
HAL Id: hal-03250179
https://hal.inrae.fr/hal-03250179v1

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Mid-infrared technique to forecast cooked puree
properties from raw apples: A potential strategy
towards sustainability and precision processing

Weijie Lan, Catherine M.G.C. Renard, Benoit Jaillais, Alexandra Buergy,
Alexandre Leca, Songchao Chen, Sylvie Bureau

To cite this version:
Weijie Lan, Catherine M.G.C. Renard, Benoit Jaillais, Alexandra Buergy, Alexandre Leca, et al..
Mid-infrared technique to forecast cooked puree properties from raw apples: A potential strat-
egy towards sustainability and precision processing. Food Chemistry, 2021, 355 (2), pp.129636.
�10.1016/j.foodchem.2021.129636�. �hal-03250179�

https://hal.inrae.fr/hal-03250179v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

Mid-infrared technique to forecast cooked puree properties from raw apples: a 1 

potential strategy towards sustainability and precision processing 2 

 3 

Weijie Lana, Catherine M.G.C. Renarda,b, Benoit Jaillaisc, Alexandra Buergya, 4 

Alexandre Lecaa, Songchao Chend, Sylvie Bureaua* 5 

 6 

a INRAE, Avignon University, UMR408 Sécurité et Qualité des Produits d'Origine 7 

Végétale, F-84000 Avignon, France. 8 

b INRAE, TRANSFORM Division, F-44000 Nantes, France. 9 

c INRAE, ONIRIS, Unité Statistiques, Sensométrie, Chimiométrie (StatSC), F-44322 10 

Nantes, France. 11 

d INRAE, Unité InforSol, F-45075 Orléans, France. 12 

 13 

Corresponding author* 14 

Sylvie Bureau (E-mail: sylvie.bureau@inrae.fr). 15 

INRAE, UMR408 SQPOV « Sécurité et Qualité des Produits d’Origine Végétale » 16 

228 route de l’Aérodrome 17 

CS 40509 18 

F-84914 Avignon cedex 9 19 

Tel: +33 432722509  20 

Other authors  21 

Catherine M. G. C Renard: catherine.renard@inrae.fr  22 

Songchao Chen: Songchao.Chen@inrae.fr 23 

Benoit Jaillais: benoit.jaillais@inrae.fr  24 

Alexandre Leca: alexandre.leca@inrae.fr 25 

Alexandra Buergy: alexandra.burgy@inrae.fr 26 

Weijie Lan: Weijie.Lan@inrae.fr 27 

28 

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0308814621006427
Manuscript_a2c9983dfaa2350fde3a663244827522

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0308814621006427
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0308814621006427


2 

Highlights 29 

MIRS discriminated purees cooked from different apples and processing conditions. 30 

MIRS on purees gave robust predictions of soluble solids and acidity (RPD ≥ 3.1). 31 

Spectra of purees could be calculated from spectra of homogenized raw apples. 32 

The calculated spectra allowed acceptable predictions of puree viscosity (RPD ≥ 2.5). 33 

  34 
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Abstract 35 

The potential of MIRS was investigated to: i) differentiate cooked purees issued from 36 

different apples and process conditions, and ii) predict the puree quality characteristics 37 

from the spectra of homogenized raw apples. Partial least squares (PLS) regression was 38 

tested both, on the real spectra of cooked purees and their reconstructed spectra 39 

calculated from the spectra of homogenized raw apples by direct standardization. The 40 

cooked purees were well-classified according to apple thinning practices and cold 41 

storage durations, and to different heating and grinding conditions. PLS models using 42 

the spectra of homogenized raw apples can anticipate the titratable acidity (the residual 43 

predictive deviation (RPD) = 2.9), soluble solid content (RPD = 2.8), particle averaged 44 

size (RPD = 2.6) and viscosity (RPD ≥ 2.5) of cooked purees. MIR technique can 45 

provide sustainable evaluations of puree quality, and even forecast texture and taste of 46 

purees based on the prior information of raw materials. 47 

 48 

Key words: Malus x domestica Borkh.; Mid infrared spectroscopy; PLS models; Direct 49 

standardization; Discriminant analysis.  50 

  51 
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Introduction 52 

Apple puree is one of the major industrially processed fruit products (over 0.3 53 

million tons consumed per year in France and the world market value about 2000 54 

million USD annually) (FranceAgriMer, 2017; Market Research Future, 2019), and can 55 

be used as the basic ingredient of jams, preserves or compotes (Defernez, Kemsley, & 56 

Wilson, 1995). The quality of apple purees is systematically influenced by both raw 57 

material characteristics (Buergy, Rolland-Sabaté, Leca, & Renard, 2020; Lan, Bureau, 58 

Chen, Leca, Renard, & Jaillais, 2021; Lan, Jaillais, Leca, Renard, & Bureau, 2020; 59 

Rembiałkowska, Hallmann, & Rusaczonek, 2007) and cooking strategies (heating, 60 

grinding speed and refining levels etc.) (Espinosa, To, Symoneaux, Renard, Biau, & 61 

Cuvelier, 2011; Oszmiański, Wolniak, Wojdyło, & Wawer, 2008; Picouet, Landl, 62 

Abadias, Castellari, & Viñas, 2009). In practical apple processing, industrial 63 

manufactures have to face the variability and heterogeneity of raw apples, optimize 64 

their processing strategies to maintain the sustainable and expected quality level of final 65 

puree products. Thus, developing rapid, efficient and integrated methods is needed to 66 

guide suitable fruit processing procedures, even to design innovative foods by using the 67 

raw material variability, and to reduce fruit wastes all along the processing chain. 68 

Mid infrared spectroscopy (MIRS) is one of the main candidates for both the 69 

quantification and qualification of agricultural commodities and processed food 70 

(Bureau, Cozzolino, & Clark, 2019; Downey, 1998). Although MIRS presents a 71 

relatively lower ability for quantification than that of chromatography or mass 72 

spectrometry, it has the advantage of a rapid data acquisition and can provide 73 

informative fundamental vibrations of molecular bonds (Karoui, Mazerolles, & Dufour, 74 

2003). It does require a minimal sample preparation as the measurement must be done 75 

on homogeneous samples as liquid, puree or powder due to the very low penetration of 76 

radiation into the samples. Direct MIR characterizations of raw and processed fruits 77 

have shown considerable aptitudes to evaluate soluble solids content (SSC), dry matter 78 

content (DMC), titratable acidity (TA), some individual sugars, organic acids, 79 

rheological (viscosity and viscoelasticity) and structural (particle averaged size and 80 

volume) properties (Ayvaz, Sierra-Cadavid, Aykas, Mulqueeney, Sullivan, & 81 
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Rodriguez-Saona, 2016; Lan, Renard, Jaillais, Leca, & Bureau, 2020). These studied 82 

parameters are related to the taste (SSC, DMC, TA, malic acid), the texture (viscosity, 83 

viscoelasticity, particles and cell wall contents) and the basic nutrients (fructose, 84 

sucrose and glucose) impacting in a large amount puree quality (Bureau, Ścibisz, Le 85 

Bourvellec, & Renard, 2012; Espinosa-Muñoz, Renard, Symoneaux, Biau, & Cuvelier, 86 

