
Chapter 4
Rhizosphere Processes and Root Traits
Determining the Acquisition of Soil
Potassium

Philippe Hinsinger, Michael J. Bell, John L. Kovar, and Philip J. White

Abstract Plants acquire K+ ions from the soil solution, and this small and dynamic
pool needs to be quickly replenished via desorption of surface-adsorbed K from clay
minerals and organic matter, by release of interlayer K from micaceous clay minerals
and micas, or structural K from feldspars. Because of these chemical interactions
with soil solid phases, solution K+ concentration is kept low and its mobility is
restricted. In response, plants have evolved efficient strategies of root foraging. Root
traits related to root system architecture (root angle and branching), root length and
growth, together with root hairs and mycorrhiza-related traits help to determine the
capacity of plants to cope with the poor mobility of soil K. Rooting depth is also
important, given the potentially significant contribution of subsoil K in many soils.
Root-induced depletion of K+ shifts the exchange equilibria, enhancing desorption
of K, as well as the release of nonexchangeable, interlayer K from minerals in the
rhizosphere. Both these pools can be bioavailable if plant roots can take up signif-
icant amounts of K at low concentrations in the soil solution (in the micromolar
range). In addition, roots can significantly acidify their environment or release large
amounts of organic compounds (exudates). These two processes ultimately promote
the dissolution of micas and feldspars in the rhizosphere, contributing to the mining
strategy evolved by plants. There are thus several root or rhizosphere-related traits
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(morphological, physiological, or biochemical) that determine the acquisition of K
by crop species and genotypes.

4.1 Soil Properties and Processes Determining
the Acquisition of Potassium by Plants

A number of soil characteristics determine K mobility,1 availability, and bioavail-
ability to plants. These properties, together with the actual distribution of the various
pools of K in the soil profile and horizons, ultimately determine the most desirable
root and rhizosphere-related traits to search for in order to improve K acquisition
efficiency in crops.

4.1.1 Potassium Mobility: Mass Flow Versus Diffusion
in the Rhizosphere

Potassium is present in the soil solution as K+ ions, which experience rather strong
interactions (adsorption/desorption) with the many soil constituents contributing to
cation exchange capacity, notably clay minerals and organic matter (Sparks and
Huang 1985; Sparks 1987; Chap. 7). The consequences of such interactions are
twofold. First, they buffer the concentration of K+ in the soil solution to values that
commonly range from one to several hundred micromoles per dm3 (Asher and
Ozanne 1967; Hinsinger 2006), i.e., concentrations that are significantly greater
than those of phosphate, but less than those of nitrate. Second, they limit K mobility
in the soil. Thus, compared with nitrate, K leaching occurs in significant amounts
only in fertilized, light-textured soils. In addition, while mass flow can contribute
significantly to the transport of nitrate toward the root surface as a consequence of
transpiration-driven water uptake and corresponding solute movement, its contribu-
tion to the supply of K+ and phosphate ions is small (Barber 1995). Hence most K+ is
transported to the root surface by diffusion, as a consequence of the concentration
gradients that develop in the rhizosphere (Tinker and Nye 2000; Jungk 2001, 2002).
Barber (1995) estimated that diffusion contributed about 80% of the K delivered to
maize (Zea mays L.) roots in a Chalmers silt loam (Mollisol) soil (Table 4.1).

1Mobility is used here to describe the ability of K+ ions to move in soils, either vertically through
leaching or laterally, through mass flow and diffusion (e.g., Hinsinger 2004).
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4.1.2 Potassium Availability and Bioavailability:
Exchangeable Versus Nonexchangeable Pools
in the Rhizosphere

