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Cerebral organoids and their potential 
for studies of brain diseases in domestic animals
Bertrand Pain1*  , Camille Baquerre1 and Muriel Coulpier2 

Abstract 

The brain is a complex organ and any model for studying it in its normal and pathological aspects becomes a tool of 
choice for neuroscientists. The mastering and dissemination of protocols allowing brain organoids development have 
paved the way for a whole range of new studies in the field of brain development, modeling of neurodegenerative or 
neurodevelopmental diseases, understanding tumors as well as infectious diseases that affect the brain. While stud-
ies are so far limited to the use of human cerebral organoids, there is a growing interest in having similar models in 
other species. This review presents what is currently developed in this field, with a particular focus on the potential of 
cerebral organoids for studying neuro-infectious diseases in human and domestic animals.
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1.  Introduction: the brain, a complex organ
The brain is a complex organ and its access is delicate 
both during development and post-natal life of indi-
viduals, in all species. Reconstituting the development 
of this highly complex organ is a major challenge in 
neuroscience.

Embryonic development is a unique morphological 
process, with precise spatiotemporal control of the estab-
lishment of complex structures. In humans, the brain is 
the organ for which this process is the longest, slowest, 
and most complex. The neural tube is formed from a sim-
ple pseudostratified epithelial sheet, known as the neu-
roepithelium. It then extends and differentiates to give 
rise to the different parts of the central nervous system 
(CNS), including the anterior brain, which will generate, 
in mammals, the cortical hemispheres and striatum. The 
neural induction process begins on day 12 of gestation, 
with the establishment of the primitive line. Then, neuro-
genesis is initiated from week 8 of gestation and the first 
synaptic connections are established from weeks 11 to 
12 [1]. Glial cells appear later: astrocytes and oligoden-
drocytes are detected from weeks 13 and 19, respectively, 
and the process of myelination does not begin until after 
birth. These observations illustrate the difficulty of reca-
pitulating all the differentiation and maturation stages of 
this tissue which is particularly complex in its architec-
ture and cellular interactions.

The initial mechanisms of formation of the neuroepi-
thelium, neural tube, and cerebral vesicles are conserved 
in all vertebrates. They ultimately lead to the same basic 
architecture of the different parts of the brain (hindbrain, 
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midbrain, and forebrain) in all vertebrates. The devel-
opment of the forebrain is, however, more specific to 
mammals, although its volume and relative weight var-
ies greatly between species. The significant enlargement 
of the frontal cortex is a specificity of primates, with an 
hyper-development in humans [2, 3].

Comparison of the brain structures of different mam-
malian species is usually performed between rodents, 
non-human primates (NHP) and humans. It is more 
rare with other large mammals although several mag-
netic resonance imaging (MRI) studies and brain atlas 
have been published for pig [4, 5], bovine [6], ovine [7, 
8] and horse [9]. The encephalization quotient (EQ) and 
cerebellar quotient (CQ) parameters, defined as theoreti-
cal ratio between observed and expected total brain size 
(or cerebellum size for the CQ) at a given body mass [10] 
allowed to compare the size of mammalian brains in vari-
ous species, including those of domestic animals [6, 11]. 
The similarities in the development of the human and 
pig brains is particularly interesting as it makes it possi-
ble to provide models that are more accessible than non-
human primates (NHP). This interest has in fact been 
underlined by various authors “pigs have a large, gyrence-
phalic brain that can be studied using clinical MRI scan-
ners/protocols. Pigs are less complex than non-human 
primates thus satisfying the “replacement” principle of 
animal research” [5] and also that “the large increase in 
brain volume in the postnatal period is similar to that of 
human neonates and suggests pigs can be used to investi-
gate brain development” [12]. Of note, a recent study on 
NudE Neurodevelopment Protein 1 (NDE1) gene-whose 
protein is involved in dynein function and whose muta-
tions are associated with human microhydrancephaly 
and lissencephaly-showed that a human-linked alternate 
terminal exon could be responsible for the appearance of 
gyri in mammals, including in pigs and bovine [13].