2013; Fügel, Carle, & Schieber, 2005). 87 

Currently, our interest is to determine the possibility of using this technique to 88 

anticipate the characteristics of processed materials from the data acquired on 89 

homogenized raw fruit. According to our previous studies, strong correlations of 90 

spectral, chemical and textural properties between raw apples and the corresponding 91 

purees have been pointed out (Lan, Jaillais, Leca, Renard, & Bureau, 2020; Lan, Renard, 92 

Jaillais, Leca, & Bureau, 2020). Based on that, the quality of final processed purees 93 

could be predicted by the infrared spectral information acquired on raw apples using 94 

partial least square (PLS) regression (Lan, Jaillais, Leca, Renard, & Bureau, 2020). The 95 

main drawback of this strategy is the need, for modelling, to systematically acquire the 96 

corresponding spectra on both raw and processed materials with a large number of 97 

conditions representative of the variability, giving often only rough assessments. In 98 

addition, the internal correlations of quality traits during puree processing were only 99 

confirmed under one of the most commonly used processing conditions (Lan, Jaillais, 100 

Leca, Renard, & Bureau, 2020). 101 

Direct standardization (DS) is a simple and efficient chemometric tool for the 102 

calibration transfer between spectral measurements or between two different sets of 103 

conditions, such as the spectral calibration from the off-line to on-line spectra of olive 104 

fruits (Salguero-Chaparro, Palagos, Peña-Rodríguez, & Roger, 2013). As far as we 105 

know, this method has never been considered to bridge the spectral variations along the 106 

fruit processing chain. Our interest of this method is thus to find the spectra 107 

relationships of all processed purees and their corresponding spectral information 108 

acquired on homogenized apples, and to calculate the reconstructed processed puree 109 

spectra according to their relative spectral information acquired on apples by DS, taking 110 

into account both the variability of raw materials and of commonly used processing 111 
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conditions. If so, the predictive models of puree quality traits (biochemical and physical) 112 

using their reconstructed spectra dataset open the possibility to i) predict the properties 113 

of processed apples based on the prior information of raw materials; ii) provide 114 

sustainable and precise processing strategies to estimate the quality potential of final 115 

products, and iii) to compare in silico the prediction results of different processing 116 

approaches to better control the quality of fruit products. 117 

Accordingly, this work aimed to assess the potential of MIRS to: i) detect the 118 

variability of the cooked apple purees according to the pre- and post-harvest conditions 119 

(fruit thinning and storage periods) and the main processing conditions (heating 120 

temperature and grinding speed); ii) calculate reconstructed spectra of purees taking 121 

into account the variability of raw fruits and processing conditions; and iii) characterize 122 

and anticipate the biochemical (SSC, DMC, TA, individual sugars and malic acid), 123 

rheological (viscosity and viscoelasticity) and textural (particle size and volume) 124 

properties of the processed purees.  125 

Materials and methods 126 

2.1 Apples and purees 127 

2.1.1 Apples 128 

The experiment was conducted on the cultivar ‘Golden Delicious’ in 2017 and 2019. 129 

All apples were harvested at commercial maturity from La Pugère experimental orchard 130 

(Mallemort, Bouches du Rhône, France) (Figure 1).  131 

- In 2017, half of the ‘Golden Delicious’ apples were subjected to a commercial 132 

chemical fruit thinning (Th+) with standard fruit load (50-100 fruits/tree), the other 133 

half was not thinned (Th-), resulting in a high fruit load (150-200 fruits/tree). After 134 

harvesting, apples were processed into purees the day after harvest (T0), and after 135 

one (T1), three (T3) and six months (T6) of cold storage at 4°C.  136 

- In 2019, the commercially thinned ‘Golden Delicious’ apples (Th+) were stored 137 

for up to one month (T1) at 4 °C until starch regression, then processed into purees 138 

under different processing conditions. 139 

2.1.2 Puree processing  140 

Before processing, and for each condition, around 2 kg apples were homogenized 141 
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at 11000 rpm with an Ultraturrax T-25 (IKA, Labortechnik, GmbH, Staufen, Germany) 142 

as raw apple homogenates. Three batches of apples (3 kg each) were used to produce 143 

three puree lots for each condition. After sorting and washing, Golden Delicious apples 144 

were cored and cut in 8 portions, then processed in a multi-functional processing system 145 

(Roboqbo, Qb8-3, Bentivoglio, Italy) by different conditions (Figure 1): 146 

- In 2017, all apple groups (2 thinning practices × 4 storage periods) were 147 

cooked with a standard Hot Break recipe of 95°C for 5 min at a 1500 rpm grinding 148 

speed, then cooled down to 65°C while maintaining the grinding speed. Finally, 24 149 

different cooked purees (2 thinning practices × 4 storage periods × 3 lots) were prepared. 150 

- In 2019, each apple group was processed with three different heating 151 

temperatures of 70°C, 83°C and 95°C for 30 min, while ground at three speed levels of 152 

300 rpm, 1000 rpm and 3000 rpm, respectively. Totally, 27 different cooked purees (3 153 

heating temperatures × 3 grinding speeds × 3 lots) were prepared.  154 

Finally, all cooked purees were conditioned in two hermetically sealing plastic bags: 155 

one was cooled at room temperature (22.5 °C) before the next-day measurements of 156 

rheological, structural and some biochemical (SSC, TA, fructose, sucrose, glucose and 157 

malic acid) properties. And the other one was freeze-dried (FD) and stored at -20 °C 158 

for the determination of the content of cell wall, which are known to be a major 159 

contributor of rheological properties of apple purees (Espinosa-Muñoz, Renard, 160 

Symoneaux, Biau, & Cuvelier, 2013). 161 

2.2 Determination of puree quality traits 162 

2.2.1 Rheological and structural characterizations on cooked purees 163 

The cooked puree rheological measurements were carried out using a Physica 164 

MCR-301 controlled stress rheometer (Anton Paar, Graz, Austria) and a 6-vane 165 

geometry (FL100/6W) with a gap of 3.46 mm, at 22.5 °C. The flow curves were 166 

performed after a pre-shearing period of 1 minute at a shear rate of 50 s-1, followed by 167 

5 minutes at rest. The viscosity was then measured at a controlled shear rate range of 168 

