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INTRODUCTION

The effects of climate warming are accentuated across 
the marked environmental and climatic gradients of 
Alpine environments (Ernakovich et al., 2014). Higher 

temperatures alter the altitudinal distribution of plants 
(Parolo & Rossi, 2008; Rammig et al., 2010) and increase 
energy expenditure for thermoregulation in animals 
(Arnold, 1988; Huey et al., 2012). Moreover tempera-
ture effects on vegetation green-up and senescence 
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Abstract

Alpine large herbivores have developed physiological and behavioural mechanisms 

to cope with fluctuations in climate and resource availability that may become 

maladaptive under climate warming. We tested this hypothesis in female Alpine 

ibex (Capra ibex) by modelling annual and daily movement and activity patterns in 

relation to temperature, vegetation productivity and reproductive status based on 

bio-logging data and climate change projections. In summer, ibex moved upslope, 

tracking the green wave. Ibex decreased diel activity sharply above a threshold 

temperature of 13–14°C, indicating thermal stress, but compensated behaviourally 

by foraging both earlier and later in the day, and by moving further upslope than 

on cooler days, especially reproductive females. This critical temperature will be 

exceeded three times as often under climate change projections. Under such sce-

narios, the altitudinal extent of the area will limit the available habitat providing 

thermal shelter, potentially impacting performance and population distribution of 

this emblematic mountain ungulate.

K E Y W O R D S
accelerometer, activity budget, altitudinal migration, Alpine ibex, behavioural responses, Capra 
ibex, climate change, foraging, GPS telemetry, thermoregulation
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(Ernakovich et al., 2014; Wipf et al., 2009) may cascade 
to primary consumers’ demographic performance, as 
observed in mountain ungulates (Pettorelli et al., 2007; 
Mason et al., 2014a; Lovari et al., 2020).

In addition to physiological adaptations (e.g., Arnold 
et al., 2004; Heldmaier et al., 2004; Signer et al., 2011), 
mountain ungulates have developed numerous be-
havioural mechanisms to cope with climatic constraints 
and variation in resource availability. Across seasons, 
some species adjust their activity budget to buffer the ef-
fect of temperature variation for homeothermy (Arnold 
et al., 2006; Bourgoin et al., 2008; Green & Bear, 1990), 
or modulate habitat selection to seek thermal shelter 
(Brivio et al., 2019; van Beest et al., 2012). In turn, re-
source acquisition must be adjusted to maintain thermo-
neutrality, while ensuring sufficient energy for survival, 
maintenance and reproduction. Mountainous environ-
ments harbour high spatio-temporal heterogeneity in 
resource distribution. As a result, seasonal movements 
are common in mountain ungulates (e.g., Grignolio 
et al., 2004; Herfindal et al., 2019; Rice, 2008; Zeng 
et al., 2008), such as altitudinal shifts to avoid winter 
harshness (Nicholson et al., 1997; Peters et al., 2019) and 
enhance access to high-quality food in relation to veg-
etation green-up (forage maturation hypothesis FMH, 
e.g., Hebblewhite & Merrill, 2009, and green wave hy-
pothesis GWH, e.g., Merkle et al., 2016). Alternatively, 
a behavioural trade-off between thermoregulation and 
foraging has been suggested in relation to these seasonal 
movements, with high altitudes being cooler, but less 
productive than lower areas (Mason et al., 2017).

Some of these behavioural adaptations are also ex-
pressed at the diel scale, mainly in response to the marked 
day/night contrast in temperature. Mountain ungulates 
are known to exploit the altitudinal thermal gradient 
to compensate for daily temperature fluctuations, be-
cause, in summer, high altitude areas may provide ther-
mal cover. Additionally, foraging activity in summer has 
been observed to vary with the diel cycle and in relation 
to temperature, generally decreasing in the hottest hours 
of the hottest days (male Alpine ibex Capra ibex: Aublet 
et al., 2009; mouflon Ovis sp.: Bourgoin et al., 2011; male 
chamois Rupicapra rupicapra: Mason et al., 2014b).