Some studies have focused on the brain of domestic 
animals (or on its sub-structures: hypothalamus, substan-
tia nigra, sculum, cerebellum…), including bovine [6, 14], 
ovine [7, 15, 16], horse [9, 17] and pigs [18–21]. These 
studies are mainly focused on the description of inner-
vation systems, distribution of specific neurotransmitters 
[22, 23] and functional connectivity [24]. Recently, the 
original report on the “restoration of vascular dilatory 
and glial inflammatory responses, spontaneous synaptic 
activity, and active cerebral metabolism in the absence of 
global electrocorticographic activity” in 4 h post-mortem 
pig brain emphasizes the importance of the pig model 
for innovative studies that explore new experimental and 
ethical ways of considering death [25].

At the molecular level, transcriptomic and proteomic 
analyses have also provided comparisons of gene and 
protein expression profiles between humans and different 

animal species [26, 27]. One study demonstrated that 
the composition of neurons and glial cells varies in pigs 
depending on the species [21]. Recently, the development 
of brain organoids from macaque and chimpanzee pluri-
potent stem cells (PSCs) have allowed the identification 
of certain aspects of the specificity of humans and great 
apes by comparative analysis at the single-cell level [28, 
29]. The development and maturation of cortical struc-
tures is slower and more complex in the human model, 
although the gene activation and signaling pathways 
appeared generally well conserved between humans and 
non-human primates (NHP). For domestic animals, stud-
ies comparing the profiles of receptors for growth factors 
and cytokines in human, mouse and pig brains, such as 
performed by Sjöstedt et al. [26], can serve as a basis for 
the development of brain organoids in pigs. The precise 
identification of developmental signaling pathways will 
be a key element in obtaining the most structured and 
functional organoids, as it has been demonstrated in 
human.

2.  Cerebral organoid: an organ‑like in vitro model 
that recapitulates key features of developmental 
brain
Coming mainly from three areas of research, stem cells, 
cell culture engineering and developmental biology, orga-
noids are defined as self-organized three-dimensional 
biological systems recapitulating the structure and cell 
types of the organs they aim to mimic as well as some 
of their functions. The most significant advances in the 
development of cerebral organoids were made with the 
pioneering work of Lancaster et  al. in 2013 [30–32]. 
Their work was based on the following principle: human 
embryonic or induced pluripotent stem cells (iPSCs) are 
induced in the neural pathway in a controlled manner. 
Then the structure is allowed to self-organize and differ-
entiate into a multilayered lamellar organoid similar to 
that observed during the development of the CNS. These 
first studies highlighted the need to follow a multistep 
protocol with various growing conditions. Aggregates 
were either maintained in the presence of Matrigel, a 
matrix that keeps the organoid in suspension and avoids 
polarization and attachment, or grown as free-floating 
structures. Suspending these drops in a stirred bioreactor 
allowed the maintenance of their development for several 
weeks. A diverse set of markers of proliferation and dif-
ferentiation, including early progenitor markers such as 
SOX2, PAX6, TBR1, NESTIN and later expressed neural 
markers such as TUJ1, MAP2, CTIP2, SATB2, etc.., were 
used to verify the stage of differentiation of the growing 
organoids. More importantly, as the “human brain devel-
opment exhibits a unique progenitor zone organization” 
i.e. the original presence of the outer subventricular zone 
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(OSVZ) typical of the human and NHP neocortex [33, 
34], it was concluded that the observed 3D structure of 
those cerebral organoids could recapitulate at least some 
aspects of the human early cortical development [30]. As 
patterning cues were identified, it was also possible to 
obtain cerebral organoids representative of different brain 
areas, including the forebrain, midbrain, and hypothala-
mus, described by Qian’s protocols [35]. Subsequently, 
several other approaches and techniques have allowed 
to reproduce more regions of the human brain [36]. All 
of these protocols follow similar steps with the first con-
sisting of aggregated cells (formation of embryoid body 
(EB)-like structures), a second one with a primary induc-
tion into the neuroectoderm lineage, and a third one with 
the growth and amplification of the organoid followed by 
a phase of maturation that could vary from a few weeks 
to several months. Cerebral organoids may thus be gen-
erated either in a spontaneous (unguided) or a more con-
trolled (guided) manner. This is illustrated in Figure 1, for 
cortical organoids as an example with the analysis of dif-
ferent markers during the maturation process (Figure 2). 
Various steps and changes in growth culture media, with 
specificity at each step, are shown. Growth factors and 
culture conditions are the main levers of action for con-
trolling the specifications of the generated structures, 