The availability of a nutrient is an intrinsic property of the soil that is usually
assessed by chemical methods designed to extract the fraction of the nutrient that
is likely to replenish the soil solution in response to depletion by nutrient uptake
(Harmsen et al. 2005; Harmsen 2007). While it is usually expressed as a concentra-
tion, the bioavailability is best defined as the actual flux of a nutrient into a living
organism (Harmsen et al. 2005; Harmsen 2007), which means that it varies for a
given soil, nutrient, and set of environmental conditions, as well as the organism of
interest (e.g., the plant species or genotype). This is due to both differences in uptake
capacities and abilities to alter the availability in the bio-influenced zone (Harmsen
et al. 2005), which corresponds to the rhizosphere for plants (Hinsinger et al. 2011).
For K, it was long assumed that the only bioavailable pools were K+ ions in the soil
solution and surface-adsorbed K, i.e., K+ ions adsorbed onto negatively charged soil
constituents (Sparks and Huang 1985; Sparks 1987), which are often assessed via an
extraction with ammonium salts. These correspond to the so-called exchangeable K
pool that represents typically about 1–2% of total soil K (Chap. 7). It has been well
documented that plants can exploit this pool, which is therefore bioavailable.

Most soil K is, however, nonexchangeable in the sense that it cannot be extracted
by an ammonium salt. There are two main nonexchangeable pools, corresponding to
either K+ contained in the interlayers of micas, partially weathered micas and
secondary layer silicates (Chap. 7, Fig. 7.1, pools 10 and 11) or in the structure of
other K-bearing silicates (Chap. 7, Fig. 7.1, pool 12), feldspars being the most
abundant ones (Sparks and Huang 1985; Sparks 1987; Chap. 7). These have been
referred to as interlayer K and structural K, respectively, and were thought to be
poorly or not bioavailable. However, there is growing evidence that the K in these
pools is bioavailable to some plants, as further explained below (Hinsinger 2006,
2013).

Table 4.1 Estimated contributions of diffusion and mass flow to the acquisition of major nutrient
ions in maize grown in field conditions in a Chalmers silt loam (Mollisol) soil and yielding 9500 kg
grain ha�1. (adapted from Barber 1995)

Nutrient ion Diffusion Mass flow Acquisition

kg ha�1 kg ha�1 kg ha�1

Potassium 156 35 195

Phosphate 37 2 40

Nitrate 38 150 190
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4.1.3 Soil Profile Distribution: Topsoil Versus Subsoil
Potassium Availability and Bioavailability

It is often observed that the topsoil is enriched in nutrients compared to the subsoil,
or at least exhibits greater nutrient availability. This occurs in many natural ecosys-
tems due to the role of vegetation in the rapid recycling of nutrients through uptake
and litterfall as well as throughfall, the latter being especially important for
K. Nutrients accumulate in the topsoil, and whenever uptake occurs at greater
depth, from subsoil layers, this ultimately contributes to nutrient accumulation in
the topsoil (Jobbagy and Jackson 2001). In agroecosystems, the topsoil can also be
enriched by K fertilization (Obrycki et al. 2018), but there is also some evidence for
significant uptake of K occurring from the subsoil with redistribution to the soil
surface in residues (Barré et al. 2009). This overlooked component of the soil,
namely the subsoil and the potential reservoir of bioavailable nutrients it can
represent, has been reviewed by Kautz et al. (2013), who stressed the need to assess
its contribution to plant nutrition further. Kuhlmann (1990) provided some quanti-
tative assessment of the contribution of the subsoil to wheat (Triticum aestivum L.) K
nutrition, which ranged from 7 to 70%, with an average of 34% in Luvisols of
Northern Germany. The contribution may be less in deeply weathered soils such as
Oxisols and Ultisols, which contain less exchangeable and nonexchangeable K
stocks. However, for deep-rooted plants such as eucalypt (Eucalyptus grandis) in
deep Oxisols in Brazil, it has been shown that significant root–soil interactions occur
at considerable depths, affecting the fate of K to at least 4 m (Pradier et al. 2017).
This reinforces the need to take subsoil K into consideration in future research and in
K-fertilizer recommendations, as well as when designing more K-efficient ideotypes
of crops in breeding programs (Thorup-Kristensen et al. 2020).