As behavioural adjustments are more rapid than 
physiological adaptation (Wong & Candolin, 2015), the 
aforementioned compensatory mechanisms might buf-
fer direct (i.e., heat-stress; Huey et al., 2012) or indirect 
(e.g., shifts in the phenology of vegetation green-up; 
Aikens et al., 2017) consequences of climate change. If 
not, acute heat-stress might force ungulates to decrease 
daytime foraging activity, incurring an energetic debt 
unless they can compensate at night, or to select sub-
optimal forage habitats when seeking thermal protec-
tion (van Beest & Milner, 2013). Similarly, earlier and 
shorter green-up periods may inhibit their capacity 
to synchronise movement with the phenology of high-
quality resources (Aikens et al., 2017). Current evidence 

on Alpine ungulates’ behavioural responses provides a 
mixed-picture. Mouflon (Bourgoin et al., 2011), and male 
chamois (Grignolio et al., 2018), but not male Alpine ibex 
to date (Aublet et al., 2009; Mason et al., 2017), have been 
shown to increase foraging activity at night on hot days. 
In turn, the utilisation of thermal cover, through altitu-
dinal shifts, has been indicated as maladaptive, because 
of diminished access to high quality forage habitats 
(chamois: Mason et al., 2014b; male Alpine ibex: Mason 
et al., 2017, Brivio et al., 2019). However, the quality of 
high-altitude habitats has been indexed by vegetation 
productivity (as indicated by NDVI), rather than by its 
rate of change, or ‘green-up’, as assessed in other systems 
(Aikens et al., 2017; Bischof et al., 2012). Finally, to date, 
we know little about how the behavioural responses of 
Alpine ungulates to environmental variability might de-
pend on fitness-related traits, particularly reproductive 
status (Hamel & Côté, 2008).

We addressed these knowledge gaps by investigating 
the behavioural compensation mechanisms for coping 
with heat-stress and fluctuating energy needs in Alpine 
ibex, a high altitude-ranging and temperature-sensitive 
Alpine ungulate (Signer et al., 2011; Toïgo et al., 2002), 
using a multi-scale movement ecology framework 
(Figure 1; Nathan et al., 2008). First, at the annual scale, 
we evaluated whether female ibex adjusted their activity 
and movement to variations in temperature and resource 
availability (‘external state’, via hidden internal state 
processes; Figure 1A; Q1). We predicted that ibex would 
increase the total active time per day mainly in response 
to the seasonal increase in temperature, in accordance 
with physiological cycles (Signer et al., 2011; P1a), and 
that they would shift altitude in summer, influenced by 
both temperature and vegetation productivity, to exploit 
thermal refuges and maximise access to high quality 
food (Aublet et al., 2009; P1b). Therefore, we also pre-
dicted that these movements would provide individuals 
with access to areas with better resource quality during 
summer compared to their respective winter ranges, that 
is, ibex would exploit the change in vegetation productiv-
ity (‘green-up’, GWH; Aikens et al., 2017; P1c).

Second, at the daily scale, we assessed whether 
female ibex could compensate for heat-stress by ad-
justing their diel patterns of activity and altitudinal 
movements, given their reproductive status (Figure 1b; 
Q2.1). We predicted that ibex would decrease activity 
during the hottest hours of the day, especially on the 
hottest days (Aublet et al., 2009), to maintain thermo-
neutrality (Signer et al., 2011) (P2.1a), while increasing 
activity at dawn, dusk, or night in order to maintain a 
globally constant diel activity budget (Bourgoin et al., 
2011) (P2.1b). We predicted that reproductive females 
would have higher activity levels due to the energetic 
constraints of rearing kids, potentially limiting their 
compensatory behaviour. Furthermore, we predicted 
that female ibex would use high altitude areas as ther-
mal refuges (Aublet et al., 2009) in relation to hourly 
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temperature (P2.1c), with reproductive females remain-
ing at higher altitudes due to the lower mobility of kids. 
Assuming that these behaviours were compensatory 
mechanisms to meet resource needs while minimising 
heat-stress, we also evaluated whether habitat selec-
tion varied over the day in relation to activity rhythms 
(Q2.2), with the most pronounced selection for forage 
habitats during activity peaks (P2.2). Finally, in order 
to explore how these behavioural adjustments could 
be influenced by climate change, we generated predic-
tions of activity rhythms and altitudinal shifts under 
future scenarios of forecasted climate warming in the 
Alps (Bucchignani et al., 2015).

