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Agricultural price shocks strongly affect farmers’ income and food security. It is therefore

important to understand and anticipate their origins and occurrence, particularly for the

world’s main agricultural commodities. In this study, we assess the impacts of yearly

variations in regional maize productions and yields on global maize prices using several

statistical and machine-learning (ML) methods. Our results show that, of all regions

considered, Northern America is by far the most influential. More specifically, our models

reveal that a yearly yield gain of +8% in Northern America negatively impacts the global

maize price by about –7%, while a decrease of –0.1% is expected to increase global

maize price by more than +7%. Our classification models show that a small decrease in

the maize yield in Northern America can inflate the probability of maize price increase on

the global scale. The maize productions in the other regions have a much lower influence

on the global price. Among the tested methods, random forest and gradient boosting

perform better than linear models. Our results highlight the interest of ML in analyzing

global prices of major commodities and reveal the strong sensitivity of maize prices to

small variations of maize production in Northern America.

Keywords: food-security, maize, agricultural commodity prices, regional productions, machine learning

1. INTRODUCTION

Over the past decade, the four components of food security - availability, stability, utilization, and
access - have become major sources of concern. At the turn of 2010, prices of main food crops in
the international markets have shown high variability, sometimes doubling in a short time frame
(Headey and Fan, 2010). For example, the price of maize increased by 75% from September 2007
to May 2008 (Headey, 2011). Poor harvests and rising prices of agricultural commodities had
contributed to triggering the hunger riots of 2007–2008 and the Arab Spring of 2011 (Headey and
Martin, 2016). High levels of volatility in the food prices are now recognized to affect food security
for a growing number of households (Rosenzweig et al., 2001; Schmidhuber and Tubiello, 2007).

Several reasons have been put forward to explain the food crises at the turn of the decade: low
levels of food stocks, rising prices of inputs - particularly fertilizers - and growing demand for
biofuel (Headey and Fan, 2008). One of the reasons most frequently cited relates to idiosyncratic
shocks on agricultural production at the regional level. It has been shown that extreme local
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environmental conditions in 2007 and 2010 (e.g., droughts in
Russia and, extensive wildfires in Australia) and the resultant
declines in regional production greatly contributed to the spike in
global food prices (Tadasse et al., 2016). The heatwave in Russia
in the summer of 2007 and 2010 led to a significant drop in
local wheat production, which resulted in export restrictions and
subsequent tensions on international markets (Wegren, 2011).
Restrictions on rice exports in India and Vietnam in 2007/2008
also led to substantial price increases on international markets
(Headey, 2011).

It is generally considered that increased interconnectivity in
global food markets can be a source of resilience, as seen in the
recent Covid-19 outbreak, but also of vulnerability, particularly
when the agricultural production of a major exporter is affected.
Least developed countries are particularly vulnerable as they may
suffer greater import losses through their strong dependence on
imports for staple foods (Puma et al., 2015). In this case, we
speak of teleconnected supply shocks (d’Amour et al., 2016).
d’Amour et al. (2016) find that theMiddle East is most sensitive to
teleconnected supply shocks in wheat, Central America to supply
shocks in maize, and Western Africa to supply shocks in rice.
In the future, climate change and the increasing frequency of
extreme weather events could make the food system even more
vulnerable to such teleconnected shocks. Several works study the
transmission of prices and price volatility from international to
domestic markets (Baquedano and Liefert, 2014; Kalkuhl, 2016).
However, to our knowledge, no article has so far attempted to
quantify the inverse link, namely the sensitivity of the world price
to supply shocks at the regional level.

