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Abstract

Plant immunity is modulated by several abiotic factors, and
microbiome has emerged as a major biotic driver of plant
resistance. Recently, a few studies showed that plants also
modify resistance to pests and pathogens in their neighbor-
hood. Several types of neighborhood could be identified
depending on the biological processes at play: intraspecific
and interspecific competition, kin and stranger recognition,
plant-soil feedbacks, and danger signaling. This review high-
lights that molecules exchanged aboveground and below-
ground between plants can modulate plant immunity, either
constitutively or after damage or attack. An intriguing rela-
tionship between allelopathy and immunity has been
evidenced and should merit further investigation. Interestingly,
most reported cases of modulation of immunity by the neigh-
bors are positive, opening new perspectives for the under-
standing of natural plant communities as well as for the design
of more diverse cultivated systems.
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Introduction
Plants possess a basal immune system that is constitu-
tively expressed at low levels and can be induced by
pathogens [1]. The expression of this immune system
confers basal levels of immunity and leads to full or
partial resistance to pathogens and insects. Plants,
www.sciencedirect.com
which integrate complex external cues and signals
throughout their life span, can be considered as ‘multi-
layer perceptrons’ [2]. Environmental factors, whether
abiotic [3] or microbiotic [4], can modulate their basal
immunity. In particular, in their natural habitat, plants
grow and compete with other plants. Planteplant in-
teractions can modify plant physiology [5*], as mani-
fested for instance by massive transcriptional changes;
planteplant interactions also affect their interactions
with other organisms, for example, the plant microbiome
[6,7]. However, little attention has been paid to plants
themselves as neighbors and their possible ability to

modulate basal immunity and pathogen resistance [8].

Planteplant interactions are mediated by cues (consti-
tutively produced) and signals (induced by different
triggers) from emitter/neighbor plants and perceived by
receiver/focal plants [7,9]. Numerous studies have
shown that planteplant interactions, notably mediated
by volatile organic compounds (VOCs), influence the
resistance to herbivorous insects of a focal plant [10].
This is ecologically consistent with the elevated
mobility of insects and the requirement of biological

systems that protect the population and not just indi-
vidual plants. Besides, very few studies report on the
impact of planteplant interactions on resistance to
pathogens [11]. This sounds logical for threats such as
pathogens that have limited mobility in the environ-
ment. However, recent but still sparse evidences now
indicate that planteplant interactions can strongly
modify plant immunity and resistance not only to in-
sects but also to many pathogens. This understudied
capacity of plants to interact with each other and to fine
tune immunity raises many questions, including on the

underlying biological processes and on the ecological
significance of such a behavior.

As a step to the development of a comprehensive
framework for planteplant interactions influencing
their response to biotic stresses, we review recent
findings on the modification of immunity and suscep-
tibility due to planteplant interactions (Table 1), the
mechanisms by which these modifications occur, and
the signals or cues exchanged between plants that are
responsible for these modifications (Figure 1). We first

asked whether such phenomenon could be influenced
by the genetic distance between plants, by distin-
guishing genetically close neighbors (conspecifics) vs.
plants of different species (heterospecific). We also
Current Opinion in Plant Biology 2021, 62:102045
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Table 1

Recent and key studies showing modulation of plant defense by plant–plant interactions or signals involved in plant–plant interactions.

Process Nature of the signal (localization) Focal plant Neighbor plant or signal Immune and resistance response in focal plant Reference

Competition Change of light quality
(Aboveground)

A. thaliana Synthetic change of light Defense gene downregulated
(ERF1, PDF1.2)
Susceptibility to B. cinerea
increased

[14,15]

Root density (Belowground) Nicotiana rustica Nicotiana rustica Increase of chemical defense,
SA, JA, ABA

[16]

Plant density (Below- Above-
ground)

Asclepias syriaca
Triticum aestivum

Asclepias syriaca
Triticum aestivum

Increase of lignin production
and deposition on secondary
cell wall.