Our results indicate that female ibex behaviourally 
responded to annual temperature and resource avail-
ability variations, while adopting compensatory 
mechanisms to cope with heat-stress and foraging 
requirements in relation to reproductive needs at the 
daily scale during summer. However, we suggest that 

the efficiency of these mechanisms will likely be im-
paired under the predicted warming scenarios, notably 
due to lack of suitable thermal habitat, potentially re-
sulting in detrimental effects on individual fitness and 
population dynamics of this inhabitant of extreme and 
threatened Alpine environments.

M ATERI A LS A N D M ETHODS

Study area

The study area (45 km2 ca) is situated on the Southern 
slopes of the Marmolada massif (1,700–2,900 m a.s.l.), in 
the Italian Dolomites (46°26’ 13” N, 11°51’ 54” E). These 
are isolated, wild, and narrow valleys, with steep slopes 
and rocky ridges dominated by abrupt vegetation shifts 
along the elevation gradient, from dense and sparse co-
nifer forest, to alpine shrubs and grassland. Steep screes 

F I G U R E  1   Conceptual framework, based on the movement ecology paradigm (Nathan et al., 2008), of the female Alpine ibex behavioural 
compensatory responses to external abiotic (temperature) and biotic (vegetation productivity, as indicated by Normalized Difference 
Vegetation Index - NDVI, and vegetation green-up, as indicated by NDVI relative 8-day period variation - ΔNDVI) constraints. The relations 
are assessed both at the seasonal (panel A) and summer daily (panel B) temporal scales. For the summer analysis, we accounted for the impact 
of reproductive status on behaviour, as a component of individual internal state. Dashed lines: hidden relationships; continuous lines: emergent 
relationships tested in this study
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and rocky cliffs dominate the landscape above 2,100 m 
where pioneer organisms include lichens and cush-
ion plants (e.g., Androsacae sp.). Roe deer (Capreolus 
capreolus), red deer (Cervus elaphus) and Alpine cham-
ois, hunted by stalking in autumn/winter, are the only 
large herbivores potentially overlapping the ibex range. 
No paved roads reach the area. Hiking trails and cattle 
grazing pastures are restricted to valley bottoms and are 
used only in July–August.

The climate is currently Alpine (snowy and humid cli-
mate with cool summers/polar tundra; Köppen-Geiger 
climate classification, Rubel et al., 2017). Total yearly 
precipitation is 1,227 mm (IC 95%: 1,114–1,340 mm), with 
snowfalls starting in mid-October, and mean annual 
temperature is 4.4°C (IC 95%: 3.7–5.1°C] (see Appendix 
S1 in Supporting Information).

Marked animal data

During the study period, the local Alpine ibex colony 
comprised ca 200 individuals (minimum number alive 
recorded from block counts: 161–233; adult females 
only, i.e., 2 yrs. or older: 63–99; see more information on 
Alpine ibex conservation status and the studied colony 
in Appendix S2).

From 2010 to 2015, we caught (July–October) 24 
adult female ibex by dart-gunning with sedation, and 
equipped them with GPS-GSM sensors (Vectronic 
Aerospace GmbH), collecting and transmitting loca-
tions, and with 2-axes accelerometers, storing data 
which were downloadable only at collar retrieval. At 
capture, we recorded the reproductive status (active 
lactation), that we confirmed via direct observation 
(female feeding the kid) during the same season, and 
re-assessed during the following year (except two fe-
males that could not be observed in the second season; 
Appendix S2).

GPS collars were programmed to attempt a location 
every hour, and to drop-off after 54 weeks. We obtained 
locations for 24 individuals (fix success rate: 95%; out-
liers excluded as in Urbano & Cagnacci, 2014; median 
location error <10 m, Párraga Aguado et al., 2017). We 
derived activity status from 18 of 24 collars that could 
be retrieved after drop-off (days with incomplete accel-
erometer data <1%, excluded from subsequent analysis). 
We classified accelerometer data with a binomial ac-
tivity index based on a threshold value (Gervasi et al., 
2006: ‘active’ or ‘inactive’ status, with 5-minute reso-
lution according to sensor output; Appendix S3). We 
validated the automatic classification with direct obser-
vations between July and September, choosing coarse 
behavioural categories that would hold throughout the 
year (Appendix S3). From the activity index values, we 
computed ‘total-active-time-per-day’ (in minutes per 
day) for the annual analysis, and ‘total-active-time-per-
hour’ (in minutes per hour) for the summer diel analysis.