The international maize market is a highly relevant case
study because maize is one of the most traded crops and
plays an important role in food security in many countries.
Accurate identification of the most influential maize producing
regions would be potentially useful for decision-makers who
need to optimize both their dates of commodity purchases and
their stock usages (World-Bank, 2005). Although maize is the
most widely traded crop in the world, only a few countries
export their maize productions, suggesting that maize price
might be impacted by the production of a small number of
regions. As some countries rely heavily on maize imports to
ensure food security (Wu and Guclu, 2013; Rouf Shah et al.,
2016), it is important to be able to anticipate price shocks
for this commodity. Models have been developed to provide
relatively short-term maize price projections relevant to many
stakeholders. For example, the WASDE forecasts are used for
risk calculation and design of the federal US crop insurance
program (US-HR, 2009). These models were criticized because
of their complexity (Hoffman and Meyer, 2018) and, sometimes,
because of their lack of accuracy (Warr, 1990; Hoffman, 2011;
Hoffman et al., 2015; Lusk, 2016). Other forecasting models are
run by private institutions, in particular by companies specialized
in commodity trading. Auto-regressive methods are widely used
to forecast food price in the academic literature (Shively, 1996;
Li et al., 2010). Although all these tools are certainly useful
for forecasting maize prices, they provide little insights into
the effects of regional maize production variations on global
maize prices.

Although it is difficult to predict precisely the extent to which
global scale price variations could affect local prices, it has been
previously shown that shifts in international prices can transmit
into regional domestic prices (Headey and Fan, 2010). In a more
recent research, Kalkuhl (2016) suggests that there is a strong
relationship between international prices and domestic ones,
even when the global market trades with futures.

The objective of our study is (i) to identify the maize-
producing regions having the largest influence on the global price
of maize through their production and (ii) to quantify the effects
of regional production changes on global price changes. Under
the assumption that maize prices are largely driven by regional
production shifts (Hertel et al., 2016), we train several statistical
and machine learning models using publicly available regional
yearly production data and monthly price data. Monthly price
data are pertinent because maize prices do not tend to change on
a daily or weekly basis but rather monthly (Dorosh et al., 2004;
Ochieng et al., 2019). Our input variables, i.e., regional maize
productions or yields, directly inform on the level of commodity
supply, which is usually an unstable component of the market.
The trained models are used to analyze the relationships between
regional maize production (or yield) and global prices, to identify
the most and least influential producing regions in the maize
global market, and finally to quantify the effect of regional
production (or yield) changes on global price changes.

In our study, we chose to use a variety of statistical and
machine learning methods. The use of different methods has
several advantages. First, it allows us to study the robustness of
the main conclusions to the data analysis method implemented.
Second, it makes it possible to compare the precision of
different methods and to determine the most efficient ones.
Our comparison of models thus contributes to improve our
understanding of the determinants of maize price and to develop
operational and accessible predictive tools. In this way, our study
is relevant for designing food security policies.

2. MATERIALS AND METHODS

2.1. Data
Historical annual yield (hectograms per hectare) and production
(tons) data were obtained from the FAO data website (FAOSTAT)
for all years available (1961 to 2018) for 19 regional entities
(defined by FAO) covering 242 countries. For further data
definitions and the sources of the variables included in our
models, see Supplementary Table 2 in Appendix A.

Data on maize global monthly price were extracted from
the World Bank’s commodity markets database as a US No.
2 yellow free on board (FOB) Gulf of Mexico, U.S. nominal
price, per metric ton units. Although this price is the traditional
representative price for the maize produced in the US, this
quotation is also accepted as the leading benchmark price for the
international maize trade (FAO, 2021)1.

1The series of relative yearly maize price changes used in this paper is strongly

correlated with the relative maize price changes obtained in other countries. For

example, Argentina and Ukraine (correlation of about 0.75), according to the data

made available in the GIEWS database of the FAO.
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FIGURE 1 | Time series of global maize price. (A) Real terms in 2010 US Dollars. (B) Real terms in relative change from the same month of the previous year (ratio).

The time series summarizes the monthly price of maize, as
globally traded in FOB US Gulf ports, from January 1960 to
December 2019. We converted these prices into real 2010 US
Dollars, using themonthly agricultural index of theWorld-Bank2

(Figure 1).
The real prices are further denoted as qm,y, where m and y

are the month and year indices, respectively. Exportable maize
is usually harvested once a year, during the main harvest season,
and levels of maize production can thus potentially have strong
effects on yearly price changes. For this reason, the dependent
variable in our analysis is defined as the relative price difference
of maize expressed relatively to the same month of the previous
year. It is defined as

pm,y =
qm,y − qm,y−1

qm,y−1
(1)

2Although the most frequently use price index is the American CPI, we chose to

use theWorld-Bankmonthly agricultural price index.We base our decision on two

factors: The first derives from Tadasse et al. (2016) indicating that the US CPI could

be a biased deflator when dealing in a global market that includes both developed

and developing countries. The second reason is a relatively smaller gap (RMSE)

between the maize annual real prices as published by the World-Bank to the real

maize global monthly price calculated for this study.

and their values are shown in Figure 1B. From the series of pm,y,

we define a binary variable pbm,y equal to one in case of price
increase (pm,y > 0) and to zero otherwise.