[10; 250] s-1 on a logarithmic ramp. The values of viscosity at 50 s-1 and 100 s-1 (η50 169 

and η100 respectively) were kept as final indicators of the puree viscosity linked to 170 

sensory characteristics during consumption (Engelen & de Wijk, 2012). Amplitude 171 
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Sweep (AS) tests were performed at an angular frequency of 10 rad./s in the 172 

deformation range of [0.01; 100] %, in order to determine the linear viscoelastic range 173 

of the purees and the yield stress, defined as the crossing point between the storage 174 

modulus (G’) and the loss modulus (G’’) curves. 175 

Cooked purees were diluted in distilled water to separate particles, stained with 176 

calcofluor (0.1 g/L) and highlighted with a 365 nm UV lamp (Soukup, 2014). The 177 

particle sizes averaged over volume d(4:3) (de Brouckere mean) and over surface area 178 

d(3:2) (Sauter mean) were measured by a laser granulometer (Rawle, 2003) 179 

(Mastersizer 2000, Malvern Instruments, Malvern, UK).  180 

2.2.2 Biochemical analyses on cooked purees 181 

SSC was determined with a digital refractometer (PR-101 ATAGO, Norfolk, VA, 182 

USA) and expressed in °Brix at 20 °C. TA was determined by titration up to pH 8.1 183 

with 0.1 mol/L NaOH and expressed in mmol H+/kg of fresh weight (FW) using an 184 

autotitrator (Methrom, Herisau, Switzerland). Individual sugars and malic acid were 185 

quantified using colorimetric enzymatic kits, according to the manufacturer’s 186 

instructions (R-biopharm, Darmstadt, Germany). The content of glucose, fructose, 187 

sucrose and malic acid were expressed in g/kg FW. These measurements were 188 

performed with a SAFAS flx-Xenius XM spectrofluorimeter (SAFAS, Monaco) at 570 189 

nm for the sugars and 450 nm for malic acid. The DMC was estimated from the weight 190 

of freeze-dried samples upon reaching a constant weight (freeze-drier, 5 days). Cell 191 

wall materials of purees were isolated using the alcohol insoluble solids method 192 

proposed by Renard (2005) and the cell wall contents (AIS contents) were expressed in 193 

both FW and dry matter weight (DW). 194 

2.3 Spectrum acquisition on raw apple homogenates and cooked purees 195 

The MIR spectra were acquired at 23 °C using a Tensor 27 FTIR spectrometer 196 

(Bruker Optics®, Wissembourg, France) equipped with a horizontal attenuated total 197 

reflectance (ATR) sampling accessory and a deuterated triglycine sulphate (DTGS) 198 

detector. The samples were placed at the surface of a zinc selenide crystal (ATR-ZnSe) 199 

with six internal reflections. Spectra with 32 scans for ATR-ZnSe were collected from 200 

4000 cm-1 to 650 cm-1 with a 4 cm-1 resolution and were corrected against the 201 
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background spectrum of air. Three replications of spectral measurement were done for 202 

each homogenized raw apples and each cooked apple puree. 203 

The whole spectral dataset of MIR is described in Figure S1. It included i) 81 204 

spectra of raw apple homogenates, of which 72 spectra acquired in 2017 (3 apple 205 

batches × 2 fruit thinning conditions × 4 storage times × 3 spectral replicates) and 9 206 

spectra acquired in 2019 (3 apple batches × 3 spectral replicates); and ii) 153 spectra of 207 

cooked apple purees, containing 72 spectra acquired in 2017 (2 fruit thinning conditions 208 

× 4 storage times × 3 processing lots × 3 spectral replicates) and 81 spectra acquired in 209 

2019 (3 heating temperatures × 3 grinding levels × 3 processing lots × 3 spectral 210 

replicates). 211 

2.4 Statistical analyses of reference data 212 

The reference data of cooked purees processed in 2017 and 2019 are presented as 213 

the mean values and the data dispersion within our experimental dataset expressed as 214 

standard deviation values (SD). After the Shapiro-Wilk tests, the references data of 215 

processed purees affected by fruit thinning and storage times were normal distributed 216 

(α=0.05), but not for the dataset of heating temperature and grinding effects during 217 

puree processing. Thus, analysis of variance (ANOVA) was carried out to determine 218 

the significant differences of cooked purees due to fruit thinning and storage times 219 

applied on raw apples (Table S1) using XLSTAT (version 2018.5.52037, Addinsoft 220 

SARL, Paris, France) data analysis toolbox. Kruskal-Wallis tests were performed to 221 

evaluate the effects of heating temperature and grinding levels during puree processing 222 

(Table S2). 223 

2.5 Spectra transferred by direct standardization (DS) 224 

In this study, DS was used to find the relationship between the spectra matrices of 225 

all cooked purees (�) and their corresponding spectra of raw apple homogenates (�), 226 

taking into account the effects of raw material variability and processing conditions. 227 

The DS transfer works were performed in R software (version 4.0.2) (R Core Team, 228 

2019) following a previous report (Ji, Viscarra Rossel, & Shi, 2015): 229 

� =  �� +  �                             (1) 230 

where B is the transfer matrix (λ × λ) presenting the variations in both � and  �, 231 



10 

E is the residual matrix used to correct the baseline difference. �, � and E matrices 232 

have the same size n × λ, where n presents the numbers of transfer spectra and λ is the 233 

number of wavenumbers between 1800 and 900 cm-1. 234 

First, to compute the transfer B and error E matrices, the whole MIR spectral 235 

dataset (� and �) was divided into: the calibration matrices, presenting the first two 236 

batches of raw apple homogenates (�	) and the first two lots of cooked purees (�	), 237 

and the validation matrices with the third batch of raw apple homogenates (�
) and the 238 

third lot of cooked purees (�
) (Figure S1). 239 

In a second step, DS was performed separately on the calibration matrices of raw 240 

apple homogenates (�	) and cooked purees (�	) in 2017 (�	��� and �	���) and 241 

2019 (�	��� and �	���) (Figures S1 and 2): 242 

- the calibration matrices of apples (�	���) and purees (�	���) were processed 243 

to obtain the ��  and ��  related to the effects of raw materials on the processed 244 

purees as follows: 245 

�	���  =  �	����� + ��                       (2) 246 

Both (�	���) and (�	���) have the same size n × λ , where n = 48; (2 thinning 247 

practices × 4 storage periods × 2 apple batches/ puree lots × 3 spectral replicates. 248 

- the calibration matrices of apples (�	���) and purees (�	���) were performed 249 

for each puree processing condition, as follows: 250 

�	����

(�)
 =  �	����� + ��                       (3) 251 

where i from 1 to 9, corresponding to 9 different processing conditions (3 heating 252 

temperatures × 3 grinding speeds). To each spectral replicate of �	��� corresponds 253 

nine spectra according to each processing condition (�	���). All the spectra of �	��� 254 

matrix corresponding to the same processing conditions were gathered in a specific 255 

matrix �	����

(�) . The size of this matrix (one for each processing condition) is equal to 256 

that of raw apple homogenates �	���  (n = 6 spectra (2 apple batches × 3 spectral 257 

replicates) × λ). 258 

Thirdly, once all the transfer B (�� and ��) and error E (�� and ��) matrices 259 

were computed, they were used to calculate the cooked puree reconstructed calibration 260 
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and validation spectra matrices, as follows (Figure 2): 261 

�	���  =  �	����� + ��                       (4) 262 

�
���  =  �
����� + ��                       (5) 263 

�	���  =  �	����� + ��                        (6) 264 

�
���  =  �
����� + ��                        (7) 265 

Finally, the reconstructed calibration and validation spectral matrices of cooked 266 

puree, �	 (�	��� + �	���) and �
 (�
��� +  �
���) of the two years (2017 267 

and 2019) were obtained with the same sizes of the real spectral matrices of cooked 268 

puree, �	 and �
, for the further multivariate regressions. 269 

2.6 Multivariate regression 270 

Spectral pre-processing and multivariate data analysis were performed with Matlab 271 

7.5 (Mathworks Inc. Natick, MA, USA) software using the SAISIR package (Cordella 272 

& Bertrand, 2014). After pretests of several pre-processing treatments (baseline 273 

correction, standard normal variate (SNV) and a derivative transform calculation using 274 

