, in a social, institutional and eco-
logical context, by different stakeholders involved in crop
protection: farmers, researchers, decision-makers, policy-
makers, advisors, buyers, consumers, processors,
agrosuppliers, trainers, and teachers. These interactions are a
generic character of agroecology’s sociological effects. Some
of the components, however, are specific to crop protection
because pesticides, biological control, genetically modified
plants or biodiversity have both professional and personal
resonance among stakeholders. This social dimension is based
on the ecological and socio-economic bases of cropping sys-
tems, socio-technical systems and food systems proposed by
Hamm (2009), Hill (2004), Hoy (2015), Hoy et al. (2016),
Prokopy (1994) and Vialatte et al. (2019). Actors act in dif-
ferent spheres of influence, but they are also influenced by
them. These spheres may include personal values, markets,
regulations, the landscape, farm, field and knowledge.

There is a large continuum between IPM and ACP.
Figures 8 and 9 show via spider graphs differences between
the two paradigms, according respectively to the ESR
framework (Hill and MacRae 1995; Dupré et al. (2017)
and to six ecosystem services (Ratnadass 2020). In particu-
lar, Fig. 9 illustrates the ability of ACP to address overall

Fig. 8 Spider graph showing the
positioning (on 0—75% scale
axes) of Integrated Pest
Management (IPM) and
Agroecological Crop Protection
(ACP) according to their
respective share between the
components of the E-S-R
framework (Hill and MacRae
1995). « E » stands for increased «
Efficiency » (of synthetic inputs);
« S » for « Substitution » (of
synthetic inputs by alternative
inputs split into off-farm and on-
farm: cf. Dupré etal. 2017), « R »
for « re-design »
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agroecosystem performance beyond simple pest regulation,
by enhancing multiple ecosystem services through the
mobilisation of biodiversity in ecosystem functions.

7.2 Case studies

Pioneering experiments took place in cotton cultivation at the
small farm level in Africa between 1990 and 2000, when it
became impossible to control populations of phloem-feeding
insects (in particular the aphid Aphis gossypii and the whitefly
Bemisia tabaci), even after heavy insecticide applications. The
agroecological approach made it possible to manage aphid
populations and eliminated foliar applications of insecticides
(Deguine et al. 1994, 2000, 2008). The approach was extend-
ed to all phloem-feeding insects of cotton (Deguine et al.
2008).

The first ACP experiences in intensive farming took place
between 2000 and 2010 in Reunion on mango, courgette and
chayote crops (Deguine et al. 2015 and 2018). These experi-
ences brought together members of the agricultural profession
and placed producers at the center of the system. It enabled
comparisons of the performance of conventional horticultural
cropping systems (i.e., using agrochemicals), with agroeco-
logical cropping systems. The results of these experiments
were significant and encouraging, and provided valuable les-
sons for the agroecological transition which is taking place
now (Deguine et al. 2019). Insecticide and herbicide treat-
ments have been greatly reduced or even eliminated. On 13
mango plantations observed during 3 campaigns (from 2012
to 2014), TFI (treatment frequency index, standardized num-
ber of pesticide treatments for a given production) decreased
from 22.4 to 0.3. On courgette (Cucurbita pepo, also called
zucchini or baby marrow), the pyrethroid-organophosphorus

Synthetic inputs ( E)

— Alternative off-farm
/ inputs (S)

Alternative on-farm

inputs (S ) IPM = ACP
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Plant biomass production

Climate change mitigation

Pollination

Pest and disease regulation

Water quality maintenance

OIPM OACP

Biodiversity conservation

Fig. 9 Spider graph showing the positioning (on 040 % scale axes) of
Integrated Pest Management (IPM) and Agroecological Crop Protection
(ACP) according to their respective contributions to six types of
ecosystem services (ES), reflecting the contribution of ACP to a range

combination applied weekly to the crop at a dose 0f 495 g ha™'
has been replaced by spot spraying of a biological insecticide
(spinosad) on trap plants at less than one gram per dose. On
chayote (Sechium edule, also called cho-cho) insecticide and
herbicide applications have been completely eliminated.
Savings on labor are also significant: a 9% reduction on cour-
gette and chayote, 28% on mango. Protection costs were re-
duced by 72% for courgette, 100% for chayote and by 66% for
mango. Yield increased by over 45% for courgette and cha-
yote and did not change for mango (Deguine et al. 2015 and
2018). In addition, in-depth ecological studies conducted on
functional biodiversity in mango orchards over three years
have shown that instead of a few pests and weed species seen
in agrochemical orchards, nearly 800 morpho-species of ar-
thropods and more than a hundred spontaneous herbaceous
plants were observed in agroecological orchards (Deguine
et al. 2018). In Reunion, public policies have taken up the
torch from technical measures in the field and now offer in-
centives, with good results.