with for example the absence of Vitamin A in the first 
steps and its presence for maturation ones (Figure  1). 
Addition of specific inhibitors of the WNT (IWR1e) and 
TGFβ (SB431242) pathways are often used for obtaining 
dorsally patterned forebrain organoids [37, 38], whereas 
inhibition of WNT (with IWP2) and activation of the 
Hedgehog pathway (with Activates Smoothened—SMO 
chemicals) allowed to obtain ventrally patterned fore-
brain organoid [39]. A non-exhaustive list, as synthetized 
and exemplified by Qian et al. [36], includes the unguided 
first cortical organoids [30, 31] and the same guided ones 
[30, 37], the cerebral cortex organoids [37], the various 
telencephalic structures [40], the cerebellum structures 
[41], the forebrain organoids [35, 42], the choroid plexus-
like organoids [43], the hippocampus structure [35, 43], 
the midbrain organoid [44], the anterior pituitary orga-
noid [45], the dorsal and ventral organoid [39, 46] and 
the recent choroid plexus- cerebrospinal fluid organoid 
(ChP-CSF) that mimics the CNS barrier [47]. The most 
recent advances have focused on assembloids which 
consist of either mixing/fusing dorsal and ventral fore-
brains [39] or mixing human medial ganglionic eminence 
(MGE) with cortical organoid, the latter one being used 
for modeling human interneuron migration [48].
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Figure 1  Brain organoids obtained from in vitro differentiation of human-induced pluripotent stem cells (hiPSCs). A Typical time course 
for obtaining cortical organoids. B Progressive growth of cortical organoid from hiPSC (D0, magnification ×100) to primary induction (D6–
magnification ×100) and consecutive growth (D9-D50 magnification ×40). C Growth curve of cortical organoids (6 to 9 organoids per time point).
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Importantly, transcriptomic analyses have demon-
strated that the various and numerous cell types found in 
the brain were also identified in the human 3D in  vitro 
structures [49]. Acquisition of diversity was shown to be 
progressive and, over a period of 6  months of culture, 
most cell types were found to be related to the reference 
tissue. Single-cell RNA sequencing further revealed that 
human cerebral organoids recapitulated remarkably well 
the gene expression program activated during the devel-
opment of the human fetal neocortex [38, 49, 50].

Another important feature of brain organoids is the 
demonstration of their functionality. For example, 
the typical interkinetic nuclear movement (a periodic 
movement of the cell nucleus in phase with cell-cycle 
progression which is observed in proliferative progeni-
tors engaged in differentiation during cortical devel-
opment) and electrical activities were observed in 3D 
cerebral organoids [51–53]. Oscillations were established 
and maintained beyond 25  weeks of culture and were 
detected by multi-electrode array recording. The authors 
reported that the electrical activity was similar to that 
recorded in a premature fetal brain [52].

Taken together, these recent reports established that 
numerous morphotypes present in the human brain are 
also found in the 3D structures and that standardized 
protocols allow reproducibility and robustness of the 

differentiation process in vitro, including in the long term 
[36, 47, 48].