Savitzky–Golay method (window size = 11, 21, 31) applied on several different spectral 275 

regions, the best results of prediction and discrimination were obtained on the range 276 

1800-900 cm-1, which has been already highlighted (Lan, Renard, Jaillais, Leca, & 277 

Bureau, 2020). Principal Component Analysis (PCA) and Factorial Discriminant 278 

Analysis (FDA) were applied on SNV pre-treated spectra of cooked purees to detect 279 

their differences related to the variability of both, raw apples and processing conditions. 280 

The specificity and sensitivity values of FDA discriminations were calculated by the 281 

already reported method of Nargis et al. (2019). 282 

PLS models were developed using the SNV pre-processed puree spectra (1800-900 283 

cm-1) of the calibration set �	   and the DS transferred spectra of purees (�	) , 284 

corresponding to the same reference dataset. The two calibration matrices of cooked 285 

purees included a total of 102 spectra (48 spectra in 2017: 2 thinning practices × 4 286 

storage periods × 2 lots × 3 spectral replicates, and 54 spectra in 2019: 3 heating 287 

temperatures × 3 grinding speeds × 2 lots × 3 spectral replicates). Then, the developed 288 

PLS models were applied on their corresponding validation spectra sets of �
  and 289 

�
 , with a total of 51 spectra in 2017: 2 thinning practices × 4 storage periods × 1 lot 290 
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× 3 spectral replicates and in 2019: 3 heating temperatures × 3 grinding speeds × 1 lot 291 

× 3 spectral replicates. PLS model performance was assessed using the determination 292 

coefficient of calibration (Rc
2) and validation (Rv

2), the root-mean-square error of 293 

validation (RMSEV), the number of latent variables for calibration (LVs), the residual 294 

predictive deviation of validation set (RPD), as described by Nicolai et al. (2007). The 295 

linkable spectral regions of the acceptable PLS models presenting RPD values higher 296 

than 2.5 (Nicolai, Beullens, Bobelyn, Peirs, Saeys, Theron, et al., 2007) were displayed 297 

based on their β- coefficients (Tables 1 and 2). 298 

3. Results and discussion 299 

3.1 Variability of cooked purees based on their MIR Spectra 300 

3.1.1 Variability induced by the raw materials 301 

According to ANOVA (F-values), fruit thinning applied on apples during their 302 

growth in orchard resulted in a significant variation (p < 0.001) of viscosity (ŋ50 and 303 

ŋ100), viscoelasticity (G’, G’’, yield stress), particle sizes (d4:3 and d3:2) and 304 

biochemical compositions (DMC, SSC, TA, pH, malic acid, sucrose, fructose and AIS) 305 

of the cooked purees. Particularly, the impact of thinning on the viscosity, DMC and 306 

SSC of purees was higher than the effect of post-harvest storage at 4°C (Table S1). 307 

Purees processed from thinned apples (Th+) had higher viscosity values (η50 and η100) 308 

and bigger particle sizes (d4:3) than those from the non-thinned apples (Th-), observed 309 

after the three months of cold storage (T3 and T6) (Buergy, Rolland-Sabaté, Leca, & 310 

Renard, 2020). Moreover, an intensive decrease of average particle sizes (d 4:3) was 311 

observed in the purees cooked with the apples stored one month at 4°C (T1) for both 312 

‘thinning’ (Th+) and ‘non-thinning’ (Th-) treatments. PCA applied on the spectra of 313 

cooked purees in 2017 showed a good ability to detect the effects of treatments applied 314 

on raw apples (fruit thinning and storage periods) (Figure 3a and 3b). The effect of 315 

thinning on the first principal component (PC1 90.1%) was much higher than that of 316 

storage on the second principal component (PC2 6.9%), which was in line with our 317 

previous results (Lan, Renard, Jaillais, Leca, & Bureau, 2020). In addition, the increase 318 

of the band at 1022 cm-1 and the decrease of the bands at 1061-1065 cm-1, attributed to 319 

sucrose and fructose respectively (Bureau, Cozzolino, & Clark, 2019), were the major 320 
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contributors of the observed discriminations on the two PCs (Figure 3c and 3d). 321 

3.1.2 Variability induced by processing conditions 322 

The different grinding speeds affected significantly (p < 0.05) the viscosity (η50 323 

and η100), viscoelasticity (G’ and G’’) and particle size (d4:3 and d3:2) of the cooked 324 

purees (Table S2). Particularly, the increase of grinding speed significantly (p < 0.001) 325 

decreased viscosity (η50 and η100), viscoelasticity (yield stress, G’ and G’’) and particle 326 

sizes (d4:3) which was observed at each tested temperature. From macroscopic images 327 

of purees (data not shown), the larger particles disappeared with increasing grinding 328 

speeds, which was enough to cause a decrease in the puree viscosity (Espinosa-Muñoz, 329 

Renard, Symoneaux, Biau, & Cuvelier, 2013). Inversely, the increasing heating 330 

temperatures induced no significant (p > 0.05) changes of puree viscosity (η50 and η100) 331 

and viscoelasticity (yield stress, G’ and G’’). The highest heating temperature (95℃) 332 

resulted in a significant (p < 0.05) increase of DMC and SSC and a decrease of TA and 333 

malic acid. Consequently, the changes of grinding speed during the puree processing 334 

significantly modified the structural properties and viscoelastic behaviors of purees, 335 

whereas heating temperature affected strongly the biochemical composition of purees. 336 

FDA performed on the cooked puree spectra in 2019 successfully classified the 337 

processing changes induced at the different heating temperatures (Figure 4a) and 338 

grinding speeds (Figure 4b). The samples cooked at 95 ℃ were well-separated from 339 

the other two conditions (4 factors, 100% of sensitivity and specificity in Table S3a), 340 

according to the first factorial component (F1) (Figure 4a). The specific bands at 1745 341 

cm-1 and 1539 cm-1 were attributed to the increase of soluble pectins, probably in 342 

relationship with their solubilization in puree serum from apple cell walls, enhanced 343 

with the increasing heating temperature (Liu, Renard, Rolland-Sabaté, Bureau, & Le 344 

Bourvellec, 2020). Moreover, the negative peaks at 1057 cm-1 and 998 cm-1 could be 345 

due to the hydrolysis of sucrose during thermal processing, thus resulting in the increase 346 

of fructose (1022 cm-1) and glucose (1107 cm-1) contents. 347 

The three different grinding levels could be discriminated according to the first two 348 

factorial components (F1 and F2) (Figure 4b), especially for the highest grinding speed 349 

at 3000 rpm (‘G3’ in Figure 4b) (4 factors, over 85.19% of specificity and sensitivity 350 
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in Table S3b). The intensive negative spectral peaks at 1558, 1539-1541, 1508 and 351 

1458 cm-1 along both the two discriminant factors (F1 and F2 in Figure 4d and 4e) 352 

were all located in the region between 1450 cm-1 and 1600 cm-1, which has been already 353 

attributed to the changes of particle size and rheological behavior after apple puree 354 

mechanical refining in a previous experiment (Lan, Renard, Jaillais, Leca, & Bureau, 355 