Maize prices for monthm in year y are estimated as a function
of relative production (or yield) changes between the monthm in
year y and the same month in year y − 1. To accomplish this, we
transformed regional yield (grain weight per unit of the cropping
area, in hectograms per hectare) and production (total regional
grain weight, in tons) data into relative changes compared to the
previous year, as follows:

xk,y =
zk,y − zk,y−1

zk,y−1
(2)

Where zk,y is the production (or yield) in a region k (k=1, . . . , 19)
and year y, and xk,y is the relative production (or yield) change in
the same region and the same year.

We predict prices during the last quarter of each year, that is in
October, November, and December (m ∈10,11,12), i.e., when all
regions have finished (or almost finished) their maize harvest and
reported the yearly production and yield obtained. For a given
year, it is indeed possible to obtain accurate estimates of maize
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yield and production from October onward and to use them to
predict price shocks of the same year3.

In the next sections, we present and compare several methods
to estimate pm,y and pbm,y at m ∈10,11,12 as a function of
xk,y, k ∈1,. . . ,19. Each method is implemented twice; first using
relative changes in regional productions as input variables and
then using relative yield changes.

2.2. Linear and Generalized Linear Models
Although the relationships between price and production or yield
changes may be non-linear, we use a linear regression model
as a benchmark to estimate price fluctuation as a function of
changes in regional productions or yields. Our linear model (LM)
is defined as follows:

pm,y = α +

19∑

k=1

βkxk,y + ǫm,y (3)

where α and βk are regression parameters and ǫm,y is the
residuals. Additionally, we define a variant of this model
including the price change of year y − 1 (i.e., pm,y−1) as
a supplementary input. This serves for investigating Granger
causal relation between pm,y and xk,y (Granger, 1969). The
significance of the effects of xk,y are tested with and without using
pm,y−1 as an additional input in the regression model. If some of
the xk,y are still significant while taking pm,y−1 into account, one
can be considered that there is a Granger causal relation between
pm,y and these xk,y.

For classification, we use a generalized linear model (GLM)
with a binomial family and a logit link. This model computes the
probability that pbm,y=1 (i.e., price increase), given the values of
the regional production (or yield) changes xk,y, k ∈1,. . . ,19.

Both models are implemented with the glm function of R (R-
Core-Team, 2020). As done with the other methods, we fit linear
models for each month (October, November, and December)
using successively production and yield changes as inputs. The
most influential inputs were selected using a stepwise procedure
implemented with the AIC criterion (step function of R).

2.3. CART
The three ML methods considered in this study are decision-
tree based algorithms: classification and regression trees (CART),
Random-forest (RF), and gradient boosting machine (GBM).
None of these methods makes any strong assumption about
the functional form of the relationship between the dependent
variable and the explanatory variables, neither about the
data distribution. They are thus able to capture nonlinear
relationships between the inputs (regional production or yield
changes) and the output (global price change). We shortly
present our implementation of CART here, while RF, and GBM
are presented in the next sections.

The purpose of CART is to build a binary decision tree.
Let pm,y be a dependent variable and x1,y, xk,y, . . . , xK,y a
series of explanatory variables. The tree is constructed by

3http://www.amis-outlook.org/amis-about/calendars/maizecal/en/, retrieved 23

March 2020.

repeatedly distributing the observations into homogeneous
groups relative to pm,y. The partitioning criteria is monotonous
in the explanatory variable, xk, which defines a cross-section
of xk, whereas higher valued observations belong to the right
branch and lower-valued to the left branch. Additional partitions
based on the same variable can be made, but at each stage,
one cut-off point is determined. The subgroups that define the
tree are called nodes. CART performs recursive partitioning,
and searches for splits that minimize the test error rate in
the chosen objective function. The choice of the objective
function depends on whether the output is continuous (pm,y) or

categorical (pbm,y). In the former case, i.e., for predicting pm,y,
CART is implemented using the residual sum of squares (RSS).
To predict pbm,y (classification), the objective function is a purity
index based on the Gini index. Here, CART was implemented
with the package rpart of the R software (Therneau et al., 2019)
(rpart function).

