

Supplementary files.

Supplementary files. Table S1. Bacterial strains used in this study.

	Strains		Canatyna (description	Source /
	Strains	14	Genotype / description	reference
Eccharichia coli	VI 1 Rhuo	,	end A1 gyr A96 (Nalr) thi -1 rec A1 rel A1 lac glnV44 hsd) Stragono
			(Tetr) proAB+ lacIqZ Δ M15]	Stragene
	12/111 (WT)	1	Isolated from maternal bacteraemia	[16]
	ΔphiA strain	1	Isogenic 12/111phiA deletion mutant of 12/111	This study
	Anal Punat V atrain	2	Isogenic $\Delta relB-metk$ (BIH62_0555 to BIH62_05470) region deletion mutant of	This study
	Areid-metk strain	2	12/111	This study
	Aral P usto strain	2	Isogenic $\Delta relB$ -yafQ (BIH62_0555 toB1H62_05460) region deletion mutant of	This study
		2	12/111	This study
	Andonuclease-metK strain	2	Isogenic \triangle <i>endonuclease-metK</i> (B1H62_05465 to B1H62_05470) region deletion	This study
		2	mutant of 12/111	This study
	Δ endonuclease strain	2	Isogenic \triangle endonuclease (B1H62_05465) deletion mutant of 12/111	This study
	$\Delta metK$ strain	2	Isogenic $\Delta met K$ (B1H62_05470) deletion mutant of 12/111	This study
	$\Delta relB$ -metK::relB-metK strain	2	<i>relB-metK</i> region in situ complementation of $12/111\Delta relB-metK$	This study
	$\Delta relB$ -yafQ::relB-yafQ strain	2	<i>relB-yafQ</i> region in situ complementation of $12/111\Delta relB-yafQ$	This study
Streptococcus	Δ endonuclease-metK ::endonuclease-metK strain	2	$\textit{Endonuclease-metK} region in situ complementation of 12/111 \Delta endonuclease-metK$	This study
agalactiae	Δ endonuclease:: endonuclease strain	2	endonuclease in situ complementation of 12/111 Δ endonuclease	This study
	$\Delta metK$::metK strain	2	metK in situ complementation of $12/111\Delta metK$	This study
	12/111/ pTCV-P _{Tet}	2	12/111 caring empty complementation plasmid for control	This study
	ΔphiA /pTCV-P _{Tet}	1	12/111 Δ phiA caring empty complementation plasmid for control	This study
	$\Delta relB-metK/pTCV-P_{Tet}$	1	$12/111\Delta relB-metK$ caring empty complementation plasmid for control	This study
	$\Delta phiA / pTCV-P_{Tet} :: relB-yafQ strain$	1	$\it relB-yafQ$ plasmid complementation of 12/111 Δ phiA	This study
	$\Delta phiA / pTCV-P_{Tet}$:: endonuclease-metK strain	1	endonuclease-metK plasmid complementation of $12/111\Delta$ phiA	This study
	$\Delta phiA / pTCV-P_{Tet}$:: endonuclease strain	1	endonuclease plasmid complementation of 12/111∆phiA	This study
	∆phiA / pTCV-PTet :: <i>metK</i> strain	1	$metK$ plasmid complementation of 12/111 Δ phiA	This study
	Δ <i>relB-metK</i> /pTCV-P _{Tet} :: <i>relB-yafQ</i> strain	2	$\it relB-yafQ$ plasmid complementation of 12/111 Δ phiA	This study
	$\Delta relB-metK/pTCV-P_{Tet}$:: endonuclease-metK strain	n 1	endonuclease-metK plasmid complementation of 12/111 Δ relB-metK	This study
	$\Delta relB-metK/pTCV-P_{Tet}$:: endonuclease strain	2	endonuclease plasmid complementation of 12/111 Δ relB-metK	This study
	Δ <i>relB-metK</i> /pTCV-P _{Tet} :: <i>metK</i> strain	1	<i>metK</i> plasmid complementation of 12/111∆ <i>relB-metK</i>	This study

Supplementary files. Table S2. Plasmid used in this study.