Spatio-temporal variables

We analysed ibex behaviour in relation to environmen-
tal covariates year-round and at the diel scale in sum-
mer only (Figure 1). We ordered the weeks starting from 
the first day of winter solstice (21st of December) and 
we defined ‘summer’ as the six-month period preceding 
the approximate date of early snowfall, that is, from mid-
April to mid-October (17th–42nd week; Appendix S1).

Static spatial covariates

For modelling female ibex altitude and habitat use, we 
used a high resolution Digital Elevation Model (5  m) 
(https://www.regio​ne.veneto.it/web/ambie​nte-e-terri​
torio/​ctr; http://www.terri​torio.provi​ncia.tn.it) and local 
land-cover map (Scillitani et al., 2013; 50 m), to account for 
the pronounced topography of the study area. Habitats 
were categorised in five classes: ‘forest’ (coniferous and 
mixed forest, and shrubs), ‘grassland’ (Alpine pastures 
and natural grasslands), ‘scree’, ‘grassland-mixed-rock’ 
(grassland interspersed with rock and scree), and ‘rock’ 
(bare rocks).

Time-varying spatial covariates

At the annual scale, we first averaged the daily tempera-
tures of each weather station (Appendix S1) to obtain 
the weekly mean, and then averaged again across all sta-
tions to obtain the temporal series of the ‘mean-weekly-
temperature’ for the study area. Similarly, we extracted 
the values of the Normalized Difference Vegetation 
Index (NDVI; MODIS-NASA processed as in Klisch & 
Atzberger, 2016; Appendix S4) for 5,000 points within 
the study area (resolution: 250 m, 8 days) and averaged 
them to obtain the temporal series of mean vegetation 
productivity for the study area. We computed raster lay-
ers for the change in vegetation productivity (∆NDVI, 
commonly referred to as ‘green-up’) by computing the 
standardised difference between values of subsequent 
NDVI layers. For these ∆NDVI time series, we finally 
evaluated the altitudinal gradient in plant phenology, or 
timing of green-up, regressing ∆NDVI against altitude 
(Appendix S4).

At the diel scale, and for ‘summer’ only, we used the 
highest weather station (Appendix S1) to obtain records 
of ‘hourly-temperature’ and ‘mean-daily-temperature’. 
We also reclassified the ‘mean-daily-temperature’ values 
in three levels based on quantiles, obtaining the categor-
ical variable ‘daily-summer-temperature-class’ (‘low’, 
0–25%: ‘mean-daily-temperature’ ≤3.80°C; ‘intermedi-
ate’, 25–75%: >3.80°C and <10.2°C; and ‘high’, 75–100%: 
≥10.2°C). To evaluate the effect of climate change on ibex 
behavioural responses, we used climate projections from 
low–medium emission and high emission rate scenarios 

https://www.regione.veneto.it/web/ambiente-e-territorio/ctr
https://www.regione.veneto.it/web/ambiente-e-territorio/ctr
http://www.territorio.provincia.tn.it
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(RCP 4.5 and RCP 8.5, respectively; Riahi et al., 2011; 
Thomson et al., 2011) to predict variation in the ‘mean-
daily-temperature’ between 2006 and 2070 at the same 
weather station. We then derived the three levels of 
the ‘daily-summer-temperature-class’ according to the 
quantiles of these distributions between 2051 and 2070 
(Bucchignani et al., 2015; Appendix S5).

Statistical analysis

We analysed data in R 4.0.2 (R Core Team, 2016) using 
the package mgcv 1.8-33 (Wood, 2018) to fit Generalized 
Additive Mixed Models (GAMM) to our empirical data-
set. In all sets of models, we included individual identity 
as a random factor on the intercept and used Akaike 
Information Criterion (AIC; Burnham et al. 2002) for 
model selection. The sample size was 24 and 18 animals 
for analyses based on GPS and activity data, respectively, 
minus two animals for analyses including reproductive 
status.