Other agroecological pest management experiences have
taken place on different crops in mainland or overseas
France and in several tropical countries during the last decade
(Deguine et al. 2017). Six of these experiences are shown in
Fig. 10, arranged by life history traits of the pests being stud-
ied (specificity and dispersal capacity), implementation scales
of regulatory processes: from soil to field (and its close vicin-
ity), then up to the landscape scale as well as their contribution
to the 4 stages of agroecological transition described by
Ratnadass (2017).

of ES, not only the virtually only plant biomass (namely 4F: Food, Feed,
Fiber & Fuel) and pest and disease regulation ES (adapted from
Ratnadass 2020). One should note that in absolute value, this is not at
the expense of these two ES

7.3 Moving from IPM to ACP

During the transition to ACP, each professional will face dif-
ficulties and advantages compared to IPM. For researchers,
the first hurdle is to convince stakeholders and partners that
ACP is not just another concept with little improvement over
IPM (in terms of break with pesticides, for example), nor
simply wishful thinking coming to nought in practice because
it is based on principles (in particular the substitution of non-
renewable inputs with ecological processes) which have not
been proven for all production situations. A second difficulty
is predicting the success rate and economic benefits of ACP: it
is far more complex than predicting the effectiveness and eco-
nomic return of pesticides in conventional agriculture. The
cost of ACP practices and the economic benefits of the regu-
lating services they provide need to be assessed, and this re-
mains a challenge (Bommarco et al. 2013). Yet another diffi-
culty for researchers is getting the ACP message across in the
Global south hemisphere countries (ACP originates from the
Northern hemisphere), because some of these countries, par-
ticularly in sub-Saharan Africa, did not experience the Green
Revolution, and might see it as being denied access to effec-
tive technologies. This is an already controversial issue for
agroecology in general. A final, more theoretical, difficulty
is that in order to develop outwardly “simple” techniques
(which may be perceived as retrograde by some), researchers
have to deploy extremely complex analytical tools. New skills
and approaches are needed, protocols for data collection have
to be renewed, new disciplines invested in such as ecology
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Fig. 10 Positioning of 6 Agroecological Crop Protection (ACP) case
studies according to : i) the 4 agroecological transition keys (on 0—
100% scales); ii) pest life history traits (specificity and dispersal
capacity) and implementation scales of regulation processes (soil—
field—landscape). Agroecological transition keys: SAM = selection and
adaptation of methods; GIK = generation and integration of knowledge;
IEP = implementation and evaluation of practices; TKT = training and
knowledge transfer. Case studies: 1. Agroecological management of soil-
borne pathogens on greenhouse vegetable crops in France (Faloya and

(e.g., chemical, community, functional, and landscape ecolo-
gy), but also modeling, biomathematics or participatory re-
search. In IPM, modeling efforts have greatly focused on
threshold-based decision-making to help triger pesticide treat-
ments (e.g., Zadoks 1981). In that sense, modeling contributed
to the continued presence of the agrochemical industry in [IPM
programmes. Modeling also plays a key role in ACP, but with
different purposes. The main role of models for ACP is to
handle the highest biological complexity of pesticide-free
agroecosystems. Such models notably take into account the
impact of cropping practices on the biological component of
agroecosystems (e.g., Deguine et al. 2021) and thus help de-
sign ACP-based cropping systems. Like for IPM, a secondary
role of models for ACP is to help threshold-based decision-
making for curative treatments as a last resort (but not espe-
cially for chemical use). The main differences between models
used for IPM and models used for ACP are the underlying
conceptual frameworks, which represent more or less
explicitely the ecological functioning of the agroecosystems
considered agroecosystems. Increasingly, researchers adopt
new modes of thinking, for example, to take into account the
option by context interactions (Sinclair and Coe 2019).
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Jeannequin 2017); 2) Agroecological management of tomato bacterial
wilt in Martinique (Deberdt and Fernandes 2017); 3) Resident
vegetation cover management to control apple orchard pests in France
(Simon et al. 2017b); 4) Agroecological management of mango fruit flies
in Benin (Sinzogan et al. 2017); 5) Agroecological management of
banana pests in the Dominican Republic (Gandini et al. 2017); 6)
Agroecological management of soil-dwelling pests of upland rice in
Madagascar (Randriamanantsoa and Ratnadass 2017)

Acquiring such tools and skills takes time and a certain capac-
ity to adapt. Conversely, this aforementioned difficulty can be
taken by researchers as a highly motivating challenge.