[17,18]

Kin recognition Root exudates (Belowground) A. thaliana A. thaliana Defense gene upregulated
(PR1, PDF1.3, PDF1.2b, CA1)

[21*]

Stranger
recognition

DIMBOA and derivatives
(Belowground)

A. thaliana Synthetic molecule Inhibition of histone acetylation
and enhanced expression of
stress-related genes

[28**]

Allantoin (Belowground) A. thaliana Synthetic molecule Activation of the MYC2-regulated
JA signaling pathway through
ABA production

[30]

(−)-Loliolide
(Belowground)

Oryza sativa Echinocloa Crus-gali Increased synthesis of tricin,
momilactone and expression
of genes involved in defense

[31]

(−)-Loliolide
(Belowground)

A.thaliana
Solanum lycopersicum

Synthetic molecule Defenses genes and herbivory
resistance increased

[32]

(−)-Loliolide, JA and other
(Belowground)

Triticum aestivum 100 other species Increase of DIMBOA production [25*]

1,8-cineole, menthone and
menthol (Aboveground)

Glycine max and
Brassica rapa

Mentha piperita Defenses genes and herbivory
resistance increased

[22*]

sesquiterpene (E)-b-caryophyllene
(Belowground)

Centaurea stoebe Taraxacum officinale Increased herbivory [59]

Diallyl disulfide (Belowground) Solanum lycopersicum Synthetic molecule Defense gene and pathogenesis-
related proteins upregulated

[27]

Plant-soil
Feedbacks
and legacies

Modification of soil microbiota
(Belowground)

A. thaliana A. thaliana Defenses genes and H. arabidopsidis
resistance increased

[35**]

Modification of soil microbiota
(Belowground)

Zea mays Zea mays Defenses genes (PR10,OX10,PR1 etc..),
SA, JA and herbivory resistance increased

[35**]

Modification of soil microbiota
(Belowground)

Jacobaea vulgaris Jacobaea vulgaris
(damaged or
undamaged)

Increase of pyrrolidine alkaloid concentration [36*]

Modification of soil microbiota
(Belowground)

A. thaliana A. thaliana infected by
P. syringae

Defense metabolism and P. syringae
resistance increased

[38]

Modification of soil microbiota
(Belowground)

D. grandiflora 37 other species Resistance to P. ultimum and concentration
of chlorogenic acid increased

[34]
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reviewed studies showing that planteplant interactions
occur across time, with one plant influencing immunity
and resistance of another plant that succeeds to the
former. Finally, besides the intuitive notion that an
attacked/damaged plant can signal danger to its
neighbor, there is now evidence that healthy neighbors
can also modify immunity and resistance in their
neighborhood. We further discuss the ecological and

agronomical implications of these findings and high-
light the major lines of research which, to our opinion,
should be followed (Box 1).
Main text of review
Conspecific neighborhoods can modulate plant
susceptibility
The intensity of planteplant interactions increases
with density and is associated with competition for
resources (e.g., soil nutrients and light) [12]. Impor-
tantly, competition can induce multiple physiological
and transcriptomic changes within the plant [5]. A
well-known example is the cascade of reactions trig-
gered by the shade-avoidance syndrome on competi-
tion for light [13], including a reduction of the
expression of defense-associated genes and resistance

to pathogens [14,15]. Aboveground defenses on the
contrary can be induced by increased rooteroot in-
teractions. For instance, the presence of intraspecific
tobacco roots was associated with the accumulation of
defense chemicals like phenolic compounds and lignin
derivatives that participate to mechanical defenses
[16]. These changes were accompanied by the
enhanced accumulation in leaves of phytohormones
implicated in defense, such as jasmonic acid (JA),
salicylic acid (SA), and abscisic acid. Other studies
indicated that plant density affects components of
plant immunity but did not test its impact on plant

susceptibility to biotic stresses [17,18]. Except for
these few examples, belowground competition and its
impact on plant immunity has been overlooked and
deserves further investigation.