Annual behavioural responses to temperature, 
vegetation productivity and its rate of change 
(Q1)

To evaluate whether activity and altitudinal movement 
of female ibex varied over the year in relation to ther-
mal shelter and access to resources (Q1, Figure 1A), we 
first modelled the pattern of annual variation in ‘total-
active-time-per-day’ (P1a) and ‘mean-altitude-used-per-
day’ (P1b) by fitting GAMM models to the week as linear 
effect or cyclic cubic smoother (Table S6.1a), with year 
as a random effect on the intercept. Then, because veg-
etation productivity is dependent on temperature, we 
modelled NDVI as a linear function of ‘mean-weekly-
temperature’, and extracted the residuals of NDVI not 
explained by temperature. Finally, we analysed both 
‘total-active-time-per-day’ and ‘mean-altitude-used-
per-day’ by fitting GAMM models to the smoothers of 
‘mean-weekly-temperature’ and the residuals of the re-
lation between NDVI and temperature, to disentangle 
their respective effects on the annual pattern of the re-
sponse variables (Table S6.1c).

To further evaluate whether altitudinal movement 
allowed female ibex to exploit the change in vegetation 
productivity (‘green-up’), we compared ∆NDVI values 
experienced by ibex at locations actually used in sum-
mer, with those of locations used by females in the latest 
part of winter (13th-16th week; P1c). To this end, we built 
a binomial variable ‘summer_loc’ expressing whether 
∆NDVI values referred to summer locations (‘summer_
loc’ =1), or late winter ones (‘summer_loc’ =0). We fitted 
a GAMM to ∆NDVI with the cyclic cubic smoother of 
the week, ‘summer_loc’ as a fixed factor, and year as a 
random intercept (Table S6.2a).

Diel behavioural responses to heat-stress 
during summer in relation to current 
conditions and climate change scenarios (Q2)

To evaluate whether female ibex compensated for thermal 
stress during summer by adjusting their diel pattern of ac-
tivity and altitudinal movements (Q2.1), while maintaining 
access to feeding habitats (Q2.2) (Figure 1b), we computed 
‘total-active-time-per-hour’ (in minutes per hour; P2.1a) 
and ‘mean-altitude-used-per-hour’ (P2.1c). We then mod-
elled these two response variables by fitting GAMM mod-
els with linear or non-linear effects of the hour of the day, 
with ‘hourly-temperature’ or ‘daily-summer-temperature-
class’, and ‘reproductive-status’ as fixed effects (Tables 
S6.3a-S6.7a). We included daylength in all models to ac-
count for seasonality (Bonnot et al., 2016; Ensing et al., 
2014; Krop-Benesch et al., 2013). We also computed the 
‘mean-total-diel-activity-budget’ for groups of days with 
different ‘daily-summer-temperature-class’ values (P2.1b).

To forecast diel activity patterns of female ibex in relation 
to climate change scenarios, we re-ran the model selection 
as for P2.1a (total-active-time-per-hour) using the covari-
ate ‘daily-summer-temperature-class’ computed under cli-
mate warming scenarios (Appendix S5; Tables S6.5a-b). We 
then estimated ‘mean-total-diel-activity-budget’ for these 
predicted temperature classes (P2.1b). To predict altitu-
dinal shifts due to climate warming (P2.1c), we modelled 
‘maximum-altitude-used-per-day’ as a function of ‘mean-
daily-temperature’ in interaction with ‘reproductive-status’ 
(Table S6.9), and multiplied this rate by the expected tem-
perature increase under climate warming scenarios.

Finally, we assessed summer habitat selection for each 
hour with respect to the rest of the day by means of hourly 
matched-case Resource Selection Functions (RSF, Boyce 
& McDonald, 1999; P2.2). Specifically, for each day with at 
least 20 locations, we extracted 10 points per used location at 
a distance that was randomly extracted from the empirical 
distribution of the hourly step lengths across all locations 
and all individuals (Fig. S6.1), and at a random absolute 
angle drawn from a uniform distribution, thus obtaining a 
set of between 200 and 240 available points/individual/day. 
We matched each hourly location with its corresponding 
daily set of available points to fit two-step conditional logis-
tic regression models for each hour of the day, obtaining the 
relative probability of selecting a given habitat in relation to 
the observed daily trajectories of each female ibex (R pack-
age TwoStepCLogit, Craiu et al., 2011, 2016).