2.4. Random Forest and Gradient Boosting
Although simple to visualize and interpret, CART results are
usually unstable and tend to be sensitive to small data changes.
Their price predictions are not always accurate (Kuhn and
Johnson, 2013). For these reasons, ensemble learning algorithms
based on bagging (for “bootstrap aggregating”) and boosting
methods are frequently used instead of CART trees (Breiman,
2000). In this study we use Random-forest (RF) (Liaw and
Wiener, 2002) as a bagging-based algorithm, and gradient
boosting machine (GBM) as a boosting-based method.

The RF algorithm builds an ensemble of trees, each relying on
a small subset of inputs (i.e., a subset of all regional productions
or yields). Each tree is fitted to a randomly chosen training-set
generated using a bootstrap procedure. This approach reduces
the effects of correlations between variables while allowing
different input variables to be selected. In RF, predictions are
derived by computing the average of all trees. Here, we find that
500 trees lead to stable results. RF can rank the inputs according
to their predictive powers and, here, the resulting ranking can
be used to identify the regions whose maize productions (or
yields) show the strongest influence on maize global price. In this
study, RF is implemented with the randomForest function of
the package randomForest (Breiman et al., 2018), both for
quantitative predictions and for classification.

The method GBM is also based on an ensemble of trees (Efron
and Hastie, 2016). At each iteration, GBM builds a simple tree
(weak-learner), each of which is learning from the prediction
errors of all the trees built so far. The final prediction is expressed
as the sum of all the models calculated earlier. As RF, GBM
is able to rank the inputs according to their predictive powers.
In our case, we fit GBM using the gbm function of the gbm
package (Friedman, 2001) both for regression and classification
based predictions. Here, we find that the most accurate results
are obtained with 100 trees for GBM.

Neither RF or GBM have analytical expressions, but standard
methods can be used to rank their inputs according to their
importance and visualize their effects on the output, here on
price changes. Using these methods, we rank the model inputs
xk,y from the most influential to the least by computing the mean
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decrease accuracy criterion (Calle andUrrea, 2010) for each input
(i.e., each regional production or yield changes). This criterion
measures the extent to which the accuracy of model predictions
or classifications decreases when each of the input variables is
set to a random value. Lastly, we use partial dependence plots
(Greenwell, 2017) to visualize the response of the model outputs
to the most influential inputs, averaging the overall values of the
other inputs. These plots allow us to analyze the shapes of the
responses and detect non-linearity. The same approaches were
applied to LM and CART to compare the input rankings and the
dependence plots of all methods on the same basis.

2.5. Models Evaluation
The accuracy of the quantitative price-estimation is assessed by
root mean squared error (RMSE), which we estimate using leave-
one-out cross-validation (LOOCV). In each step, one year of
price (pm,y, m=10,11,12) and production/yield (xk,y) is extracted
from the original data set. Then, the four models (CART, RF,
GBM, and GLM) are trained using the remaining 55 years, to
estimate the removed value of pm,y using the trained models. The
procedure is performed 56 times—once for each year—to obtain
a set of 56 estimations for each tested model and each month
(m=10,11,12). Finally, a value RMSE is calculated for each model
and each predicted month. The whole procedure is repeated
twice, using regional maize production and regional maize yields
as inputs, successively.

To evaluate the accuracy of the classification models, we
apply the same LOOCV procedure, this time to calculate the
area under the ROC curve (AUC). This criterion is commonly
used to evaluate the performance of classification algorithms
(Hernández-Orallo et al., 2012). An AUC higher than 0.5
indicates better performance than random classification. An
AUC equal to 1 reveals a perfect classification.