3.  Biological issues addressed by cerebral 
organoids
Because of their organ-like features, human cerebral 
organoids are highly valuable in  vitro models that are 
increasingly used for studies on neurodevelopment, dis-
ease modeling (e.g., neurodegenerative diseases, infec-
tious diseases, cancer), toxicity and drug testing [54, 55]. 
Compared to 2D models, they have several advantages. 
The cell-to-cell communication and extracellular matrix, 
which are essential to respond to the environment and to 
transfer information from one cell to another and which 
play an important role in physiological processes, are 
more faithfully modeled. They also present a high diver-
sity in neural population that is not encountered in 2D 
models. Today, they are the closest in vitro model of the 
human brain. They have assisted in the understanding 
of several neurological diseases: those of embryonic ori-
gin such as autism [42, 56, 57], genetic or viral-induced 
microencephaly [30, 35, 58], lissencephaly and Miller-
Dieker syndrome [59, 60], but also those of the aging brain 
such as Parkinson’s disease [61–63], Alzheimer’s disease 
[64], stroke [65, 66] and brain tumors such as glioblasto-
mas [67–69]. They are also expected to be more predictive 

KI67 TBR2MAP2

Da
y 

32

Da
y 

58

N-CADHERIN NESTINSOX1

PAX6 TBR2 KI67A B C

D

Figure 2  Analysis of brain organoids. A Typical cortical organoid obtained after 62 days of culture with apparent rosettes at the periphery 
(magnification ×100). B–D Immunofluorescence with antibodies directed against KI67, SOX1, NESTIN, TBR2, PAX6, MAP2 and N-CADHERIN, showing 
proliferative cells (KI67), progenitor cells (SOX1, NESTIN, TBR2, PAX6) and neurons (MAP2, N-CADHERIN) in B 32 days-old and C, D 58 days-old 
organoids.
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for drug development. Indeed, while 2D models are easier 
to handle and have been largely used for drug discovery, 
they have also been shown to be of low predictive value, 
as they led to a high level of failure in clinical assays.

3.1.  Human cerebral organoids for the study 
of neurotropic infectious diseases
Another application for human brain organoids that 
is currently expanding and which may be translated to 
the veterinary sciences concerns the study of infectious 
diseases and host–pathogen interactions [70]. Cer-
ebral organoids showed their high potential when the 
Zika virus emerged in South America in 2016 and was 
declared a public health emergency by the World Health 
Organization because of its possible association with 
multiple cases of microcephaly in newborns [71]. Stud-
ies using cerebral organoids have been used to demon-
strate the causal role of the Zika virus in this devastating 
disease and to elucidate the mechanisms that lead to 
neurogenesis impairment [35, 72]. Brain organoids have 
also been used to test drugs to prevent or treat infec-
tion [73]. These works have paved the way for studies of 
other viruses that are involved in neurodevelopmental 
diseases, such as the human cytomegalovirus (hCMV), 
and possibly the Borna disease virus for which an altera-
tion in neurogenesis was shown in a 2D in  vitro model 
[74, 75]. Human CMV infection has recently been mod-
eled using brain organoids and developmental altera-
tions, that are comparable to those observed in hCMV 
clinical samples, have been described, demonstrating the 
utility of this model for further investigation [76]. Studies 
of neurotropic viruses are not restricted to those impair-
ing neurodevelopment. They can be extended to viruses, 
or more generally to pathogens or infectious proteins, 
that are responsible for encephalitis or other neurologi-
cal diseases. Indeed, the cellular heterogeneity of the 3D 
structures, which comprise different types of neurons, 
including dopaminergic, glutamatergic, and GABAer-
gic neurons, as well as neural progenitor and glial cells, 
allows studies that aim at understanding neuropatho-
genic mechanisms in the more mature brain. Such stud-
ies were performed with the Japanese encephalitis virus 
(JEV), an encephalitic flavivirus transmitted by mosqui-
toes which is responsible for more than 70  000 human 
cases each year with more than 10 000 fatalities. It is so 
far poorly understood why the outcome of JEV infection 
is more severe in children than in adults, but answers 
may come from modeling the infection with brain orga-
noids. A first study has indeed given some clues, reveal-
ing a preferential tropism for radial glia and astrocytes 
and a weaker antiviral response in the youngest orga-
noids compared to older one [77]. Another example is 
given by the recent modeling of the herpes simplex virus 