4.2 Root Morphological Traits Determining the Acquisition
of Potassium by Plants

Because of the restricted mobility of various nutrient ions, including K+, ammonium,
and phosphate in soils, plants have evolved a range of foraging strategies in order to
increase the volume of their rhizosphere, i.e., the actual volume of soil from which
they can acquire these poorly mobile nutrients (Hinsinger 2004; Lynch 2007;
Hinsinger et al. 2011).

4.2.1 Root System Architecture and Plasticity

Plant species can differ considerably in root system architecture (RSA), with the
tap-rooted systems and fibrous systems found in crops being good examples
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(Kutschera et al. 2009). Tap-rooted systems usually enable plants to access deeper
horizons, while colonizing the topsoil less densely than fibrous systems. Witter and
Johansson (2001) compared forage species and estimated that the tap- and deep-
rooted alfalfa (Medicago sativa L.) obtained about 67% of its K from the subsoil,
while ryegrass (Lolium spp.), with its fibrous root system, obtained only 42% of its K
from the subsoil under the same conditions. While the type of RSA (e.g.,
tap-rooted vs. fibrous) is genetically determined, it has been shown that there is
considerable variation in RSA within a given species, which is a promising avenue
for selecting more efficient crop genotypes of a broad range of species (Lynch 2007,
2015; Hammond et al. 2009; White et al. 2013; Mi et al. 2016; Thomas et al. 2016;
Jin et al. 2017). While most of the work done so far has focused on N or phosphorus
(P), some of these results could be easily extended to K. The root angle and distance
between lateral roots are traits that will largely determine inter-root competition and
the overlapping of the rhizosphere of neighboring roots, which is of greater concern
for mobile resources, such as water and nitrate, than for poorly mobile nutrients,
such as K or P (Ge et al. 2000).

Lynch and co-workers have shown in common bean (Phaseolus vulgaris L.) and
maize that shallow-rooted genotypes may perform better than deep-rooted genotypes
whenever there is a strong vertical gradient of fertility, with much greater nutrient
availability in the topsoil than in the subsoil (Ge et al. 2000) and that past breeding
schemes have resulted in selecting more shallow root systems in maize in the USA
(York et al. 2015). Conversely, in soils exhibiting significant resources of K at depth,
which is common in temperate conditions and even more so when accounting for
nonexchangeable K pools, crop species that invest in deeper roots may derive more
K from the subsoil, as shown by Kuhlmann (1990) in a loess soil in Germany
(Fig. 4.1). The work of York et al. (2015) has also shown considerable plasticity of
RSA traits, some of which vary substantially with sowing density, for instance. Such
plasticity is an intrinsic property of root systems, which further complicates their
study and phenotyping, but which plays a major role in the adaptive strategy of
plants to acquire mineral nutrients. In contrast to nitrogen (N) and P, plants do not
seem to respond to K-rich patches by enhanced root proliferation (Drew 1975;
Hermans et al. 2006), which may restrict the options for effective fertilizer K
placement, unless co-located with N or P. Nevertheless, we would argue that there
is considerable progress to be expected from integrating RSA-related traits into
breeding programs, and this is urgently needed to obtain genotypes that can better
cope with spatially restricted availability of nutrients such as N, P, or K (Lynch
2015; Thorup-Kristensen et al. 2020).

4.2.2 Root Length and Growth

For poorly mobile nutrients, it has long been known that root length or root surface
area is among the most relevant traits determining their acquisition (Barber 1995). In
their sensitivity analysis, Silberbush and Barber (1983) showed that the predicted K
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acquisition by soybean was increased more by an increase in root surface area than
by the same relative increase in any other parameter in the classic Barber-Cushman
model. More recently, Wissuwa (2003) predicted that a 22% increase in the root
surface area of rice (Oryza sativa L.) was enough to give a threefold increase in P
acquisition under P-limiting conditions. Given that the mobility of K+ is greater than
that of phosphate in soils, it is likely that an even smaller change of root surface area
would have a significant impact on K acquisition. In this respect, the modelling work
by Pagès (2011), conducted with a more realistic distribution of roots based on RSA,
rather than an evenly distributed root system as in the Barber–Cushman-derived
models, revealed that greater root length was ecologically relevant for the acquisition
of poorly mobile nutrients, such as P, but not for mobile ions, such as nitrate (due to
large overlapping of nitrate depletion zones). The results for K+ and ammonium ions
were intermediate.