3. RESULTS

3.1. Quantitative Effects of Regional
Productions on Price Changes
Table 1 shows that the best methods are either RF or GBM,
depending on the considered month. For example, the most
accurate predictions of global price changes in October (p10,y) are
obtained by RF with an RMSE equal to 0.12. The least accurate
results (i.e., the highest RMSE) are obtained either with the linear
model (LM) or with CART, depending on the month considered.

The importance ranking of the regional maize yields is shown
in Figure 2 for the threemonths considered and the four different
statistical and machine learning methods. The ranking obtained
when using regional production changes as inputs is shown
in the Supplementary Figure A.a.4. The relative importance of
each region is determined by its contribution to the prediction
accuracy (RMSE) of the price in a given month. A region is
considered influential if a random choice of its corresponding
input value (i.e., a yield change or production change chosen at
random) leads to a substantial increase of the RMSE of the price
change predictions. On the other hand, a region is considered
non-influential if a random choice of its corresponding input
value does not affect the RMSE. Results clearly show that

Northern America is by far the most influential region according
to the four methods, with both types of inputs (production
or yield changes), and for the three months considered. The
only exception is the linear model (with yield change inputs) in
November, but this model has low predictive power compared
to others in November (Table 1). Considering the most accurate
methods (GBM and RF), yield and production changes in
Northern America have the strongest influence on global price
changes. Moreover, according to the linear models, the effects
of yield and production change in Northern America on global
price change are statistically significant (p < 0.01) in October,
November, and December, with and without the price change in
year y-1 included as an additional explanatory input. This result
indicates a Granger causality of yield and production changes in
Northern America on global maize price. It reveals that yield and
production changes are useful in forecasting price changes, even
when previous price changes were taken into account.

The partial dependence plot (PDP) shown in Figure 3

presents the average response of price changes in October (10),
November (11), and December (12) to variations of maize
yield compared to the previous year in the most influential
region, i.e., Northern America (similar PDPs are shown in the
Supplementary Figure 16 using production instead of yield).
The PDPs obtained using the four models consistently show that
an increase (decrease) of yield in Northern America leads to
a decrease (increase) of global price. In October, for example,
an 8% rise of relative maize yield in Northern-America leads
to a reduction of maize price of 7% according to the gbm
model, while a 0.1% decrease of relative maize yield in Northern
America is expected to increase the global price by 7% according
to the same model. This result confirms the strong influence
of Northern American yield on global maize price. The PDPs
obtained using the production and yield changes in other regions
show much weaker trends and much flatter curves (see, for
example, the PDPs obtained for the region Southern Africa, in
Supplementary Figures 20, 21).

3.2. Classification of Price Increase vs.
Decrease
Figure 4 shows the results that ROC analyses for the classification
models for the three months considered. The results are in favor
of GBM and RF with AUC falling in the range of 0.7–0.8 for these
methods in most cases. The 95%CI are relatively large but those
obtained with RF and GBM never include the benchmark value
0.5 characterizing a random classification. On the contrary, the
95%CI of CART and the linear model sometimes include 0.5,
revealing that thesemethods do not systematically perform better
than a random classification. For a given month and a given
type of input, the lowest AUC is obtained by the linear model
or CART. The two types of inputs did not lead to any systematic
difference in AUC values.

As already noticed in the case of regression, the importance
ranking of the regional production and yield inputs of the
classification models reveals that Northern America is the
most influential region, in particular for the model GBM
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TABLE 1 | Comparison of RMSE values for the four types of models (lm: linear model; cart: regression tree; rf: random forest; gbm: gradient boosting model).

Production Yield

lm cart rf gbm lm cart rf gbm

October 0.169 0.140 0.137 0.135 0.132 0.136 0.122 0.128

November 0.153 0.148 0.140 0.135 0.163 0.147 0.139 0.158

December 0.144 0.148 0.130 0.129 0.139 0.129 0.129 0.147

RMSE values (expressed in the same unit as a relative price change, i.e., in relative change ratio compared to the same month the previous year), were computed by cross-validation

for predicting yearly price changes in October, November, and December using two types of inputs: relative regional production (left) or yield (right) changes. The lowest values obtained

for each month are in red.