2020). These peaks indicated the decrease of particle size (d4:3 and d3:2) and viscosity 356 

of purees with increasing grinding speeds, which was in line with our reference 357 

measurements (Table S2) and Espinosa et al. (2011). 358 

Briefly, MIR technique could detect several kinds of variability sources such as 359 

thinning practices during fruit cultivation, cold storage and processing conditions 360 

(temperature and grinding) in the cooked purees. In addition, the spectral region 1450-361 

1750 cm-1 was validated as being a reliable analytical signal of processing linked to the 362 

textural and rheological changes in purees. 363 

3.2 Prediction of quality traits of cooked purees by MIRS 364 

 For all developed PLS models, as expected the decreases of determination 365 

coefficients between the calibration set (Rc
2) and the validation set (Rv

2) were observed 366 

in Table 1. According to RPD values over 2.5 (Nicolai, Beullens, Bobelyn, Peirs, Saeys, 367 

Theron, et al., 2007), prediction was acceptable to good (RPD from 2.6 to 3.3) for 368 

viscosity (η50 and η100), average particle sizes (d4:3), SSC, TA, pH values and malic 369 

acid were content in cooked purees by MIRS, taking into account a large variability of 370 

raw apple materials and processing conditions. 371 

 Apparent puree viscosity at a shear rate value of 50 s-1 (η50), which has been 372 

described to be the highly correlated with the in-mouth texture perception of fluid food 373 

(Chen & Engelen, 2012), could be predicted by MIRS with a Rv
2 of 0.87 and a RPD of 374 

3.2. MIR prediction of apparent puree viscosity at a single shear rate value of 100 s-1 375 

(η100) (Rv
2 = 0.85, RPD= 3.0) observed here were much better than its prediction by 376 

NIRS (RPD = 1.3) (Lan, Jaillais, Leca, Renard, & Bureau, 2020), These results 377 

evidenced the possibility of MIRS to estimate puree viscosity. For the two apparent 378 

puree viscosity values measured at η50 and η100, the main wavenumber regions at 1718-379 

1730 cm-1 and 1618-1678 cm-1 were still observed in our previous work (Lan, Renard, 380 
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Jaillais, Leca, & Bureau, 2020). This could validate the application of MIRS to predict 381 

puree viscosity by taking into account not only the raw fruit variability but also the 382 

complex effects of processing conditions. However, the predictions (Rv
2 < 0.81, RPD 383 

< 2.1) of the viscoelastic parameters of purees (G’, G’’ and yield stress) were not precise 384 

enough to estimate the viscoelastic behaviors and the moment when puree starts to flow. 385 

Indeed, heating and grinding affected puree viscoelasticity (SD values of 2362 Pa for 386 

G’, 595 Pa for G’’, 27.1 Pa for yield stress) and resulted in more than twice higher 387 

variations of these parameters than those induced by thinning and cold storage on raw 388 

materials (SD values of 1001 Pa for G’, 234 Pa for G’’ and 12.9 Pa for yield stress). 389 

These new prediction accuracies of the viscoelastic parameters of purees (G’, G’’ and 390 

yield stress) were not as good as our previous ones by MIRS (Lan, Renard, Jaillais, 391 

Leca, & Bureau, 2020), but could be more robust to be considered for future 392 

applications. MIR coupled with the linear regression (PLS) showed a good performance 393 

(Rv
2= 0.87, RPD= 3.1) to evaluate the volume average particle size of purees (d4:3), 394 

but not the surface average particle size (d3:2). Particularly, the most informative 395 

wavenumbers to evaluate puree particle size at 1701-1713 cm-1, 1655-1668 cm-1 and 396 

1537-1541 cm-1 have been already observed previously to predict puree viscosity, to 397 

discriminate the purees prepared with different grinding speeds (mentioned in part 3.1) 398 

and with different refining levels (Lan, Renard, Jaillais, Leca, & Bureau, 2020). Such 399 

good prediction of puree average particle size (d4:3) could not come from internal 400 

correlations with puree composition such as SSC, DMC or AIS contents because of 401 

their poor correlation (R2 < 0.48), but probably some specific signals needing to be 402 

identified and confirmed. Moreover, we confirmed here the impossibility to predict the 403 

cell wall content directly in puree by MIRS, without any preparation such as freeze-404 

drying (Lan, Renard, Jaillais, Leca, & Bureau, 2020)  405 

 A good prediction of global puree quality traits, SSC (RPD= 3.1) and DMC (RPD= 406 

2.9), was obtained with 5 LVs (Table 1). The variation of SSC and DMC in purees were 407 

highly correlated (R2 = 0.76), which explained the good estimations of these two 408 

parameters. Their respective fingerprint wavenumbers of SSC and DMC prediction 409 

were similar and detected at 996-1001 cm-1, 1048-1057 cm-1 and 1109-1112 cm-1, 410 
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corresponding to the variations of sucrose, fructose and glucose in purees (Bureau, 411 

Cozzolino, & Clark, 2019). Moreover, the prediction of TA was excellent (RPD = 3.2), 412 

with a limited RMSEV of 7.6 mmol H+/kg FW. The typical wavenumber region at 413 

1709-1720 cm-1 in TA prediction has already been attributed to the C=O vibration of 414 

acid group (Bureau, Quilot-Turion, Signoret, Renaud, Maucourt, Bancel, et al., 2013; 415 

Clark, 2016). Depending on the good correlations between the different contributors of 416 

apple acidity (R2 = 0.81 between TA and malic acid, R2 = 0.76 between TA and pH), 417 

MIRS provided an acceptable prediction of pH (Rv
2 = 0.83 and RPD = 2.5) and malic 418 

acid content (Rv
2 = 0.85 and RPD= 2.7). Despite the similar typical fingerprints 419 

observed in the β-coefficients of PLS models of malic acid and pH, the relative lower 420 

RPD values and Rv
2 of pH compared to malic acid were probably due to the low pH 421 

variation. Concerning the main individual sugars, acceptable prediction was obtained 422 

only for fructose (RPD = 2.6), but neither for sucrose (RPD= 1.3) nor for glucose (RPD 423 

= 1.5), which was in line with our previous results (Lan, Renard, Jaillais, Leca, & 424 

Bureau, 2020). The lower concentration of glucose (10.4-25.4 g/kg FW) than the other 425 

individual sugars (34.9-98.7 g/kg FW of fructose, 39.1-118.5 g/kg FW of sucrose) led 426 

to its worse prediction by MIR results. A higher internal biochemical correlation 427 

between the major compounds (SSC, TA) and fructose (R2 = 0.79 for SSC and fructose, 428 

R2 = 0.76 for TA and fructose) in apple purees might explain the better prediction of 429 

fructose than the one of sucrose (R2 = 0.58 for SSC and sucrose, R2 = 0.44 for sucrose 430 

and TA). 431 

 Briefly, MIR technique can provide a simultaneous and robust estimation of 432 

biochemical compositions (dry matter, soluble solids, titratable acidity, pH, malic acid 433 

and fructose), rheological behaviors (viscosity at η50 and η100) and particle size (d4:3) 434 

of apple purees, taking into account the large variability along the apple puree 435 

production chain (agricultural practices, post-harvest storage and processing 436 

conditions). 437 

3.3 Reconstructed spectra for prediction of puree quality traits  438 

In this part, MIR prediction models were developed using the reconstructed spectra 439 

of the calibration set of cooked purees (�	), only done for the well-predicted parameters 440 
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mentioned in part 3.2, which were η50 and η100, d4:3, SSC, DMC, TA, pH, malic acid 441 

and fructose. Then, these models were applied on the validation reconstructed spectra 442 

of the cooked purees (�
). 443 

Overall, based on the PLS regression applied on the puree reconstructed spectra, 444 

acceptable predictions were obtained (RPD > 2.5) for rheological (η50, η100), structural 445 