Genotypes within a species can exhibit considerable variation in root length, as
has been shown for potato (Wishart et al. 2013) and maize (Erel et al. 2017). While
the relationship between crop performance (growth or yield) under nutrient-limiting
conditions and root length was not consistently significant or positive, these studies
suggest that the impact of root length variation is worthy of more detailed investi-
gation. While root length was weakly correlated with K uptake in a range of lentil
(Lens culinaris Medik) genotypes, Gahoonia et al. (2006) showed that root hair
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length was an even more relevant root trait for poorly mobile nutrients such as K or
P. As for RSA, root length and related traits such as specific root length or root
surface area are not just genetically determined, but are also highly plastic,
responding to many environmental factors and biological stimuli. Plant growth-
promoting microorganisms are an example of the latter, with some of these directly
altering root growth or proliferation (Vacheron et al. 2013).

4.2.3 Root Hairs and Mycorrhizae

It has been well documented for the least mobile nutrients, such as P, that morpho-
logical or anatomical features other than RSA and root length-related traits can play a
major role in extending the rhizosphere volume, and hence the actual amounts of
nutrients acquired. These include root hairs that can extend up to several millimeters
from the root surface (e.g., Gahoonia et al. 1997), and mycorrhizal hyphae which can
access even greater volumes, extending up to several centimeters away from the root
surface (e.g., Jakobsen et al. 1992; Thonar et al. 2011). Their direct implication for
the acquisition of K+ is less well documented than for P, but there are a number of
reports on the potential role of root hairs and mycorrhiza-related traits for improving
the foraging capacity of plants for soil K. In their modelling of K uptake, Samal et al.
(2010) showed that, assuming root hair surface areas ranging from 0.38 to
0.47 cm2 cm�2 root, root hairs contributed slightly less to K uptake than the roots
alone (without their root hairs) in wheat and maize, but more than the roots alone in
sugar beet (Beta vulgaris L.). The significant role of root hairs in K acquisition is also
supported by the strong correlation between root hair length and K acquisition found
among crop species in decreasing order of efficiency (Fig. 4.2): oilseed rape (Bras-
sica napus oliefera L.), tomato (Solanum lycopersicum Mill.), ryegrass, maize,
onion (Allium spp.) (Claassen and Jungk 1984; Jungk 2001) or rye (Secale cerale
L.), ryegrass (Lolium perenne), oilseed rape, alfalfa, barley (Hordeum vulgare), pea
(Pisum sativum L.), and red clover (Trifolium pretense L.) (Høgh-Jensen and
Pedersen 2003). Høgh-Jensen and Pedersen (2003) also reported some plasticity
for this trait, as root hairs exhibited greater length at lower K supply, suggesting that
investment in the length of root hairs is an adaptive strategy for improving K
acquisition. Mycorrhizal hyphae can access a much greater volume of soil than
roots, and thereby increase the effective radius of the rhizosphere. While their
quantitative impact on K acquisition has been studied much less than for P acqui-
sition, the K uptake transport systems involved in the mycorrhizal symbiosis are now
well documented (Garcia and Zimmermann 2014). Additional research is needed on
the functional side of this symbiosis before identifying relevant traits worthy of
being pursued for improving K acquisition efficiency.
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4.3 Root Physiological Traits Determining the Acquisition
of Potassium by Plants

As potassium is present only as K+ ions in soils, which interact strongly with
negatively charged soil constituents or are part of the crystal structures of silicate
minerals, K acquisition by plants is dependent on the mobilization of K from these
sources. Depletion of K+ in the rhizosphere soil solution and the excretion of protons
and other K-mobilizing exudates (a so-called “mining” strategy) can increase the
availability of poorly available forms of soil K in the vicinity of roots and contribute
to improved plant nutrition (Hinsinger et al. 2011).