Plasmids	Genotype /description	Source / reference
pG+host1 ^{TS}	Replication-thermosensitive shuttle (TS) plasmid; Ery ^r	[28]
pTCV-P _{Tet}	Mob* (IncP); oriR pACYC184; oriR pAM_1; complementation vector, promoter P_{Tet}	[29]
pTCV-P _{Tet} :: <i>relB-yafQ</i>	<i>relB-yafQ</i> complementation vector, promoter P _{Tet}	This study
pTCV-P _{Tet} :: endonuclease-metK	Endonuclease-metK complementation vector, promoter P _{Tet}	This study
pTCV-P _{Tet} :: endonuclease	endonuclease complementation vector, promoter P_{Tet}	This study
pTCV-P _{Tet} :: <i>metK</i>	<i>metK</i> complementation vector, promoter P _{Tet}	This study

Supplementary files. Table S3: Primers used in this study.

Functions	Primers	Sequence (5'-3')
	AR1	CTTACAGGATCCATGTTCTCCTTCATCAAGCTG
Deletion of velD wetV region	AR2	TTTTTGCGTGGACTCCTACAGTTTCTTTAATTGTATC
Deletion of <i>relB-metk</i> region	AR3	AAACTGTAGGAGTCCACGCAAAAAGCCCAACC
	AR4	GCCGTGGAATTCTTCATAATTGGCGTAGAAAGTTATTGGAAC
	AR1	CTTACAGGATCCATGTTCTCCTTCATCAAGCTG
	AR64	GACTITGATGAGAGTATCCTCCTACAGTTTCTTTAATTGTATC
Deletion of <i>relB-yafQ</i> region	AR65	TAGGAGGATACGCTCATCAAAGTCACTTTATG
	AR66	ATTATCGAATTCAACAACTAGTAGGAGTGGTT
	AR58	TCTTTGGGATCCTTGGTATTTCTGTTACTGACGC
Deletion of <i>endonuclease-metK</i>	AR71	GTGGAGGAAAACACCATAAGAAAAAAGCCACTCG
region	AR72	TTTTCTTATGGTGTTTTCCTCCACGCAAAAAG
	AR4	GCCGTGGAATTCTTCATAATTGGCGTAGAAAGTTATTGGAAC
	AR67	TCTTTGGGATCCTTGGTATTTCTGTTACTGACGC
	AR68	GGGAGCAGTAAGACCATAAGAAAAAAGCCACTCG
Deletion of <i>endonuclease</i> region	AR69	TTTTCTTATGGTCTTACTGCTCCCAAGGAAGA
	AR70	AAAGTCGAATTCCCTTATGGCATGAGAGATGTCA
	AR61	GGAAATGGATCCGGATTTAGAGAGTGCCACATTGAACC
	AR62	GTTGGGCTTTTTGGATGCCACGTCGACCAAGCA
Deletion of <i>metK</i> region	AR63	CGACGTGGCATCCAAAAAGCCCAACCCTTGTG
	AR4	GCCGTGGAATTCTTCATAATTGGCGTAGAAAGTTATTGGAAC
In situ complementation of	AR1	CTTACAGGATCCATGTTCTCCTTCATCAAGCTG
relB-metK region	AR4	GCCGTGGAATTCTTCATAATTGGCGTAGAAAGTTATTGGAAC
In situ complementation of	AR1	CTTACAGGATCCATGTTCTCCTTCATCAAGCTG
relB-yafQ region	AR66	ATTATCGAATTCAACAACTAGTAGGAGTGGTT
In situ complementation of	AR58	TCTTTGGGATCCTTGGTATTTCTGTTACTGACGC
endonuclease-metK region	AR4	GCCGTGGAATTCTTCATAATTGGCGTAGAAAGTTATTGGAAC
In situ complementation of	AR67	TCTTTGGGATCCTTGGTATTTCTGTTACTGACGC
endonuclease	AR70	AAAGTCGAATTCCCTTATGGCATGAGAGATGTCA
	AR61	GGAAATGGATCCGGATTTAGAGAGTGCCACATTGAACC
In situ complementation of metk	AR4	GCCGTGGAATTCTTCATAATTGGCGTAGAAAGTTATTGGAAC
Plasmid complementation of	AR33	ATTAATGGATCCGTAGGAGGATACTAAAATGG
relB-yafQ	AR34	TAAGAACTGCAGAAAAACTTTGAGCAATTTGCTCAAAGTTTTTCACTCGCATAAAGTGACTT
Plasmid complementation of	AR85	GGTTCTCTGCAGAAAAACTTTGAGCAATTTGCTCAAAGTTTTTCGAGTGGCTTTTTTCTTATGGT
endonuclease-metK	AR36	TTGAAAGGATCCGCGTGGAGGAAAACATGATTT
Plasmid complementation of	AR85	GGTTCTCTGCAGAAAAACTTTGAGCAATTTGCTCAAAGTTTTTCGAGTGGCTTTTTTCTTATGGT
endonuclease	AR86	TTTAAGGGATCCCTTCCTTGGGAGCAGTAAGATG
Plasmid complementation of	AR35	CTTACACTGCAGAAAAACTTTGAGCAATTTGCTCAAAGTTTTTTGCTTGGTCGACGTGGC
metK	AR36	TTGAAAGGATCCGCGTGGAGGAAAACATGATTT