FIGURE 2 | Importance levels of regional yield changes for predicting the global maize price in October (10), November (11), and December (12). Importance levels

are computed using the RMSE criterion and measure the extent to which the model accuracy decreases with a random permutation of each input.

which has a good classification power. For more details, see
Figures A.a.5, A.a.5 in Supplementary Materials A.a.4.

Figure 5 shows the PDPs of the classification models. These
PDPs represent the average responses of the probability of
price increase to relative yield changes in Northern America
(PDPs obtained with regional production inputs are shown in
Supplementary F). The probability of a global price increase
strongly decreases below 0.5 as soon as the yield change is

positive in Northern America compared to the previous year,
while it increases above 0.5 when the yield change is negative.
The effect is particularly strong with the model GBM. As already
noticed for quantitative price changes, the PDPs obtained with
the classification models show much weaker trends and much
flatter curves for regions other than Northern America (see, for
example, the PDPs obtained for the region Southern Africa, in
Supplementary Figures 22, 23).
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FIGURE 3 | Partial dependence plots obtained with lm, cart, rf, and gbm showing the average response of relative price change in October (10), November (11), and

December (12) to relative yield change in Northern America. The points indicate price variations as observed over the period of 1961–2019. The plot shows that,

according to all models, any increase (decrease) of yield in Northern America compared to the previous year leads to a decrease (increase) of global price.

4. DISCUSSION

Using regional maize production data and global maize prices,

we were able to assess the effects of regional production and

yield variations on late-season global maize prices. Because of

the existing relationship between the global price and domestic
prices, especially in the least developed countries (Caracciolo
et al., 2014), the topic is important to dealing with food security
issues in vulnerable regions.

Our study is the first to address this question using a large
variety of statistical and machine learning methods. Overall,
all models consistently show that the most influential region is
Northern America, and both maize yields and maize productions
seem to be equally influential. This result is somewhat expected
as Northern America (and, more specifically, the USA) is the
main maize producer and exporter at the global scale and
as the USA is known to have a strong influence on the
agricultural trade market Chatzopoulos et al. (2019). However,
our models provide data-driven quantitative information on
the effect of regional production variations on global maize
prices. Our analysis provides real added value because it allows

us to quantify the effect of an increase or decrease in the
annual production of maize in this region on the global price
of this commodity. All methods reveal that a small increase
(decrease) of maize production or yield in Northern America
is expected to decrease (increase) the global maize price by a
few percent compared to the previous year. Considering the
most accurate methods, an increase of maize yield relative to
the previous year of +8% in Northern America negatively affect
the global maize price by about –7%, while a decrease of yield
in Northern America as low as –0.1% is expected to increase
global maize price by more than 7%. The strong impact of maize
production in Northern America is confirmed by the results
obtained with the classification methods. Indeed, these methods
indicate that the small increase (decrease) in maize yield or
production in Northern America has a strong negative (positive)
effect on the probability of maize price increase compared
to the previous year. Even a very small decrease in maize
production in Northern America can inflate the probability of a
price increase.

Among all the considered modeling techniques, ensemble
tree-based techniques (random forest and gradient boosting)
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FIGURE 4 | AUC values obtained for the classification models predicting price increase vs. price decrease in October (10), November (11), and December (12). The

horizontal red line indicates AUC = 0.5, i.e random classification. Vertical bars indicate the 95% confidence intervals (CI). When these bars do not include 0.5, the AUC

is significantly higher than 0.5 (p < 0.05).

show the lowest root mean squared error and highest AUC
values, revealing that these methods were the best for both
quantitative price prediction and classification. Indeed, in
addition to being able to quantitatively predict price changes,
the methods tested in this paper can be used to classify
relative price increase vs. decrease situations. The principle
is to compute the probability of price change increase (or
decrease) as a function of regional production (or yield) changes.
The tree-based models tend to outperform the simpler GLM
model. Still, the rate of misclassification is approximately 25%
with GBM and RF, which is relatively high but better than a
random classification. As noticed for quantitative predictions,
the production change in Northern America is, by far, the
most influential input for classifying price increase vs. price
decrease situations. All these results concur to show that maize
production change in Northern America is a highly relevant
indicator for assessing the risk of global maize price increase
or decrease.