1 (HSV1) infection in brain organoids, allowing studies 
of the virus trafficking through the complex neural tis-
sue structure, the processes of latency and reactivation 
that can be established in organoids [78, 79] and the role 
of the virus as a facilitating agent of Alzheimer disease. 
Interestingly, HSV1 infection in both 2D and 3D in vitro 
models derived from iPSCs showed that infection led to 
the deposit of amyloid β42 aggregates, supporting the 
hypothesis that HSV1 may be involved in the occur-
rence of Alzheimer disease [78–80]. However, in 2D cells, 
aggregates were observed in infected cells whereas they 
were present only in non-infected cells in the 3D model. 
This showed differences that have strong implication 
for understanding the neuropathology of this infection, 
leading the authors to consider that the 3D model may 
be more relevant for studies aiming at understanding the 
role of HSV1 as a facilitating factor of Alzheimer disease.

Brain organoids may also be used to determine whether 
a virus has neurotropic properties. This is a question that 
has been raised for the novel severe acute respiratory syn-
drome coronavirus 2, responsible for the current corona-
virus disease pandemic [81–84]. This question appears to 
be of dramatic importance as understanding whether the 
neurological symptoms observed in some of the infected 
patients are due to inflammatory process or by the virus 
entering the cerebral parenchyma will determine the 
most appropriate therapy. Viruses are not the only neu-
rotropic pathogens which can take advantage of cerebral 
organoids. Great advances in the study of human prion 
diseases is also expected in the future thanks to their 
use. Modeling human prion propagation and disease has 
indeed been highly challenging so far as cell lines were 
not capable of generating PrPres, the infectious form of 
the cellular prion protein (PrPc). Interestingly, not only 
the generation of organoids using iPSCs derived from 
patients carrying a mutation in the PrPc gene, which pre-
disposed them to prion disease, allowed the modeling 
of certain pathological changes [85, 86], but modeling 
the generation and propagation of infectious prion was 
achieved using 5-months old cerebral organoids [85]. As 
diverse brain regions with specific neuronal population 
(dorsal and ventral forebrain, cerebellum, etc.…) can be 
generated using corresponding patterning cues [36, 39, 
46], it will now be possible to question the mechanisms 
by which prion strains specifically target certain neu-
ronal population, a question that is so far unresolved and 
which can be extended to numerous viruses which, like 
prions strains, infect specific neuronal population. So 
far, cerebral organoids were used for modeling only a few 
of the hundred viruses and other infectious agents that 
are capable of invading the human brain and for which a 
better understanding of their pathogenic actions is nec-
essary to develop therapeutic drugs that will prevent or 
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limit the irreversible damage they induce in the brain. 
One can extrapolate that, in the near future, more virol-
ogists will collaborate with neuroscientists who have 
developed brain organoids and will benefit from this 
highly innovative tool to both improve our understand-
ing of brain–virus interactions and to test antiviral and 
neuroprotective drugs.

3.2.  What is the situation in domestic animals?
Cerebral organoids are so far restricted to primate and 
rodent species. As neurological diseases and neuro-
tropic infection, affect domestic animals and since data 
obtained with one species are not fully transposable to 
another one, cerebral organoids specific to domestic ani-
mals will be useful for veterinary research. They may also 
be highly informative for developmental biology. Devel-
oping them will request robust and plastic PSCs. These 
cells have already been generated from many domestic 
species [87, 88], including chickens [89–91], rabbits [92, 
93], sheep and cattle [94–96], pigs [97–100], dogs [101], 
and horses [102, 103], however, they sometimes appear 
less robust than murine and human PSCs. Nevertheless, 
progress has been made and reports with recently devel-
oped PSCs from horses [103], dogs [101], pigs [100] and 
bovine [96] show an improved plasticity and therefore 

open new perspectives. More details on their isolation 
and properties will not be given here as they are already 
presented and discussed in the introductive chapter of 
this issue [104].