(d4:3) and global biochemical (SSC, DMC, TA) parameters (Table 2). In contrast, 446 

predictions appeared not acceptable for malic acid (RPD = 2.3), fructose (RPD = 1.7) 447 

and pH (RPD = 2.1). Compared to the previous prediction from the real puree spectra 448 

(Table 1), lower Rv
2 and higher LVs have been generally obtained for all parameters 449 

giving some lower prediction performance (Table 2). Particularly, the use of the 450 

reconstructed spectra showed a good ability to predict puree viscosity parameters (η50 451 

and η100) with Rv
2 > 0.82, RPD > 2.5 and prediction errors (RMSEV) of 0.21 Pa.s and 452 

0.10 Pa.s for η50 and η100, respectively. These results were close to those from the real 453 

spectra of purees (Table 1). The fingerprint wavenumbers used in the PLS models were 454 

similar for both reconstructed and real spectra, mainly 1718-1734 cm-1, 1616-1336 cm-455 

1 and 1547-1553 cm-1 as described in Part 3.2. Although a relative lower Rv
2 and RPD 456 

(Rv
2 = 0.84 and RPD = 2.6) were obtained for particle size (d4:3) compared to the results 457 

on the real puree spectra (Table 1), the consistent fingerprints were highly related to 458 

the puree texture such as 1701-1715 cm-1, 1537-1541 cm-1 and 1101-1107 cm-1. These 459 

prediction performances revealed for the first time the possibility to evaluate the 460 

variation of averaged particle sizes in the cooked purees based on the MIR information 461 

of the corresponding raw apple homogenates. Considering the other global quality 462 

parameters, acceptable predictions were obtained for SSC (Rv
2 = 0.85 and RPD = 2.8) 463 

and DMC (Rv
2 = 0.84 and RPD = 2.6) contents. The specific wavenumbers in the ranges 464 

997-1001 cm-1 and 1048-1057 cm-1 for sucrose and in the ranges 1009-1112 cm-1 for 465 

fructose mainly contributed to the PLS models for both reconstructed and real spectra. 466 

These ranges have been already mentioned to be linked to these sugars (Bureau, 467 

Cozzolino, & Clark, 2019), which are the main ones in apples. For acidity, the 468 

reconstructed spectra gave an excellent prediction of TA (Rv
2 = 0.86 and RPD = 2.9), 469 

using the spectral regions between 1709-1720 cm-1 of the typical C=O absorption 470 
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(Clark, 2016). Consequently, PLS applied on the reconstructed MIR spectra calculated 471 

from the spectra of raw apple homogenates showed the possibility to directly predict 472 

the viscosity, averaged particle sizes, SSC, DMC and TA of cooked purees. 473 

Several initial attempts have been tested to monitor the quality of cooked food from 474 

infrared information of their raw materials with the objectives to predict the texture of 475 

cooked poultry pectoralis major muscles (Meullenet, Jonville, Grezes, & Owens, 2004), 476 

of cooked rice (Windham, Lyon, Champagne, Barton, Webb, McClung, et al., 1997) 477 

and of apple purees (Lan, Jaillais, Leca, Renard, & Bureau, 2020). In these studies, the 478 

spectra matrix of the raw materials and the reference data of the corresponding 479 

processed materials were used to calibrate models. The predictions thus obtained are 480 

mainly due to the strong internal correlations of quality traits between materials before 481 

and after processing, which could provide semi-quantitative prediction accuracy for 482 

practical uses. However, the internal correlations of quality traits during fruit processing 483 

still remain unreliable when using a large variability of raw materials and various 484 

industrial processing systems (Lan, Jaillais, Leca, Renard, & Bureau, 2020). Further, 485 

such a direct modelling method requires a necessary step of acquisition of the infrared 486 

information on raw material batches for each processing condition, in order to obtain 487 

the same matrix sizes of spectra and reference data for calibration.  488 

Here, a potential strategy has been firstly proposed to build reconstructed MIR 489 

spectra of processed purees from the spectra of raw apple homogenates using a spectral 490 

transfer method. The high consistency of the specific fingerprints used in the PLS 491 

models obtained for both the real spectra and the reconstructed spectra, confirmed our 492 

choice for this modelling strategy. Compared to the direct modelling method, a great 493 

advantage of using spectral transfer strategy is that the calibration dataset only needs 494 

the infrared information and reference data of several processed purees and just a 495 

limited number of spectra of corresponding raw apples. For example, in our dataset of 496 

2019, the reconstructed spectra of 27 different processed purees could be transferred 497 

from only 3 corresponding spectra of the same apple batches.  498 

After a simple scanning of raw apple homogenates by MIRS, our models revealed 499 

the possibility to i) predict the quality of apple purees, such as viscosity, SSC and TA 500 
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using a standard processing recipe (95 ℃ for 5 mins and grinding at 1500 rpm), even 501 

though a large variability of raw apples was used (different fruit thinning and cold 502 

storage periods); and ii) to monitor and anticipate the organoleptic properties of cooked 503 

purees under different processing strategies, which is relevant for the processors and 504 

market. For example, a higher viscosity and acidity in-mouth feeling (predicted η50 = 505 

1.42 ± 0.09 Pa.s, predicted TA = 65.8 ± 3.5 meq/kg FW) were predicted with the recipe 506 

at 83 ℃ for 30 min and grinding speed of 1000 rpm than with the recipe at 95 ℃ for 507 

30 min and grinding speed of 3000 rpm (predicted η 50 = 0.98 ± 0.14 Pa.s, predicted 508 

TA = 56.4 ± 4.5 meq/kg FW).  509 

Conclusion 510 

 As far as we know, this is the first study that shows the ability of MIRS to estimate 511 

the quality of processed fruit products taking into account a large variability coming 512 

from agricultural practices, post-harvest storage and processing conditions along the 513 

whole processing chain. MIR technique provided reliable assessment of viscosity, 514 

averaged particle sizes and major compositions (SSC, DMC, TA and malic acid) of 515 

apple purees.  516 

 Further, a simple spectroscopic transfer method (direct standardization) was 517 

applied for the first time to develop the reconstructed spectra of purees from their 518 

corresponding spectra of raw apple homogenates. MIRS coupled with PLS regression 519 

obtained acceptable predictions of TA, DMC, SSC, viscosity (η 50 and η 100) and 520 

averaged particle sizes of the final puree based on their reconstructed spectra. With a 521 

simple scanning of raw apple homogenates, MIR technique opens the possibility to i) 522 

predict the quality of final purees under a standard processing procedure, which is 523 

beneficial for fruit processing sustainability; and even ii) to monitor the texture and 524 

tastes of purees under different processing conditions for a better management. 525 