4.3.1 Traits Related to Potassium Uptake and Depletion
in the Rhizosphere

For poorly mobile nutrients such as P or K, the uptake capacity of root cells,
determined by the rate of transport of ions across the plasma membrane, is not the
limiting step for their acquisition. This contrasts markedly with the situation for more
mobile nutrients, such as nitrate, as confirmed by sensitivity analysis of Barber-
Cushman and other plant nutrition models (Rengel 1993). Nevertheless, in the case
of K, the uptake of K+ is a driving process for accessing both the exchangeable pool
and even a significant part of the nonexchangeable pool (Hinsinger 2006; Hinsinger
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et al. 2011; White et al. 2013), namely interlayer K from micas and micaceous clay
minerals (Chap. 7, Fig. 7.1, pools 10 and 11). When roots take up K+ from the soil
solution, a rapid depletion of K+ occurs in the rhizosphere. This was first observed in
the early 1960s using autoradiography of a radioactive analogue of K, 86Rb, which
demonstrated the occurrence of a depletion zone extending a few millimeters from
the surface of maize roots (Fig. 4.3) (Walker and Barber 1962), and was later
confirmed by a range of approaches, based on direct measurements or modelling
(e.g., Kuchenbuch and Jungk 1982; Claassen et al. 1986). The latter studies also
demonstrated that K+ uptake by roots can deplete the exchangeable pool of K by
causing a shift in the cation exchange equilibria toward enhanced desorption of K+

ions from the surface-adsorbed K pool (Chap. 7, Fig. 7.1, pool 9).
As plant roots are capable of decreasing the concentration of K+ from several

hundreds of micromoles per dm�3 in the bulk soil down to concentrations in the
micromolar range at the root surface (Fig. 4.4), they can even shift the equilibria
determining the release of interlayer K in micaceous phyllosilicate minerals (e.g.,
micas, illite, illite interstratified with smectite and vermiculite, i.e., pools 10 and
11 in Fig. 7.1, Chap. 7), ultimately depleting the large pool of nonexchangeable K
contained in soils (Kuchenbuch and Jungk 1982; Niebes et al. 1993; Moritsuka et al.
2004) and altering soil mineralogy (Kodama et al. 1994; Barré et al. 2007, 2008).
This mechanism has been demonstrated to occur in the rhizosphere of ryegrass,
using a phlogopite mica as the sole source of (almost exclusively interlayer) K,
which released significant amounts of interlayer K and was transformed into a
vermiculite clay mineral within only a few days of growth (Hinsinger et al. 1992;
Hinsinger and Jaillard 1993). Barré et al. (2007) further confirmed this alteration of
soil mineralogy for illitic clay minerals in the rhizosphere of ryegrass in a pot
experiment, and it was also shown in a field experiment with maize (Adamo et al.
2016).

root

soil

a) photograph b) autoradiograph

86Rb enrichment

86Rb depletion

Fig. 4.3 Depletion of 86Rb
in the rhizosphere of
13-day-old maize roots, as
revealed by
autoradiography, using
radioactive Rb as a proxy for
K. The white areas around
roots correspond to
depletion zones, while the
black areas correspond to
zones of 86Rb accumulation
inside the roots, especially
the root apices, where the
uptake presumably occurs at
a higher flux. (adapted from
Walker and Barber 1962)
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Springob and Richter (1998) have shown that the rate of release of
nonexchangeable K in soils can be considerably enhanced below a threshold con-
centration of about 2–3 micromoles K dm�3, which approximates the K concentra-
tion occurring close to the root surface as a consequence of K+ uptake and
subsequent depletion of K in the rhizosphere (Claassen and Jungk 1982; Hinsinger
2006). This steep decrease of K+ concentration in the soil solution in the vicinity of
roots thus drives the substantial and rapid depletion of exchangeable K, but also the
release of K from the nonexchangeable, interlayer pool (Fig. 4.5). The substantial
release that can contribute from 20 up to 80 or 90% of the actual amount of K
acquired by plants over rather short periods (a few days) shows that, in the peculiar
conditions of the rhizosphere, and especially its low solution K+ concentration
(Fig. 4.6), the rates of this normally slow process can be much faster than expected
(Claassen and Jungk 1982; Kuchenbuch and Jungk 1982; Hinsinger 2006; Niebes
et al. 1993; Samal et al. 2010).