Below, we will give an overview of the zoonotic and 
non-zoonotic neurotropic viral infection which affect 
domestic animals and for which studies using cerebral 
organoids may be useful. Next, we will give few examples 
of specific questions that could be tackled using them.

Neurotropic viruses affecting domestic animals belong 
to many families and genera, including Lyssavirus, Flavi-
virus, Alphavirus, Bunyavirus, etc. They are summarized 
in Table 1. The rabies virus, which belongs to the Lyssavi-
rus genus, is probably the most well-known of the neuro-
tropic viruses. It is capable of infecting all mammals, but 
dogs, wild carnivores, and bats are considered its natural 
reservoirs. Notably, bats are the natural reservoir of at 
least 12 of the 14 identified species of Lyssavirus [105]. In 
99% of cases, the transmission to humans occurs through 
dogs. It induces an acute and progressive encephalitis, 
with almost 100% lethality [106]. The vesicular stomati-
tis virus is another lyssavirus that affects pigs, cattle, and 
horses in the Western hemisphere. It is rarely zoonotic 
but infection in children has been described [107]. The 
Flaviviruses of the Flaviviridae family form another 

Table 1  Main zoonotic or non-zoonotic neurotropic viruses affecting domestic animals 

Virus family/
Genus

Virus Domestic species affected, (Z) Confirmed/suspected 
reservoir

Reference

Rhabdoviridae

 Lyssavirus Rabies virus (RABV) Mammals, (Z) Bat [106]

 Lyssavirus Vesicular stomatitis virus (VSV) Pig, cattle, horses (Z) [107]

Flaviviridae

 Flavivirus Japanese encephalitis virus (JEV) Pig, horses, chicken, (Z) Mosquitoes [108]

West Nile virus (WNV) Pig, cattle, sheep, horse, dog, cats (Z) Mosquitoes, Corvidae [108]

Louping Ill virus (LIV) Sheep, (Z) Ticks [108, 109]

Tick-borne encephalitis virus (TBEV) Cattle, goats, Horses, (Z) Ticks, small rodents [108]

Alphaviridae

 Togavirus Eastern equine encephalitis virus (EEEV) Horses, (Z) Mosquitoes [108]

Western equine encephalitis virus (WEEV) Horses, (Z) Mosquitoes [108]

Venezuelan equine encephalitis virus (VEEV) Horses, (Z) Mosquitoes [108]

Bornaviridae

 Orthobornavirus Borna disease virus 1 (BoDV-1) Horses, sheep, squirrels, (Z) Bicolored white-toothed 
shrew

[108]

Paramixoviridae

 Henipavirus Nipah virus (NiV) Pigs, (Z) Bats [113]

 Henipavirus Hendra virus (HeV) Horses, (Z) Bats [113]

Buynaviridae

 Bunyavirus Schmallenberg virus (SBV) Cattle, Sheep, goat Culicoides [114]