  526 
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Figure captions: 635 

Figure 1. Experimental scheme for apple production, puree preparation and the sample 636 

characterization by infrared spectroscopy and reference measurements.  637 

Figure 2. Overview of the applied methodology to exploit reconstructed MIR spectra 638 

of purees and multivariate regression.  639 

Figure 3. Principal Component Analysis on the SNV pre-treated MIR spectra (900-640 

1800 cm-1) of purees cooked with thinned (Th+) and non-thinned (Th-) ‘Golden 641 

Delicious’ apples stored at 4°C during 0, 1, 3 and 6 months (T0, T1, T3 and T6): (a) the 642 

scores plot of the first two components (PC1 and PC2) related to fruit thinning; (b) the 643 

scores plot of the first two components (PC1 and PC2) related to storage periods; (c) 644 

the loading plot of PC1; (d) the loading plot of PC2. 645 

Figure 4. Maps of Factorial Discriminant Analysis (FDA) performed on the SNV pre-646 

treated MIR spectra (900-1800 cm-1) of purees cooked with: (a) three different 647 

temperatures (70 ℃, 83 ℃ and 95 ℃) and (b) three grinding speeds (G0 at 300 rpm, 648 

G1 at 1000 rpm and G3 at 3000 rpm); (c) the first factorial score (‘F1’) of heating 649 

temperature discrimination; (d) the first factorial score (‘F1’) of grinding discrimination; 650 

(e) the second factorial score (‘F2’) of grinding discrimination.  651 

Figure S1. Overview of MIR spectra pre-processing, direct standardization (SD) and 652 

multivariate regression  653 
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Table 1 Prediction of biochemical, structural and rheological properties of apple purees using PLS regression based on their MIR spectra between 900-1800 cm-665 

1. 666 

Parameter Range SD Rc
2 Rv

2 RMSEV RPD LVs Linkable regions (cm-1) 

η 50 0.57-2.28 0.39 0.91 0.87 0.19 3.2 7 1780-1788, 1718-1734, 1659-1678, 1636-1616, 1549-1558, 1157-1163 

η 100 0.26-1.22 0.27 0.89 0.85 0.07 3.0 8 1780-1788, 1718-1734, 1659-1678, 1636-1616, 1549-1558, 1157-1163 

AS-G' (Pa) 1069-11154 2362 0.85 0.75 854 2.0 12 / 

AS-G'' (Pa) 210-2707 595 0.87 0.73 298 1.9 12 / 

yield stress 8.7-131 27.1 0.86 0.81 12.8 2.1 11 / 

d 4:3 196-920 197 0.90 0.87 65 3.1 8 1780-1788, 1701-1713, 1649-1653, 1537-1541, 1101-1107, 1032-1043 1011-1026 

d 3:2 44-360 60.1 0.76 0.62 41.7 1.4 11 / 

AIS (DM) 133.1-193.6 12.4 0.79 0.50 7.6 1.4 10 / 

AIS (FW) 21.8-14.1 3.4 0.80 0.50 2.2 1.5 6 / 

DMC (g/g FW) 0.15-0.23 0.02 0.87 0.84 0.01 2.9 5 997-1001,1051-1057, 1101-1109 

SSC (°Brix) 12.6-18.6 1.9 0.91 0.86 0.6 3.1 5 997-1001,1051-1057, 1101-1109 

TA (mmol H+/kg FW) 5.1-73.5 25.5 0.89 0.86 7.6 3.2 6 1713-1709, 1105-1109, 1016-1018, 1074-1072, 1038-1042 

pH 3.6-4.4 0.2 0.89 0.83 0.1 2.6 7 1713-1709, 1105-1109, 1016-1018, 1074-1072, 1038-1042 

malic (g/kg FW) 2.4-7.0 1.2 0.88 0.85 0.4 2.7 6 1721-1709, 1105-1109, 1016-1018, 1074-1072 

fructose (g/kg FW) 34.9-98.7 16.0 0.89 0.84 6.1 2.6 9 1709-1713, 1259-1265, 1105-1109, 1074-1080,1038-1042, 1016-1020, 970-974 

sucrose (g/kg FW) 39.1-118.5 18.5 0.79 0.64 14.0 1.3 9 / 

glucose (g/kg FW) 10.4-25.4 3.6 0.74 0.68 2.4 1.5 7 / 

Note: Puree spectra and references data from ‘Golden Delicious’ apples, including variability of two different thinning conditions, cold storage (during 0, 1, 3 667 

and 6 months), three heating temperatures (70, 83 and 95 ℃) and three grinding levels (300, 1000, 3000 rpm). All results based on the SNV pre-treated MIR 668 

spectra at 900-1800 cm-1. Rc
2: determination coefficient of the calibration set; Rv

2: determination coefficient of the validation set; RPD: the residual predictive 669 

deviation of validation set; the linkable regions based on the β-coefficients of PLS models with the RPD values higher than 2.5; “/” presented the unacceptable 670 

results with the RPD values lower than 2.5.  671 
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Table 2 Prediction of biochemical, structural and rheological properties of apple purees using PLS regression based on their reconstructed MIR spectra of raw 673 

apple homogenates between 900-1800 cm-1. 674 

Parameter Range SD Rc
2 Rv

2 RMSEV RPD LVs Linkable regions (cm-1) 

η 50 0.57-2.28 0.39 0.85 0.82 0.21 2.5 8 1720-1734, 1636-1614, 1556-1560, 1547-1533, 1506-1510, 1448-1470, 1157-1169 

η 100 0.26-1.22 0.27 0.86 0.83 0.10 2.6 9 1720-1734, 1661-1675, 1636-1616, 1549-1558, 1507-1512,1445-1468, 1157-1163 

d 4:3 196-920 197 0.89 0.84 76 2.6 9 1740-1745, 1701-1715, 1645-1659, 1583-1587, 1537--1541, 1508-1510, 1452-1470, 1100-1112 

DMC (g/g FW) 0.15-0.23 0.02 0.87 0.84 0.01 2.6 6 1161-1165, 1101-1107, 1084-1090, 1051-1063, 989-1001 

SSC (°Brix) 12.6-18.6 1.9 0.89 0.85 0.7 2.8 5 1101-1112, 1084-1090, 1051-1069, 997-1001 

TA (mmol H+/kg FW) 5.1-73.5 25.5 0.88 0.86 8.9 2.9 7 1715-1710, 1107-1113, 1082-1086, 1059-1063, 1038-1042, 1001-993 

pH 3.6-4.4 0.2 0.84 0.79 0.1 2.1 8 1715-1709, 1105-1110, 1016-1018, 1074-1072, 1038-1042 

malic (g/kg FW) 2.4-7.0 1.2 0.87 0.82 0.6 2.3 9 1713-1709, 1105-1109, 1080-1088, 1058-1064, 1016-1018, 1001-998 

fructose (g/kg FW) 34.9-98.7 15.0 0.82 0.72 8.9 1.7 11 / 

Note: Puree spectra and references data from ‘Golden Delicious’ apples, including variability of two different thinning conditions, cold storage (during 0, 1, 3 675 

and 6 months), three heating temperatures (70, 83 and 95 ℃) and three grinding levels (300, 1000, 3000 rpm). All results based on the SNV pre-treated MIR 676 

spectra at 900-1800cm-1. Rc
2: determination coefficient of the calibration set; Rv