The performances of the methods considered are only
marginally impacted by the nature of their inputs (i.e.,

production vs. yield changes). Thus, surprisingly, both GBM and
RF do not perform better when regional production variations
are used as inputs instead of yield. This is although production
data combine two types of information, i.e., yields and cropping
areas, whether yield variations alone do not account for possible
variance in the regional maize cultivated areas.

Although the main purpose of our study is not to propose
new forecasting tools, our models could potentially be used
to predict global maize prices. Compared to other types of
forecasting models, GBM and RF have several advantages but,
also, a few disadvantages. Our models rely on public data and
can be easily implemented using standard modeling open-source
software. On the contrary, private forecasting techniques are
usually unpublished, not freely available, and not transparent.
Structural models constitute another category of models that can
predict prices of agricultural commodities. These models rely
on theories describing economic systems and are developed by
international organizations such as FAO,OECD, and IFPRI. They
simulate price fluctuations using a series of functions describing
partial or general market equilibrium. Although these models
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FIGURE 5 | Partial dependence plots showing the probability of price increase in October, November, and December as a function of relative yield change in Northern

America, for the four models considered. The points indicate price variations (on the y-axis, 1, price increase; 0, price decrease) as observed over the period of

1961–2019.

are used to predict product prices in the long run, they are
not usually implemented to make short-term predictions. They
are also complex and cannot be easily run by non-specialists.
The WASDE model is another example of an operational tool
for maize price predictions. Similarly to our models, WASDE
can forecast maize price at a monthly time step. According to
Hoffman et al. (2015), WASDE relies on a combination of nine
different structural and non-structural sub-models while GBM
and RF can be easily implemented using free R packages and
publicly accessible data. They could be thus easily run by any
interested stakeholder and updated every year based on the most
recent data.

In the future, our models could be adapted to predict price
changes for other agricultural commodities from regional crop
productions. From a practical point of view, a disadvantage of
the ML tree-based models is that they rely on yearly regional
production input data. In principle, these data are only available
after harvest, but relatively accurate values can be estimated
shortly before harvest from local expert knowledge and model
predictions. Considering the maize growing season, it is not

realistic to get reliable regional production data before the
end of summer. This with regards to regions located in the
Northern hemisphere, in particular in Northern-America, which
is a key region for predicting global maize price. For this reason,
all models were used here to predict global maize prices at
the end of the year, more specifically in October, November,
and December.

In this study, we analyzed the effect of regional productions
on global maize prices during the last three months of the
year. We made this choice to be consistent with the harvest
date for maize in the main maize-producing region—North
America—which takes place in the very late summer and fall.
Although we did not carry out a detailed analysis for earlier
months, we did perform a sensitivity analysis of the influence
of North America depending on the month considered and
found that this region retained a significant but lesser influence
in the months preceding the harvest, probably due to the
influence of the harvest forecasts anticipated by the maize market
players. In the future, however, it would be very useful to
deepen this analysis to identify more precisely the influence of
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the different producers on prices during the first months of
the year.

Our approach could potentially be replicated for other crops
whose production is less geographically concentrated. This would
allow us to assess the world food price sensitivity to production
shocks or an export ban in a given country.

5. CONCLUSIONS

This study demonstrates that it is possible to assess the impact
of regional maize production variations on the global price
of maize using machine-learning (ML) techniques on publicly
available regional production and price data. As these methods
can be easily implemented using only freely available packages
and public information, our results contribute to making the
forecasting of the global price of maize more accessible. As such,
our price prediction technique can be included food security
management programs and policies and possibly serve as a price
forecaster. The methods considered can rank regional producers
according to their influence on globalmaize prices and our results
show that, out of all regions, Northern America is by far the
most influential. More specifically, our results reveal that, for
maize, small positive production changes relative to the previous
year in Northern America have a strong and negative impact on
maize global price. Our study highlights the potential interest

of ML for predicting global prices of major commodities from

regional production and assessing price sensitivity to regional
crop producers.
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