Query	Subject (reference)	query cover (in %)	identity (in %)
	E.coli_RelB [45]	48	26.7
	E.coli_DinJ [45]	58	29.6
12/111phiA_RelB	P307_RelB [45]	NS	NS
	H.iRelB [45]	66	25.8
	V.cRelB [45]	NS	NS
	E.coli_RelE [45]	NS	NS
12/111-b: A V.GO	E.coli_YoeB [45]	44	32.5
12/111pmA_raiQ	aRelE [45]	NS	NS
	E.coli_YafQ [45]	93	39.5
	12/111_MetK	97	44.3
12/111phiA_MetK	E.coli_MetK1 [47]	97	55.2
	E.coli_MetK [47]	95	56.6

Supplementary files. Table S4: Comparison of prophagic RelB, YafQ and Metk proteins with their bacterial homologs. NS corresponding to no significant similarity found.

Description	Query Cover	Per. Ident	E-value	Hit Lengh (bp)	Hit ac. numbers
Streptococcus agalactiae CUGBS591	97%	99,05%	0	2227680	CP021862
Streptococcus agalactiae FDAARGOS_670	97%	99,04%	0	2210718	CP044090
Streptococcus agalactiae Sag153	97%	99,04%	0	2174504	CP036376
Streptococcus agalactiae Sag37	97%	99,04%	0	2198785	CP019978
Streptococcus urinalis NCTC13766	97%	95,52%	0	2144000	LR134323
Streptococcus agalactiae 32790-3A	95%	99,05%	0	2148904	CP029561
Streptococcus agalactiae B105	95%	99,05%	0	2273717	CP021773
Streptococcus agalactiae FDAARGOS_512	95%	99,05%	0	2134138	CP033822
Streptococcus agalactiae NGBS128 (phiStag1)	95%	99,05%	0	2074179	CP012480
Streptococcus sp. 'group B' FDAARGOS_229	95%	99,05%	0	2178261	CP020432
Streptococcus agalactiae NJ1606	84%	94,19%	0	2136438	CP026084
Streptococcus agalactiae YZ1605	84%	94,06%	0	2281602	CP026082
Streptococcus agalactiae C001	83%	91,83%	0	2121372	CP008813
Streptococcus MR1-Z1-201	78%	93,41%	0	41765	LR134293
Streptococcus constellatus FDAARGOS_1015	75%	93,03%	0	2038583	CP066055
Streptococcus constellatus FDAARGOS_1208	75%	93,04%	0	1978680	CP069558
Streptococcus constellatus subsp. pharyngis C1050	75%	93,04%	0	1991156	CP003859
Streptococcus constellatus subsp. pharyngis C232	75%	93,04%	0	1935414	CP003800
Streptococcus constellatus subsp. pharyngis C818	75%	93,04%	0	1935662	CP003840
Streptococcus phage Javan639	73%	94,51%	0	38797	MK448825
Streptococcus phage Javan95	73%	94,50%	0	38797	MK448836
Streptococcus canis HL_77_2	72%	90,13%	0	2152128	CP053790
Streptococcus phage Javan101	67%	93,04%	0	37952	MK448666
Streptococcus phage Javan107	67%	93,04%	0	37952	MK448668
Streptococcus phage Javan113	67%	93,04%	0	37901	MK448670
Streptococcus phage Javan93	67%	94,42%	0	37554	MK448835
Streptococcus phage Javan25	65%	98,93%	0	35085	MK448717
Streptococcus phage Javan32	65%	98,93%	0	35085	MK448906
Streptococcus phage Javan38	65%	98,93%	0	35085	MK448922
Streptococcus phage Javan65	65%	98,93%	0	35085	MK448827
Streptococcus equi subsp. zooepidemicus ATCC 35246	63%	92,06%	0	2167264	CP002904
Streptococcus equi subsp. zooepidemicus OH-71905	63%	92,06%	0	2189155	CP046040
Streptococcus equi subsp. zooepidemicus TN-714097	63%	92,06%	0	2188654	CP046042

Supplementary files. Table S5: Search for *S. agalactiae* strains carrying prophages similar to 12/111phiA using blastn analysis from the NCBI database (Per. Query cover >60% and %Identity >90%).