RESU LTS

Annual behavioural responses to temperature, 
vegetation productivity and its rate of change (Q1)

At the annual scale, the total time that female ibex 
were active per day varied over the year (Table S6.1b, 
Figure 2a; adjusted R2  =  0.46), with very low activity 
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F I G U R E  2   Panel (a): predictive annual pattern of ‘total-active-time-per-day’ for female ibex, monitored in the Marmolada massif from 
2010 to 2016, fitted with a smoothed effect of the week, with individual identity and year as random effects on the intercept. Panel (b): predictive 
annual pattern of ‘mean-altitude-used-per-day’ by female ibex, monitored in the Marmolada massif from 2010 to 2016, fitted with a smoothed 
effect of the week, with individual identity and year as random effects on the intercept. In both panels, we superimposed the smoothed splines 
of mean NDVI (dashed green line) and 'mean-daily-temperature' (dotted tan line) of the study area, both modelled with a smoothed effect of 
the week and year as random effect on the intercept (Appendix S1, S4). The dashed vertical lines delimit summer and winter (17th–42nd week). 
Panel (c) and panel (d): predictive plots of the ‘total-active-time-per-day’ (panel c) and ‘mean-altitude-used-per-day’ (panel d) by female ibex 
monitored in the Marmolada massif from 2010 to 2016, fitted with a smoothed effect of the 'mean-weekly-temperature' of the study area with 
individual identity as random effect. Panel (e) and panel (f): predictive plots of the ‘total-active-time-per-day’ (panel e) and ‘mean-altitude-
used-per-day’ (panel f) by female ibex monitored in the Marmolada massif from 2010 to 2016, fitted with a smoothed effect of the residuals 
of the linear regression of the 8-day period NDVI in relation to the 'mean-weekly-temperature' of the study area, with individual identity as 
random effect. For panels (a, c and e): N = 18 (i.e., minus the six females for which collars could not be retrieved, hence activity data could not 
be downloaded); for panels (b, d and f): N = 24. In each panel, the shaded areas indicate 95% confidence intervals
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levels in core winter months, a sharp increase from late 
winter to the beginning of May (12th-20th week), then a 
gradual decrease until early October (42nd week), when 
activity fell to winter levels. The annual trend of activ-
ity was mostly explained by ‘mean-weekly-temperature’, 
although NDVI residuals featured in the best model 
(Tables S6.1c-d, Figure 2c; adjusted R2  =  0.45; P1a). 
Activity was at minimum values for temperatures lower 
than −5°C, increased steeply above this threshold, be-
fore flattening out between 13 and 15°C. NDVI also ex-
plained some variation in annual activity when residuals 
were higher than 0.15 (Figure 2e), that is, in late summer 
(approximately 40th-42nd week; see also Fig. S6.2).

Similarly, female ibex showed a seasonal shift to-
wards higher altitudes (‘mean-altitude-used-per-day’, 
Table S6.1b, Figure 2b; adjusted R2  =  0.59) that began 
at approximately the seasonal activity peak (20th week), 
increased at a rate that was notably synchronised with 
the increase in vegetation productivity (NDVI) over the 
study area, peaked in mid-July (30th week), before subse-
quently declining, more sharply after early October (42nd 
week). The annual trend of the altitude used increased al-
most linearly with both ‘mean-weekly-temperature’ and 
NDVI residuals (P1b and P1c; Table S6.1d, Figure 2d–2f; 
adjusted R2 = 0.61).

The change in vegetation productivity was positive 
(ΔNDVI>0, green-up) and higher for locations actually 
used by ibex between mid-April and late July (approx-
imately 17th-30th week; P1c; Table S6.2b, Figure 3; ad-
justed R2 = 0.46), when female ibex moved towards higher 
altitudes (Figure 2b; Fig. S4.2 for the altitudinal gradient 
in the timing of vegetation green-up), than for their late 
winter locations. From late July, vegetation productivity 
at ibex locations stabilised at high values for a few weeks 
(ΔNDVI~0, plateau of NDVI at high values, or delayed 
senescence; see also Fig. S4.1c vs S4.1a: NDVI curve of 

ibex locations vs whole study area is skewed towards 
later weeks, with delayed green-up of habitats at high 
altitudes). Conversely, productivity started to decrease 
earlier at winter range locations (ΔNDVI<0, senescence, 
29th week). Vegetation productivity at ibex locations 
dropped sharply during October (after 40th week), when 
ibex moved to lower altitudes.