Besides responding to neighborhood density, there is
evidence that plants can identify their kins, in partic-
ular by perceiving root exudates in the soil [7,19]. On
the one hand, genetic relatedness has been shown to
modify the defense response of one focal plant to sig-
nals from neighboring, attacked plants [10,20]. On the

other hand, in the absence of danger, only one example
shows a possible effect of genetic relatedness in the
expression of immunity [21]. In this case, the induction
of defense genes in Arabidopsis thaliana by root exudates
was higher with exudates produced by a genetically
distant ecotype. However, it remains to be demon-
strated whether kin recognition per se can modify plant
susceptibility (Box 1).
Current Opinion in Plant Biology 2021, 62:102045

www.sciencedirect.com/science/journal/13695266


Figure 1

Conceptual framework for plant–plant interactions modulating immunity and susceptibility. Plant neighbors interact with a focal plant (at the
center) by producing above and below ground signals (blue and brown arrows, respectively; arrowheads indicate activation and broken arrow inhibition).
On interaction, the immune system or resistance of the focal plant is increased (green arrows) or reduced (red arrow). Five types of processes resulting
from plants neighborhoods are defined: Plant-soil feedbacks and legacies, danger signalization, kin or stranger recognition and competition. Plant-soil
feedbacks and legacies are situations where plants precondition soil, often through microbiome modifications, in such a way that the next growing plants
have their immunity/susceptibility modified. Danger signalization represents situations where attacked or damaged plants send signals in their neigh-
borhood. Kin and stranger recognition (allelopathy) represents cases where the genetic distance between plants trigger signals. Competition represents
situations where the response to neighbors does not require signaling but rather is an indirect consequence of competition for resource. Except for the
shade-avoidance syndrome, most interactions are positive. During the allelopathic response (stranger recognition), both neighbor and focal plants have
their immunity modified. The list of studies behind this framework can be found in Table 1.

4 Biotic interactions
Constitutive cues and induced signals from
heterospecific, healthy neighbors: strangers’ things
Several studies have now demonstrated that the pres-
ence of neighbors from different species (hetero-
specifics) affects plant immunity (Table 1).
Constitutive cues produced by heterospecific neighbors
are a first category of signals that can affect immunity in
their neighborhood. When co-cultivated with mint,
soybean showed reduced herbivory both in the field and
in controlled conditions [22*]. Volatile menthol consti-
tutively released from mint was responsible for this in-

crease of resistance by enhancing the expression of
defense genes like PR1 in soybean. This enhancement
of immunity occurred through the targeting and regu-
lation of histone acetylation on promoters of defense-
associated genes.

Plants also produce a cocktail of allelopathic molecules
in response to their plant neighborhood [23,24]. In some
instances, it is likely that these allelopathic molecules
Current Opinion in Plant Biology 2021, 62:102045
lead to broad effects besides their known herbicidal
activities on plant neighbors. For instance, the secondary
metabolite DIMBOA produced by many Poaceae spe-
cies in response to neighbors (e.g., [25*]) is well known
for its direct antimicrobial and insecticidal activities
[26]. Thus some neighbors and the allelopathic
response they trigger could indirectly increase resis-
tance to pathogens and pests [11,27].

Some molecules known to participate to the allelopathic
response were also shown to directly modulate the
expression of genes involved in defense and resistance
to biotic stress (Table 1). One of the earliest report of
such indirect effects of allelopathic compounds was that
DIMBOA, by modifying some specific histone deace-
tylases, increased the expression immunity-related
genes [28**]. More recently, the ureide allantoin
(involved in kin recognition in rice [29]) has been shown
to induce the expression of JA-responsive genes as well
as MYC2, a key gene known to mediate defense against
www.sciencedirect.com
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Box 1. Outstanding questions.