2: determination coefficient of the validation set; RPD: the residual predictive 677 

deviation of validation set; the linkable regions based on the β-coefficients of PLS models with the RPD values higher than 2.5; “/” presented the unacceptable 678 

results with the RPD values lower than 2.5.  679 
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Table S1 Biochemical, structural and rheological data of apple purees and ANOVA results. 681 

Fruit 

thinning 

Storage 

periods 

η50 η100 G’ G’' Yield stress d 4:3 d 3:2 DMC SSC TA glucose fructose sucrose malic acid pH AIS AIS 

Pa.s Pa.s Pa Pa Pa - - g/g FW °Brix mmol H+/kg FW g/kg FW g/kg FW g/kg FW g/kg FW  mg/g FW mg/g DW 

Th- 

T0 1.28 0.77 3127.8 626.7 47.5 909.9 251.5 0.19 13.4 58.1 18.9 50.5 66.7 4.5 3.7 164.5 31.6 

T1 1.13 0.70 1960.2 466.7 21.9 694 351.9 0.19 15.0 54.4 15.4 49.4 59.1 2.8 3.8 147.2 27.6 

T3 0.87 0.55 1849 453 13.9 339.8 205.9 0.20 14.1 46.7 18.6 84.1 84.8 3.6 4.0 140.0 27.3 

T6 0.92 0.50 1816 427 14 316.1 223.6 0.19 13.8 26.8 23.0 85.1 77.3 2.7 4.4 145.7 27.6 

                   

Th+ 

T0 1.75 0.97 3375.1 816.4 52.1 831.6 231.6 0.21 15.5 70.9 23.5 85.3 64.4 5.5 3.6 163.3 33.9 

T1 1.54 0.94 2783.7 639.5 25.2 489 261.8 0.21 17.6 69.3 16.8 80.3 115.9 5.6 3.8 150.9 31.9 

T3 1.25 0.70 2517.6 609 22.3 405.1 228.3 0.22 16.9 59.9 13.8 88.0 102.5 4.9 3.8 143.3 31.6 

T6 1.60 0.88 3168.2 751.7 33.9 393.5 255.1 0.23 17.5 34.7 23.8 95.7 44.0 3.6 4.3 150.3 34.8 

                   

Storage time significance *** *** *** *** *** *** *** ** ** *** *** *** *** *** *** ns * 

 F-values 20.4 13.6 24.7 15.0 72.8 216.1 41.5 6.6 8.3 279.4 74.7 76.2 38.5 13.8 436.3 1.8 4.3 

Fruit thinning significance *** *** *** *** *** *** * *** *** *** ns *** ** *** *** ** ** 

 F-values 138.2 61.5 67.3 91.5 29.6 47.2 5.5 157.7 115.7 176.9 1.3 187.8 13.8 57.9 48.8 15.9 10.3 

Data expressed in fresh weight (FW) or dry weight (DW); values correspond to the mean of 3 puree replications (3 kg per replication). Raw apples were stored at 4°C: from harvest (T0) 682 

and during one (T1), three (T3) and six months (T6). Two conditions of fruit load during cultivation: non-thinning with 100% number of apples (Th-) and thinning with 50% number of 683 

apples (Th+) per tree. In grey, two way- ANOVA results obtained for Golden Delicious purees. ns, *, **, ***: Non significant or significant at P < 0.05, 0.01, 0.001 respectively. 684 
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Table S2 Biochemical, textural and rheological data of apple purees and results of Kruskal-Wallis non-parametric test.  686 

Temperatures Grinding speeds η 50 η 100 G’ G’' Yield stress d 4:3 d 3:2 DMC SSC TA glucose fructose sucrose malic acid pH AIS AIS 

℃ rpm Pa.s Pa.s Pa Pa Pa - - g/g FW °Brix mmol H+/kg FW g/kg FW g/kg FW g/kg FW g/kg FW  mg/g FW mg/g DW 

70 

300 1.27 0.89 9629.8 2389.5 97.7 583.8 103.6 0.17 13.8 63.6 16.1 67.9 70.9 6.3 3.9 26.8 158.0 

1000 1.42 0.91 3295.4 768.8 38.8 633.7 274.8 0.16 13.8 67.8 18.0 66.2 76.6 6.4 3.9 28.0 171.4 

3000 0.64 0.40 1111.3 215.6 10.2 353.5 207.6 0.17 14.4 69.1 17.3 65.5 86.0 6.6 3.9 28.1 165.1 

                   

83 

300 1.23 0.93 8437.5 2078.9 97.9 553.0 212.8 0.18 14.9 59.9 14.6 67.7 70.6 5.8 3.8 29.5 166.7 

1000 1.38 0.87 3036.9 764.4 35.6 647.8 324.8 0.16 13.4 69.8 17.4 71.9 75.2 5.2 3.9 25.6 159.6 

3000 0.91 0.54 1312.2 259.9 11.8 297.4 192.4 0.17 14.8 70.3 16.6 66.8 76.1 5.7 3.9 28.2 162.6 

                   

95 

300 1.93 1.16 3708.2 1101.3 30.0 492.9 262.1 0.17 14.9 60.2 17.0 72.6 66.9 4.8 3.9 27.9 160.8 

1000 1.44 0.84 1955.4 522.2 16.6 332.9 209.8 0.17 14.9 64.1 17.8 71.3 64.5 5.1 3.9 26.2 157.3 

3000 1.07 0.63 1399.4 362.2 14.0 206.4 153.2 0.17 14.8 62.0 18.9 69.2 65.8 5.4 3.8 26.2 154.1 

Temperature significances ns ns ns ns ns * ns * * * * * ** ** ns ns ns 

 F-values 4.1 1.3 0.9 0.4 1.5 7.0 1.2 6.3 6.8 8.4 6.1 8.9 9.1 10.2 2.1 2.3 4.2 

Grinding speeds significances ** *** *** *** *** ** ** ns ns ns ns ns ns ns ns ns ns 

 F-values 10.9 17.2 21.6 22.6 19.4 13.7 9.2 1.1 2.8 1.4 0.4 0.1 1.4 0.2 1.3 0.4 0.2 

Data expressed in fresh weight (FW) or dry weight (DW); values correspond to the mean of 3 puree replications (3 kg per replication). Processing conditions variations were:  three 687 

heating temperatures at 70°C, 83°C and 95°C for 30 min, and three grinding speeds at 300, 1000 and 3000 rpm at each temperature. In grey, Kruskal-Wallis results obtained on Golden 688 

Delicious purees. ns, *, **, ***: Non significant or significant at P < 0.05, 0.01, 0.001 respectively.  689 
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Table S3 The results of sensitivity (in blue cells) and specificity (in yellow cells) from: (a) the FDA discrimination (4 factors) of three different heating 690 

temperatures; and (b) the FDA discrimination (4 factors) of three different grinding speeds. 691 

(a) 692 

Temperatures (℃) 70 83 95 

70 / 76.67% 100% 

83 83.33% / 100% 

95 100% 100% / 

(b) 693 

Grinding speeds (rpm) 300 1000 3000 

300 / 75.00% 85.19% 

1000 76.92% / 87.10% 

3000 85.19% 100% / 

 694 

 695 