Herpesviridae

 Alphaherpesviridae Herpes virus équin 1 (HVE 1) Horses [115]
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genus that comprises many neurotropic viruses. They 
induce encephalitis in humans and horses (West Nile 
virus, Japanese encephalitis virus, Saint-Louis encepha-
litis virus, Murray Valley encephalitis virus…) or sheep 
(Louping Ill virus) [108]. Louping Ill-induced encephali-
tis are however rare in humans [109]. Alphaviruses and 
bornaviruses also comprise neurotropic viruses that 
can cause serious diseases in both humans and horses 
[110]. The former genus includes the Eastern, Western, 
and Venezuelan equine encephalitis viruses, and the lat-
ter includes the mammalian 1 orthobornavirus [111]. 
The henipaviruses, whose emergence occurred in the 
1990s, also cause encephalitis in humans and animals 
with very high fatality rates in both of them. The Nipah 
virus and Hendra virus target pigs and horses, respec-
tively. Humans are infected either directly from bats 
(their natural reservoir) or by contact with infected pigs 
and horses (their amplifying host) [112, 113]. Among the 
non-zoonotic viruses, the Schmallenberg virus, a Bun-
yavirus transmitted by Culicoides vectors, appeared in 
Germany in 2001, affecting ruminants (mainly bovine, 
but also sheep, goats, and wild ruminants). It induces 
neurological damage such as blindness, ataxia, paralysis, 
and sometimes convulsions and can also cause severe 
deformations of the calf brain during development [114]. 
The equine herpes virus 1 is distributed worldwide and is 
responsible for myeloencephalopathy in horses [115] and 
the porcine hemagglutinating encephalomyelitis virus is 
a coronavirus that induces encephalomyelitis in piglets 
under 3 weeks old [116].

The main economic losses induced by viruses in 
domestic animals are not due to neurological disor-
ders with the noticeable exception of horses which are 
strongly affected by numerous neurotropic viruses, 
including Eastern, Western and Venezuelan equine 
encephalitis viruses in North and South America [117].

Among all species affected by neurotropic infection, 
horses may be the most appropriate for the development 
of cerebral organoid. First, because the capacity to differ-
entiate into the neural lineage and to generate neurons 
have already been shown for equine iPSCs [118]. Second, 
because horses drive economical and affective issues that 
attract the funding necessary for this research and third, 
because numerous viruses affect the equine brain [108]. 
In addition, horses suffer from neurological diseases 
of non-infectious etiologies [119], which will also ben-
efit from this novel in  vitro approach. Similar research 
developed in human organoids, aimed at understanding 
key cellular and molecular drivers of the pathobiology 
and at developing therapeutic drugs is expected. Impor-
tantly, as many viruses targeting the equine brain are 
zoonotic, research on human and equine cerebral orga-
noids infected by the same viruses will drive knowledge 

on cellular signaling pathways that are either similar or 
on the contrary specific to each species. This may lead to 
the development of drugs usable in both species. Devel-
opment of ovine cerebral organoids is also highly attrac-
tive, as this will allow studies aiming at understanding the 
mechanisms of propagation of atypical scrapie for which 
there is, so far, no in  vitro model available. In particu-
lar, it may help to understand why the ARR/ARR ovine 
genotype, which is highly resistant to classical scrapie 
is, on the contrary, sensitive to atypical scrapie. As cer-
ebral organoids of human origin have shown their strong 
potential for propagating infectious prions known to be 
highly difficult to propagate in other in vitro models, it is 
expected that propagation of ovine prion will also be pos-
sible. This will bring new knowledge on ovine prion dis-
eases that are under strong genetic control of the prion 
PRNP gene. Pet domestic animals will also greatly benefit 
from the use of cerebral organoid. Dogs for example, are 
subjected to brain diseases such as cognitive deficits that 
are similar to Alzheimer disease in humans [120] and 
brain tumors [121], for which there is currently no cure. 
Modeling these diseases in canine cerebral organoids, as 
it was performed for similar human diseases, is expected 
to help understanding the species-specificities and to test 
and develop new therapeutics.

These are a few examples of many questions that can be 
tackled using cerebral organoids from domestic animals. 
Veterinary research will thus take advantage of this new 
technology to address questions that are specific to ani-
mal diseases. Importantly, this will also allow to diminish 
the use of animals, complying with the 3Rs. The research 
costs will also considerably decrease as maintaining large 
animals for long periods, a necessity for brain diseases 
studies, is highly expensive compared to in vitro cultures. 
Finally, the proximity of certain animal brain diseases 
with human diseases may allow veterinary research to 
benefit human research, and conversely, in a One Health 
spirit.