In this respect, the three important uptake characteristics that need to be consid-
ered are the Cmin value (minimal solution K concentration below which plants
cannot take up K) and the capacity to achieve a large K uptake rate at low K+ ion
concentrations, which depends on the Km and Vmax parameters of the Michaelis–
Menten equation. A low Cmin value is achieved by coupling the proton gradient
generated by a plasma membrane H+-ATPase to K+ influx to root cells via a H+/K+

coupled symporter (White and Karley 2010; White 2013). This transporter has a low
Km for K+, and the required rate of K+ influx is achieved by regulating its abundance
and activity in response to plant K status (White and Karley 2010; White 2013).
Plant species or genotypes showing very low Cmin values (Asher and Ozanne 1967),
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and high affinity (low Km) and capacity (Vmax) of their K transporters, would be
better equipped for depleting K+ ions to concentrations low enough to induce a
significant release of interlayer K and thus access the large pool of nonexchangeable
K that would be otherwise unavailable. Such K uptake traits differ among and within
plant species, thus explaining differences in K bioavailability in a given soil, and
might be worth considering for screening K-efficient crop genotypes (White 2013;
White et al. 2016).

4.3.2 Traits Related to pH Modification in the Rhizosphere

It should be noted that a number of field experiments have reported an increase of
some K pools in the rhizosphere, notably the exchangeable K pool, instead of
depletion. This has been shown mostly in perennial tree species, e.g., by Courchesne
and Gobran (1997) in a Norway spruce (Picea abies (L.) H. Karst.) forest, Bourbia
et al. (2013) in an olive (Olea europaea L.) grove and Pradier et al. (2017) in a
eucalypt (Eucalyptus grandis) plantation. These observations strongly suggest the
occurrence of root-induced weathering processes, resulting in an increase of
exchangeable K at the expense of the nonexchangeable K pool through processes
other than those mentioned above. For instance, Pradier et al. (2017) showed that
root-induced acidification of the rhizosphere of eucalypt trees may have partly
contributed to the increase of exchangeable K that was observed in the rhizosphere
throughout the soil profile to a depth of 4 m. Plant roots can modify rhizosphere pH
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considerably and root-mediated acidification of up to 2–3 pH units has been
observed repeatedly (e.g., Römheld 1986; Hinsinger et al. 2003; Blossfeld et al.
2013). Such a decrease in pH can have a dramatic effect on the weathering rate of
minerals such as K-bearing silicates, through proton-promoted dissolution (Berner
et al. 2003; Taylor et al. 2009; Hinsinger 2013).

The ability to modify rhizosphere pH varies among plant species. For instance,
faba bean (Vicia faba L.) reduced rhizosphere pH more effectively than maize (Liu
et al. 2016) and oilseed rape induced a dissolution of the phlogopite mica as a
consequence of rhizosphere acidification, while ryegrass did not (Hinsinger et al.
1993). Such root-induced dissolution of K-bearing minerals has not been widely
studied in crops to our knowledge, but a number of studies have been conducted in
the context of forest trees. For example, Arocena et al. (1999) showed that the
acidification occurring around ectomycorrhizas could be involved in the dissolution
of micas and feldspars. The capacity of roots to change the rhizosphere pH is not a
simple trait to target, however, as root-mediated pH changes are essentially the
consequence of an imbalanced uptake of major cations and anions (Hinsinger
et al. 2003). Rhizosphere acidification occurs when a net surplus of major cations
(K+ being often predominant in the cation budget of plants) are taken up relative to
the sum of major anions. Thus, there are many ways to increase rhizosphere
acidification, and it is not expected to be related to a single trait, as the underlying
mechanisms are largely determined by the environmental context. Nevertheless,
plant species or genotypes could be screened quite easily for their capacity to acidify
their rhizosphere in a given context (Gahoonia et al. 2006). This has been shown in
common bean by Yan et al. (2004), who found significant heritability of a measured
trait called total acid exudation, which was also able to account for a significant part
of genotypic variation in P uptake.