� Only limited information exists on the link between genetic dis-
tance (including kinship recognition) and immunity levels in
conspecific plant mixtures. Exploring this link would have broad
implications in agronomy. In particular, establishing the required
level of diversity between varieties to produce significant
enhanced immunity is critical for designing varietal mixtures.

� Allelochemicals are particularly important in heterospecific
plant–plant interactions. Understanding how these chemicals
interfere with hormone-regulated defense pathways would help
disentangle the relationship between the immune response and
the response to plant neighbors. Given their broad impact on
gene regulation, allelochemicals could also affect major resis-
tance genes. Some allelochemical such as DIMBOA, allantoin, or
loliolide, for which mutants exist, are good models to address
these questions.

� Allelochemicals leave messages in the soil that future genera-
tions translate into immunity levels. Following the evolution of the
composition of plant communities in soil that was or not precon-
ditioned with such allelochemicals, in combination with pathogen
pressure, would help evaluating the strength of such process in
shaping plant communities.

� In natural communities, taking into account altruistic traits such as
those observed in plant–plant interactions would help under-
standing how competition can be counter-balanced.

� In field studies, establishing the respective contributions of dilu-
tion effects and immunity due to plant–plant interactions to crop
protection in varietal mixtures is key to improve such practices.
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pathogens in A. thaliana [30]. Similarly loliolide, a sec-
ondary soil-secreted metabolite shown to activate an
allelopathic response in rice [31] and wheat [25],

induced plant defense and increased herbivore resis-
tance in A. thaliana and tomato [32]. There is a thus a
potentially complex interplay between the recognition
of a stranger, the mechanisms that plants activate in
response to such neighborhood and immunity (Fig. 1).
However, it remains to be shown whether and how the
actual planteplant interactions involving loliolide or
allantoin can modulate immunity and resistance to
biotic stress. More generally, the intriguing relationship
between allelopathic and immune responses remains to
be further explored (Box 1).

Plants leave a message: plant-soil feedbacks and
legacy effects
By modifying soil properties, in particular through the
production of allelopathic compounds, plants have also
an effect on soil microbial communities [33]. Recently,
several studies showed that the modification of soil
microbes by plants can alter the defense responses or
resistance properties of plants grown in pre-conditioned
soils [34e36*] (Table 1). In particular, DIMBOA and its
www.sciencedirect.com
derivatives produced by roots of healthy maize plants
were capable of altering communities of bacteria of the
rhizosphere. Maize plants growing in soil where micro-
bial communities were previously conditioned by maize
plants producing DIMBOA, showed significant induc-
tion of defense marker genes, defense hormones (SA
and JA) and a reduction of caterpillar weight after
feeding [35**]. These changes were not observed when

using maize mutants that do not produce DIMBOA,
providing a clear demonstration that DIMBOA biosyn-
thesis was required for such plant-soil feedbacks.

Similarly, attacked plants can modify the leaf or soil
microbiome in such a way that the next coming plants
will display greater immunity [37*]. Plants of A. thaliana
infected by pathogenic bacteria produced root exudates
altering microbiome composition that in turn induced
an increase of JA in the leaves that prevented further
pathogen infections [38]. Another recent study

demonstrated that downy mildew-infected A. thaliana
plants conditioned the soil for resistance-inducing ac-
tivity, providing protection against this pathogen in
consecutive sowings [39]. Such legacies may have
strong implications in the processes selecting genotypes
across generations, and should be taken into account
when studying to process of niche construction [40e42]
(Box 1).

Signaling danger between plants: a neighborhood
watch
In situations of biotic stress, plants release a cocktail of
compounds above and belowground, such as VOCs, root
exudates, or small peptides. Neighboring plants can

detect these signals and activate their own defense
system to be protected in case of future attacks [43].
This phenomenon is called eavesdropping [44] and is
well known in response to insects, where VOCs are
involved [9,20,45].