For producers, transition to ACP generally leads to a struc-
tured and orderly reorganization of their practices as com-
pared to conventional solutions, which are deemed more man-
ageable and less risky, at least in the short term. ACP is seen
by many farmers as a “leap into the unknown,” especially in
the absence of risk insurance. There is also the psychosocial
issue and perception that ACP is less “high tech” than other
approaches, which can even give the impression of taking a
step backwards (vis-a-vis other producers). In addition, using
indigenous beneficial organisms can be perceived by the farm-
er as losing control of cropping system management, even
worsened by the fact that the effect of these “invisible” bene-
ficial organisms is not as immediate and observable as using
pesticides, or physical measures such as anti-insect nets.

An advantage is that producers may see their profession as
being upgraded by transitioning to ACP, which translates into
the management of complex and diversified systems, the pres-
ervation of the environment and the safeguarding of human
health, namely a very positive image of their responsibilities,
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above and beyond their mere role of food producers. Another
advantage for researchers is the fact that ACP meets the ex-
pectations of society (especially consumers) and current envi-
ronmental policies (decision-makers and donors). Resources
and dedicated facilities are therefore allocated to research
(e.g., funds from Ecophyto, the French national action plan
for pesticide reduction; calls for projects from certain private
foundations). In this context, ACP researchers have a vocation
both to inform policy, but also to feed the message carried by
extension workers and advisers.

Experiences in ACP in recent years make it possible to
identify necessary generic conditions and lessons for the de-
sign and implementation of future agroecological experiments
in different contexts. Deguine et al. (2019) therefore proposed
a list of certain conditions which are necessary, but not suffi-
cient, for the development of large-scale agroecological ex-
periments: 1) awareness and motivation of agricultural groups
and other stakeholders, starting with producers. This impor-
tant work is undertaken by technical partners, each with
means and tools; ii) a unifying phytosanitary problem, with
either a socio-economic or environmental deadlock, or the
possibility of taking a significant step towards the adoption
of greener agroecological practices with access to new mar-
kets that such a move would provide; iii) research capacity,
which will improve the scope and content of research, leading
to the integration of new, better scientific knowledge; iv) syn-
ergy between research and development to bring together the
complementary activities of partners (research, experimenta-
tion, training, teaching, advice, transfer); v) a research and
development project in partnership—the preparation and or-
ganization of which would require several conditions to be
met (collective sharing of circumstances, co-design of pro-
grams to be implemented, coordination of actions by a transfer
organization); vi) a systemic and participatory approach (Fig.
11), at the right spatio-temporal scales and with revised
criteria which take into account the ecological sustainability
of agroecosystems; vii) support from public authorities both
before and during the agroecological transition period; viii)

permanent interactions between the groups involved (from
farmer to consumer), in dynamic, robust food systems.

In general, the transition to ACP is based on four mutually
reinforcing pillars: 1) choice and adaptation of practices; ii)
integration of knowledge, iii) implementation and evaluation;
iv) training and diffusion of knowledge (Deguine et al. 2017).
In order to implement ACP on the ground, a set of basic
practices can be used, primarily preventively. These tech-
niques are not to be implemented simultaneously, but must
rather be chosen, adapted and integrated in an orderly manner
in reasoned cropping systems with the aim of establishing a
suite of ecosystem services. Knowledge should therefore be
integrated whether it comes from field or laboratory, regional
agricultural diagnoses, simulations, expertise or scientific and
technical articles. This can require qualitative modeling such
as that based on the IPSIM platform (Aubertot and Robin
2013). This innovative approach has the advantage of democ-
ratizing modeling activities and bridges the gap between sci-
entists and other stakeholders involved in ACP. This knowl-
edge sharing makes it possible to better adapt cropping sys-
tems to production situations with different physical, biologi-
cal, chemical, and socio-economic requirements (Aubertot
and Robin 2013) and to the farmer’s own objectives. Once
these systems have been designed, they should be implement-
ed either through gradual modification of existing systems, or
through a brand new design (Meynard et al. 2012). Each per-
formance measure of these systems must then be assessed
using a multiple criteria method such as the one proposed by
Deytieux et al. (2015).