Strains CFU/mL Standard Deviation						
12/111	3.8x10 ⁵	8.6x10 ⁴				
12/111∆phiA	8.0×10^{4}	5.9x10 ⁴				

Supplementary files. Table S6: Microbial count after 24h culture in TH/MRS.

Supplementary files. Table S7: Identification of non-synonymous mutations in in situ deleted and complemented mutants. This analysis was performed using the Variation analysis service from the PATRIC server. Nucleotides modification was identified by "type" column. Syn: refers to no change on the encoded protein. Nonsyn: refers to non-synonymous mutation leading to amino acid change. "Ref-nt" and "Var-nt" corresponding respectively to sequence using like reference and sequence identified as modified. "Ref_nt_pos_change" indicated nucleotide position of the change in reference genome. "Ref_aa_pos_change" corresponding to position of amino acid (aa) involved by mutation and indicated aa replacing reference aa. "Upstream feature" refers to gene located upstream to the mutated gene. "snpEff_type" indicated location and nature of mutation. "snpEff_impact" informed of impact of detected mutations.

Samples	Contig	Туре	Ref_nt	Var_ nt	Ref_nt_ pos_ change	Ref_aa_ pos_ change	Gene_ID	Function	Upstream feature	Downstream feature	snpEff_ type	snpEff_ impact
12/111∆relB-met K:: relB-metK n°1 VS	1311.3476.con.00 04	Nonsyn	taa	Caa	253T>C	Ter85Gl n ext*	fig 1311.347 6.peg.661	ABC transporter membrane-spanning permease, Pep export, Vex1	hypothetical protein	ABC transporter membrane-spanning permease, Pep export, Vex1	stop_lost	HIGH
12/111∆relB-met K n°1	1311.3476.con.00 07	Nonsyn	taa	Caa	328T>C	Ter110G ln ext*	fig 1311.347 6.peg.1037	Xylulose kinase (EC 2.7.1.17)	Xylulose kinase (EC 2.7.1.17)	hypothetical protein	stop_lost	HIGH

A- RelB

P307_RelB 56	MPNIILSDTSASVSELKKNPMATVSAGDGFPVAILNRNQPAFYCV	PAELYEKMLDA
V.cRelB 56	MTTRILADVAASITEFKANPMKVATSAFGAPVAVLNRNEPAFYCV	PASTYEIMMDK
12/111phiA_RelB 44	MAKTANINLRIEPSTKAQAESLFGSFGISV	-TDAINIFLNTSIME
E.coli_DinJ 44	MAANAFVRARIDEDLKNQAADVLAGMGLTI	-SDLVRITLTKVARE
E.coli_RelB 41	MGSINLRIDDELKARSYAALEKMGVTP	-SEALRLMLEYIADN
H.iRelB 45	-MALTNSSISFRTVEKTKLEAYQVIEQYGLTP	-SQVFNMFLAQIAKT
P307_RelB 83	HDVDLDKYLHDVDLDKYL	
V.cRelB 82	VSVNIDDL	
12/111phiA_RelB 93	GGFPFQIKQPRYNRETELAMEEARQIMEGKVTTKSYASVSDLMAD	LNED
E.coli_DinJ 86	KALPFDLREPNQLTIQSIKNSEAGIDVHKAKDADDLFDK	LGI
E.coli_RelB 79	ERLPFKQTLLSDEDAELVEIVKERLRNPKPVRVT	LDEL
H.iRelB 94	RSIPVDLNYLRPNKETLAAIDELDSGNAESFFIE	ASENYSAEEFTKRIL
P307_RelB V.cRelB 12/111phiA_RelB E.coli_DinJ E.coli_RelB H.iRelB	83 82 93 86 79 NGGQ 98	