4.3.3 Traits Related to Exudates in the Rhizosphere

Besides protons, roots can release large quantities of diverse exudates, including
some that can also promote the dissolution of K-bearing silicates and thus the release
of nonexchangeable K, i.e., interlayer or structural K (pools 10–11 or 12, Fig. 7.1,
Chap. 7). Examples of these include carboxylates, such as citrate, oxalate, and
malate, which are able to complex cations when they are released from the crystal
structure of K-bearing minerals (Jones 1998). Such exudates can thus be involved in
the dissolution of feldspars and micas (Razzaghe and Robert 1979; Robert and
Berthelin 1986; Song and Huang 1988; Barman et al. 1992; Lawrence et al. 2014),
and enhance the release of nonexchangeable K, i.e., structural or interlayer K,
together with the other metal cations contained in these silicates. Screening wheat,
maize, and sorghum (Sorghum bicolor (L.) Moench) genotypes for their release of
malate and citrate to detoxify Al has been successful, which shows that such a trait
can vary substantially within some plant species (e.g., Ryan et al. 2011). However,
variation is certainly greater between species, with some crops such as white lupin
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(Lupinus albus L.) or chickpea (Cicer arietinum L.) being well known for their large
carboxylate exudation capacity (Jones 1998). Even minute amounts of malate or
citrate exuded at the root tip may provide sufficient protection against Al toxicity
(Ryan et al. 2011), but much greater concentrations would be needed to induce
significant release of K through such ligand-promoted dissolution of K-bearing
silicates. There is no direct evidence to our knowledge that such exudation traits
are worth pursuing for improving K acquisition efficiency in crops.

In addition to the exudation of such ligands, a considerable range and amount of
other C-compounds can be released by roots (Jones 1998; Jones et al. 2009).
Exudation is thus an important but complex process occurring in the rhizosphere,
which stimulates the microbial communities and has potential implications for the
dissolution of nutrient-bearing minerals (e.g., Philippot et al. 2013), as reviewed for
fungi by Hoffland et al. (2004).

4.4 Summary and Conclusions

A number of root or rhizosphere-related traits determine the K acquisition efficiency
of crops, influencing both their foraging and mining strategies. To deal with the
restricted mobility of K+ ions in soils, the foraging strategy of plants is based on a
number of root traits, including densely branched root system architectures with
substantial portions exploring the topsoil and the subsoil, with a large root surface
area or length. In addition, roots can expand the volume of exploited soil and
K-depletion zones considerably by developing long root hairs or supporting strong
mycorrhizal symbioses and extensive hyphal networks.

In addition to this foraging strategy, which enlarges the volume of the rhizo-
sphere, plants have also evolved various mining strategies to increase the bioavail-
ability of all the K pools in the rhizosphere. The corresponding traits are related first
to the ability of roots to sustain high fluxes of K at very low concentrations in the soil
solution. This induces a shift in the exchange equilibria and an enhanced desorption
of exchangeable K (surface-adsorbed K from clay minerals and organic matter), as
well as an enhanced release of nonexchangeable, interlayer K contained in mica-
ceous minerals. Second, roots can promote the dissolution of K-bearing silicates
such as micas and feldspars through rhizosphere acidification and/or exudation of
complexing ligands, such as some carboxylates. How to make better use of these
traits in the context of a sustainable intensification of agroecosystems is not obvious
though, and breeders have not yet fully integrated belowground traits in their
breeding schemes. To do so may introduce additional challenges, such as potential
trade-offs with those traits required for the acquisition of other belowground
resources (e.g., water, N, P, and micronutrients).
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