The development of ACP requires continually advancing
operational and actionable knowledge. It is therefore impor-
tant that the initial basic training is continuously updated
through formal training, self-training books, technical journals
or online resources, and through regular exchange with other
members of the profession: farmers, agricultural advisers, de-
velopment engineers or researchers (Deguine et al. 2017). It is
also important that knowledge is accessible to other groups:
representatives of cooperatives, extension organisations,

Fig. 11 Participatory research approach in the framework of the design of
an Agroecological Crop Protection (ACP) experiment (mango orchards
in Réunion, France). 1. Discussion in the field between researchers,
farmers and advisors to compare the results obtained with the expected

results. 2. Role-playing allowing farmers to be confronted with situations
to be managed. 3. Collective monitoring of pest and beneficial
populations in an orchard. Photos: © Jean-Philippe Deguine—CIRAD
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Fig. 12 From Integrated Pest Management (IPM) to Agroecological
Crop Protection (ACP). Transition between agrochemical pest
management and healthy agroecosystem & food system management.
This figure shows the objects of study and the concerns that are the
main focus of IPM and ACP, as well as scales of reasoning and
practice. The figure is based on the conceptual approaches of the
following authors: Prokopy 1994 (P1 = IPM within a single class of
pests; P2 = IPM across all classes of pests; P3 = IPM in concert with
practices; P4 = IPM in relation to psychological, social, political and legal
constraints); Hill and MacRae 1995 (E = Efficiency ; S = Substitution ;

public authorities and consumers. Tools for dissemination and
extension of ACP, including training approaches such as field-
schools and other participatory schemes build on what worked
for IPM. It should also benefit from the development of digital
learning platforms and other novel communication tools. All
these interactions should contribute to the development of
social and organizational ecology and robust food systems
(Hamm 2009).

8 Conclusion

Overall, despite 6 decades of good intentions, harsh realities
need to be faced for the future: 1) the numerous definitions of
IPM have resulted in confusion and different interpretations
by members of the profession; ii) inconsistencies between
the concept of IPM and practices and public policies are
widely-recognized; iii) unguided (often prophylactic)
chemical control remains the cornerstone of many IPM pro-
grams; iv) the use of chemical control only as a last resort (as
per IPM guidelines) is rarely adopted by farmers; v) IPM
research is often inadequate, both in programs and scientific
approaches; vi) ecology is not sufficiently taken into ac-
count in IPM.
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Theoretical IPM

Idealistic
IPM

R = Re-design); Tittonell 2014 (CS = Current systems; EE = Eco-
efficiency; IS = Input substitution; SR = System re-design; AE L&FS =
agroecological landscapes and food systems); Gliessman 2016 (Level 1 =
Increase the efficiency of industrial and conventional practices; Level 2 =
Substitute alternative practices for industrial/conventional inputs and
practices—levels 1 and 2 focus on the protection system only; Level 3
=Redesign the agroecosystem so that it functions on the basis of a new set
of ecological processes; Level 4 = Re-establish a more direct connection
between those who grow our food and those who consume it; Level 5 =
Construction of a new global food system)

Today, IPM has arguably reached its limits (as suggested
in Fig. 6) and the people who have worked in IPM, includ-
ing the authors of this review, have completed their mission
(Barrera 2020a). Recent years have seen emerging calls for
a “green revolution,” biodiversity-friendly agriculture,
transformative change in global food systems, or the need
for sustainable food production to enable all to benefit from
healthy diets (Beddington 2010; Pretty et al. 2018; Willett
et al. 2019). We now believe a change of course is neces-
sary: an intellectual revolution and a break with current
practices. Generally, concepts evolve in small adjustments
and turns, but sometimes a genuine revolution is necessary,
i.e., when a concept no longer suits the context and chal-
lenges of a sector. This requires a paradigm shift, proposed
by Kuhn (1962): a new, defined and recognized scientific
concept, bringing together a large number of researchers
espousing the new approach and proposing new solutions
to the problems encountered by farmers in the field. Like
other authors (e.g., Letourneau et al. 2017), on the ground it
seems to us that radical changes in crop protection are now
needed, instead of the small adjustments made to IPM,
which supported various forms of agriculture, including in-
tensive agriculture, based on monoculture and large quanti-
ties of inputs, particularly pesticides.
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Agriculture is today faced with severe ecological, sanitary,
social, economic and environmental challenges. We are pro-
posing a paradigm shift by endorsing the universal adoption of
ACP—the application of agroecology to crop protection. Like
agroecology, ACP has 3 aspects: it is an interdisciplinary sci-
ence; an organized strategy of agronomic practices; a form of
social ecology combining the stances and interactions of food
system stakeholders. Drawing on the work of Prokopy (1994),
Hill and MacRae (1995), Tittonell (2014) and Gliessman
(2016), Fig. 12 shows the multifactorial development of the
IPM continuum into ACP, highlighting trends in protection,
approaches, scales, and levels of action.