B- YafQ

E.coli_YoeB 53	MKLIWSEESWD-DYLYWQETDKRIVKKINELIKDTRRTPFEG-KGKPEPLKHNLS
E.coli_YafQ 57	MIQRDIEYSGQYSK-DVKLAQKR-HKDMNKLKYLMTLLINNTLPLPA-VYKDHPLQGSWK
12/111phiA_YafQ 54	MLQLVTTNQFRK-DVKRAKKR-GLNLKKLEAVLDPL-QKEETLDE-KHRDHALVGNYM
E.coli_RelE 49	MAYFLDFDERALKEWRKLGSTVREQ-LK-KKLVEVLESPRIEANKLRGMPD
aRelE 53	MTYRVKIHKQVVKALQSLPKAHYRRFLEFRDILEYEPVPREKFDVIKLEGTGD
E.coli_YoeB 84	GFWSRRITEEHRLVYAVTDDSLLIAACRYHY
E.coli_YafQ 92	GYRDAHVEPDWILIYKLTDKLLRFERTGTHAALFG
12/111phiA_YafQ 90	GFRECHIEP DW LLVYAIDKGQLILTAS R TGS H SDL F
E.coli_RelE 95	CYKIKLRSSGY R LVYQVIDEKVVVFVISVGKRERSEVYSEAVKRIL
aRelE 90	LDLYRARLGDYRVIYSVNWKDKVIKILKLKPRGRAYK

C- MetK

12/111phiA_MetK	MIFTSEQVSSGHPDKLCDQISDAIVTECLKHDKNSRVAVETLIKDNQVVVAGEVST
12/111_MetK	$\tt MSERKLFTSESVSEGHPDKIADQISDAILDAILEQDPDAHVAAETAVYTGSVHVFGEIST$
E.coli_MetK1	-MNDYLFTSESVAEGHPDKMADQISDAILDAILLQDPWGKVACECLVKTGATIVAGEIST
E.coli_MetK 59	-MAKHLFTSESVSEGHPDKIADQISDAVLDAILEQDPKARVACETYVKTGMVLVGGEITT
12/111phiA_MetK 98	KYYFNLEGIVKKVLEPYGMRDVMVTNLLGVQSPDIAQGVDKG
12/111_MetK	TAYVDINRVVRNTIAEIGYDKAEYGFSAESVGVHPSLVEQSPDIAQGVNEALEVRGSLEQ
E.coli_MetK1	HAAVDIEKIVRNTIKEIGYDHSRLGFDGNTCCVLNILGKQSANIADGIRGH
E.coli_MetK 110	SAWVDIEEITRNTVREIGYVHSDMGFDANSCAVLSAIGKQSPDINQGVDRA
12/111phiA_MetK 135	SAGDQGIMFGYATDETPEFLPLPYVLATRVLEKLTNLSAGDQGIMFGYATDETPEFLPLPYVLATRVLEKLTNL
12/111_MetK 180	DPLDLI GAGDQGLMFGF AVDETPELMPLPISLAHQLVKKLTDLRKSGELTYLRPDAKSQV
E.coli_MetK1	-SMEELGAGDQGITFGYACDETSELMPATLVYAHRLMERQAQLRKSQRLPFLLPDAKSQV
E.coli_MetK 169	-DPLEQGAGDQGLMFGYATNETDVLMPAPITYAHRLVQRQAEVRKNGTLPWLRPDAKSQV
12/111phiA_MetK	
12/111_MetK	TVEYDDNDQPIRVDAVVISTQHDPNVTNDQLHKDVIEKVINEVIPSHYLDDQTKFFINPT
E.coli_MetK1	TLRYQDNR-VHSVDTVVVSTQHSPDVSLDALREAVIEEIVKPVMPSHWLTPQTRFLVNPA
E.coli_MetK 228	TFQYDDGK-IVGIDAVVLSTQHSEEIDQKSLQEAVMEEIIKPILPAEWLTSATKFFINPT
12/111phiA_MetK	GHPALGKDPSKVDRSAAYMARKIAKDFVR
104 12/111_MetK	GRFVIGGPQGDSGLTGRKIIVDTYGGYSRHGGGAFSGKDATKVDRSASYAARYIAKNIVA
E.coli_MetK1	GSFVIGGPVGDCGLTGRKIIVDTYGGAACHGGGAFSGKDPSKVDRSAAYAARYVAKNIVA
E.coli_MetK 288	GRFVIGGPMGDCGLTGRKIIVDTYGGMARHGGGAFSGKDPSKVDRSAAYAARYVAKNIVA
12/111phiA_MetK	EGYAKRCEVQLAYAIGVAEPVGVYVNTFGTSDYPLEQLVGVVRERYDLTPQGIIKELNLL
12/111_MetK 360	ADLAKKVEVQLAYAIGVAQPVSVRVDTFGTGVIAEADLEAAVRQIFDLRPAGIINMLDLK
E.coli_MetK1	AGLASRCEVQL GWAIG LPRPVSVR INTFGTQTVS SEALLRGVNSHFDLSVFGIITTLDLL
E.coli_MetK 348 348	AGLADRCEIQVSYAIGVAEPTSIMVETFGTEKVPSEQLTLLVREFFDLRPYGLIQMLDLL
12/111phiA_MetK 12/111_MetK E.coli_MetK1	DVDYTKTTCLGHFTKPYLPWEQ246 RPIYRQTAAYGHMGRTDIDLPWERVDKVQALKDFIASK 398 VPRYRKTACYGHFGRDSFPWEVTDKAALLYEDVGR-383