Recent findings demonstrate that eavesdropping is not
limited to defense against insects but also occurs on
pathogen attack (Table 1). Indeed, systemic acquired
resistance (SAR), a defense priming mechanism initially
discovered between infected and uninfected tissues

within the same plant [46], was observed between
neighboring plants [47,48]. Volatile monoterpenes
emitted from bacterial-infected leaves moved to distant
leaves of the same plant (within-plant SAR) but also to
leaves of neighboring plants, and activated an SA-
associated immunity (between-plant SAR) through
classical SAR signaling LLP1 and AZI1 genes. The
activation of theses specific genes also drove a positive
feedback loop stimulating monoterpene biosynthesis
and emission, potentially promoting the generation of a
wave of plant-derived volatile defense signals moving
Current Opinion in Plant Biology 2021, 62:102045
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6 Biotic interactions
between leaves of neighboring plants [48**]. In another
sophisticated experimental setup, signaling was evalu-
ated between plants on which eggs (or egg extracts)
were deposited and distant bacteria-infected plants
[49**]. An uncharacterized soil-born signal from plants
stimulated by eggs diffused up to 6 cm away to neighbor
plants where it triggered an increase of bacterial resis-
tance in leaf tissues. While this phenomenon enhanced

SA production in the receiver plant, it did not require a
functional production of SA in the sender plant.

Quite surprisingly, plants can also detect signals of
danger from heterospecific neighbors that boost their
defense [50*]. For example, cis-3-hexenyl acetate, an
herbivore-induced plant volatile released from most
plants, has been shown to prime defense in numerous
plants, to reduce herbivory in lima bean [51], and to
increase wheat resistance against the head blight fungal
pathogen Fusarium graminearum [52]. Similarly, soybean

plants exposed to volatiles from wounded-cut golden-
rods showed less damage upon herbivory attack by
Spodoptera litura larvae, in the field and in laboratory
conditions [53**]. Such interspecific eavesdropping
may protect different plant species within a community
from generalist herbivores.

Ecological and agronomical relevance
In the field of community ecology, the competition for
resources is a usual suspect for explaining the outcome of
planteplant interactions [54]. Inversely, exchange of
signals between plants could lead to the emergence of
cooperation [55e57] and altruistic behavior [58]. From
such ecological perspective, it is noteworthy that with a

few exceptions [14,15,59], most planteplant in-
teractions reviewed here have positive effects on plant
immunity or biotic stress resistance (Figure 1; Table 1).
Including pathogens back to the (ecological) game could
help solving a long-term paradox coming from opposing
predictions between ecological and evolutionary the-
ories (niche and kin selection theories, respectively
[60e62]). Indeed, while close relatives should compete
more for the same resources (niche theory), leading to
competitive exclusion, recognizing and collaborating
with relatives is crucial for organisms living together to

reduce competition among them (kin selection theory).
In that respect, the fitness loss due to competition could
be counter-balanced by the benefits due to enhanced
resistance provided by increased immunity.

Resistance to pests and pathogens is also crucial in an
agricultural context. Using species or genotypic mix-
tures at the field level is a well-known way to reduce
pathogen propagation [63e67] through inoculum dilu-
tion in particular [70,71]. Because inoculum dilution is
only efficient when inoculum comes from within the

field, the reviewed evidences that one plant may induce
immunity in neighboring plants are very promising
Current Opinion in Plant Biology 2021, 62:102045
because it may provide resistance to inoculum from
outside the field. Again, the biological processes medi-
ating this phenomenon are urgent to understand
because they could be further mobilized in the design of
intercropping systems [72,73] and varietal mixtures
[74] (Box 1).
Conclusions
The recent studies reporting the effect of planteplant
interactions on immunity and resistance indicate that
this phenomenon is widespread. It involves several
biological processes and many questions remain to be
answered (Box 1). Besides the genes and molecules

underlying these processes to be discovered, the pro-
posed framework (Figure 1) has broad ecological and
agronomical consequences and may help our efforts to
understand of how community are built in natural eco-
systems and how we can built plant assemblages in crop
fields that better resist to pests and pathogens.
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