4.  Future and limits of cerebral organoids
The complexity and processes of brain development 
have been extensively studied in humans, NHPs and 
ferrets [122] but little is known in domestic animals. 
However, as we mentioned it previously, compara-
tive studies have demonstrated a strong proximity of 
brain structures in different mammal species, suggest-
ing that similar cellular and molecular mechanisms 
underlie cerebral development in mammals. It can thus 
be hypothesized that protocols developed to obtain 
human brain organoids could be transposed to domes-
tic species. Such transposition was already shown to 
be successful for pigs, rabbits and bovine intestinal 
organoids [123]. As also mentioned, PSCs have been 
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generated from many animal species [87, 88, 104]. The 
pluripotency and differentiation properties of some of 
the reprogrammed cells in these species are, however, 
not similar to those of mouse and human models. In 
other words, many of these cells are imperfectly repro-
grammed and cannot fully engage in the differentia-
tion pathways, with the exception of those reported in 
horses (for which accurate differentiation and infection 
by Flaviviruses have been reported) [118], in dogs [101] 
and those recently isolated in pigs [100] and bovine 
[96]. One can hope that, in the future, the development 
of more reprogrammed cells with improved plastic 
properties of differentiation will be available to gen-
erate brain organoids in the different species of inter-
est. This would allow to question the neuropathogenic 
mechanisms of viruses in domestic animal models that 
are physiologically relevant and would be highly benefi-
cial for veterinary research.

Recently developed in humans, cerebral organoids 
constitute a powerful and exciting tool that can be used 
for various applications from disease modeling to drug 
testing. The latest developments, such as the constitu-
tion of assembloids (brain structures generated inde-
pendently and interconnected), which allow to follow 
the neural dynamics of the interactions between differ-
ent brain areas [39, 124–126]), mimicking the in  vivo 
interconnections [48, 127] will increase their value 
further. However, cerebral organoids also have limita-
tions. The brain is associated closely with the vascular 
system and mimicking the blood–brain barrier remains 
a challenge that needs to be resolved [47, 128, 129]. The 
first organoid vascularization assays during transplant 
experiments in rodent brains are underway and dem-
onstrate the possibility of integrating these structures 
with preexisting organs [130]. However, despite the 
rapid and impressive progress, the complex and com-
plete physiology of the brain is still imperfectly mim-
icked, in particular with the absence of microglia, in the 
models developed currently [131].

Finally, in humans, the ethical dimension of cerebral 
organoids should be considered, especially with regards 
to the origin of cells, the consent of patients, and to the 
new ways of screening and identifying associated disor-
ders that these new structures can produce. The notion 
of consciousness must also be posed for human orga-
noids, as electrical activity similar to that observed in 
second-semester fetuses has been shown and as more 
mature wiring may be developed with the generation 
of assembloids [132–134]. For animals, the ethical 
dimension is clearly different since consent of patients 
for obtaining the cells to be reprogrammed is not an 
issue. Importantly, the accessibility to organoids will 
undoubtedly leads to a reduction in the use of animals 

in experimental protocols, satisfying the 3R rule. This 
will certainly be a major driven force for conduct-
ing researches aiming at improving animals PSCs and 
developing organoids.

5.  Conclusion
The availability of human PSCs (ESCs and iPSCs) and 
the development of protocols that allow the generation 
of 3D structures with some of the brain’s functionalities 
have led to human cerebral organoids which became an 
indispensable tool in neuroscience. Veterinary research 
is however not as advanced. Despite the generation of 
iPSCs in different species, their weak quality and lack of 
plasticity has so far been insufficient for the development 
of cerebral organoids. The recent progress in the genera-
tion of new PSCs with improved differentiation potential 
has however raised hope for their effective development 
in domestic animal species. Drug discovery for animal 
brain diseases, especially infectious diseases, will greatly 
benefit from this innovation.
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