E.coli_MetK HPIYKETAAYGHFGREH--FPWEKTDKAQLLRDAAGLK 384

Supplementary files. Figure S1. Alignment of prophagic RelB, YafQ and MetK proteins with their bacterial functional homologs. A- Alignment of prophagic RelB protein with bacterial member of RelB antitoxin family described by [45].B-Alignment of prophagic YafQ protein with bacterial member of RelE toxin family described by [45] with highlighting of amino acid essential for RelE toxin activity in bold and for YafQ toxin activity in red and bold [48,49].C- Alignment of prophagic MetK protein with functional bacterial MetK [47] and 12/111 bacterial protein.

В

Pairwise Comparison of Genomic SNPs

	12/111∆phiA	12/111		
12/111∆phiA	0	0		
12/111	0	0		

Supplementary files. Figure S2: 12/111 vs. 12/111 Δ phiA genomic comparison. A- Whole genome alignment between 12/111 Δ phiA; deletion of the phiA from the 12/111 Δ phiA genome is indicated with arow. B-Single nucleotide polymorphism (SNP) pairwise comparison.

Supplementary files. Figure S3: Microscopic appearance of 12/111, 12/111 Δ phiA. Bacterial examination by wet mount (x40).

Supplementary files. Figure S4: Comparative growth and biofilm formation of 12/111, 12/111 Δ phiA and 12/111 Δ relB-metK respectively with 12/111 pTCV-P_{Tet}, 12/111 Δ phiA pTCV-P_{Tet} and 12/111 Δ relB-metK pTCV-P_{Tet}. Growth on TH/MRS medium supplemented or not with erythromycin [10 µg/mL] at 37°C with agitation and measured every 20 min for 24h. Curve data represent mean OD600nm measurement from three independent experiments. Biofilm formation on TH 1% glucose medium and translated by biofilm formation index (BFI) value.** p<0.01; ns = no significance. Histogram data represent BFI mean from three independent experiments.

Supplementary files. Figure S5: Determination of *relB-yafQ*, endonuclease and *metK* ORFs involvement in *S. agalactiae* growth. Growth of 12/111 pTCV-P_{Tet}, 12/111 Δ phiA pTCV-P_{Tet}, 12/111 Δ relB-metK pTCV-P_{Tet} and their associated plasmid complemented mutants. Growth on TH/MRS medium supplemented with erythromycin [10 µg/mL] (except for 12/111 control strain) at 37°C with agitation and measured every 20 min for 24h. Data represent mean OD600nm measurement from three independent experiments.

Supplementary files. Figure S6: Determination of *relB-yafQ*, *endonuclease* and *metK* ORFs involvement in biofilm formation. 12/111 pTCV-P_{Tet}, 12/111 Δ phiA pTCV-P_{Tet}, 12/111 Δ relB-metK pTCV-P_{Tet} and their associated plasmid complemented mutants' ability to produce biofilm in TH 1% glucose translated by biofilm formation index (BFI). * corresponding p<0.05; ** to p<0.01;**** to p<0.001; ns = no significance. Data represent mean of BFI from three independent experiment.