Compared to pest management concepts that have crossed
the last six decades, ACP is based on agroecological princi-
ples, taking ecology as its guiding principle. ACP is not pest-
centred and seeks to promote agroecosystem health, which is
reflected in recent guidelines (FAO 2020). ACP can benefit
from relevant strategies such as AW-IPM, which allows a
large-scale preventive approach to be complemented with cu-
rative tactics at plot level, while involving national or regional
organizations and different actors in society (Vreysen et al.
2007). In this respect, and facing dangerous, invasive, polyph-
agous and highly mobile pests, e.g., the oriental fruit fly
Bactrocera dorsalis (Hendel), the large-scale agroecological
preventive strategy of ACP could be judiciously
complemented by curative and local practices in a “multi-crop
centred” approach when necessary. Finally, there are decision
rules in the ACP phytosanitary strategy to be applied in the
field which warn against advancing to the next stage unless
the previous one has been implemented.

ACP represents a real change of course and requires the
redesign of entire farming systems using a “cropping system-
oriented” approach (Ratnadass 2020). One can assert that
ACP has similarities with the concepts of ecological intensifi-
cation (Bommarco et al. 2013; Doré et al. 2011; Ratnadass
and Barzman 2014; Tittonell 2014) and Japanese IBM
(Kiritani 2000). We also note the perfect coherence with the
contributions from soil health and biodiversity to ecosystem
services and bundles of services (Petit and Lescourret 2019).

The transition from IPM to ACP requires both words and
action. The words adopted by ACP illustrate its systemic,
multi-scale and participatory approach, as proposed by
Meynard et al. (2012). Unlike IPM and its countless variants,
which are “pest-oriented” (Pest Management), the acronym
ACP is "crop-oriented" (Crop Protection) and implies a sys-
temic approach (cropping system-oriented). ACP clearly indi-
cates a direction of travel where ecosystem services are pro-
moted, a holistic approach with priority given to the design of
ecologically healthy agroecosystems (Deguine and Penvern
2014; Hoy 2015; Wezel et al. 2014). Crop protection is built
on bioecological balances arising from multiple interactions
between the plant, animal, and microbial communities present
in agroecosystems (both in and above the soil). As such, crop

protection takes priority in crop system management, whose
aim is to produce healthy plants in robust agroecosystems.

Finally, ACP also represents a profound change in scien-
tific approaches, crop protection and its associated measures.
Redefined and sustainable research programs and approaches
and a broad and systematic phytosanitary strategy in the field
are vital to agroecological transition. To ensure a complete
transition from IPM to ACP rather than small adjustments,
we can use the ESR approach developed by Hill and
MacRae (1995), updated and adapted to crop protection
(DeLonge et al. 2016; Hill 2004 and 2014; Hill et al. 1999).
Replacing conventional chemical control (Integrated Pesticide
Management) is not a simple question of improving its effi-
ciency (E) or substituting it with other methods (S), including
biological control, in a curative approach. The objective is to
apply truly profound preventive ecological solutions (Hill
2004), by redesigning (R) cropping systems, even if some
authors advocate modification of crop succession as an essen-
tial element of crop control in IPM strategies (Bajwa and
Kogan 2004; Palti 1981). This alternative can make use of
biological control, especially conservation biological control,
which significantly contributes to restoring agroecosystems
regulation (Wyckhuys et al. 2013).

However, a broader issue is the redesign of socio-technical
systems, from field to market, within food systems (Hoy et al.
2016). In the momentum of food system development, Hill
(2004 and 2014) underlines the need to consider social ecol-
ogy, as defined by Huxley (1964), in addition to organic and
agronomic ecology. This is confirmed by DeLonge et al.
(2016) in order to facilitate the transition to sustainable food
systems.

In this redesign, crop protection is only one component,
and it is subdivided into two stages: i) deconstruction of the
pesticide-based pest management plan and ii) introduction of a
new management scheme for the agroecosystem, consistent
over the entire food system, and focusing on biological, agro-
nomic and social ecology. The objective is the creation of
healthy ecosystems and productive, sustainable, fair and resil-
ient agroecosystems (Hoy 2015), based on optimized interac-
tions between plant, animal and microbial communities,
which contribute to crop health (Vega et al. 2020). As a con-
sequence, the large reduction in pesticide use observed in full-
scale experiments (Deguine et al. 2015 and 2018) is no longer
seen as an objective, but simply as a positive effect of a
healthy agroecosystem. Finally, healthy agroecosystems in-
tentionally safeguard the ecological resilience of farming sys-
tems and are a core constituent of sustainable food systems
(Hamm 2009; Hoy et al. 2016).
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