Diel behavioural responses to heat-stress during 
summer in relation to current conditions and 
climate change scenarios (Q2)

During summer, female ibex followed a very strong bi-
modal pattern of diel activity that varied in intensity in 
relation to ‘mean-daily-temperature-class’ (Table S6.3b, 
Figure 4a; only two classes shown for clarity). Activity 
peaked in the early morning and in late afternoon or 
evening, and was lowest at mid-morning (Figure 4a). 
During hot days, this daily low was much more pro-
nounced compared to cooler days (‘active-time-per-
hour’ almost 50% lower). As a result, ibex were active 
earlier (30’-40’ ca), and the evening peak occurred later 
(about an hour, or more) and lasted longer on hot days. 
Reproductive females behaved somewhat differently 
during hot days, being more active at dawn and mid-
morning (by about 15%), but compensating at night with 
a lower activity level, comparable to that of cool days. 
In all cases, these behavioural adjustments generated a 
total activity budget per day that was practically con-
stant (reproductive and non-reproductive females, re-
spectively, for cool days: 12 h 03’±16’ and 11 h 59’±13’; for 
hot days: 12 h 15’±10’ and 12 h 14’±9’; Table S6.4).

The analysis performed on the forecasted tempera-
ture classes for the two climate warming scenarios pro-
duced similar patterns (Tables S6.5c), but with more 

F I G U R E  3   Predictive variation in the 8-day relative values of the Normalized Difference Vegetation Index (ΔNDVI) for average locations 
used by 24 female ibex, monitored in the Marmolada massif from 2010 to 2016, fitted with a smoothed effect of the week (solid line, green shade 
for the 95% confidence intervals), compared with the ΔNDVI of locations used by the females during the last 4 weeks of winter (dashed line, 
blue shade for the 95% confidence intervals). The dashed vertical lines delimit summer and winter (17th–42nd week)
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pronounced lows during the hottest hours, higher peaks 
at twilight (especially at dusk, and dawn for reproductive 
females), and higher nighttime activity, especially for 
non-reproductive females (RCP 8.5: Figure 4b; RCP 4.5: 
Fig. S6.3). Under these forecasts, ‘daily-activity-budget’ 
of ibex was projected to be almost identical to that under 
current conditions (Table S6.4). However, the activity 
peaks were further displaced towards nighttime, even 
with respect to the current hottest days (ca half an hour 
earlier in the mornings or later in the evenings for non-
reproductive and reproductive females, respectively; 
RCP 8.5). For visualisation purposes, we also plotted the 
‘active-time-per-hour’ predicted by ‘hourly-temperature’ 
as a continuous variable (Table S6.6): the activity level 
of female ibex steadily increased with temperature up to 
14°C and 13°C for reproductive and non-reproductive fe-
males, respectively, before dropping sharply beyond this 

threshold (Figure 4c). During the study period (2010–
2016), female ibex actually experienced a ‘mean-daily-
temperature’ >13°C (16  days in median) on less than 
10% of summer days. From climate forecasts, more than 
25% of summer days would exceed this threshold under 
both climate warming scenarios (median of 46.5  days 
and 55.5  days for RCP 4.5 and RCP 8.5, respectively; 
Appendix S5, Fig. S5.2).

Altitude used by female ibex increased almost linearly 
as a function of ‘hourly-temperature’ for reproductive fe-
males, while non-reproductive females exhibited a lower 
rate of increase above 15°C (Table S6.7b; Figure 4d). As a 
result, females moved daily over an altitudinal gradient 
of about 50 to 80 m (reproductive and non-reproductive, 
respectively; Figure 4e), with an upslope shift after dawn 
to reach the highest altitudes around mid-morning, 
and a gradual return to lower altitudes during the day 

F I G U R E  4   Predictive plots for daily activity and altitude used in summer by female ibex, monitored in the Marmolada massif from 
2010 to 2016. Panel (a): ‘total-active-time-per-hour’ (in minutes) fitted with a cyclic cubic smoother of the hour (local time) as a function of 
‘mean-daily-temperature-class’, and ‘reproductive-status’ (high temperature class: ≥10.2°C, orange shade; low: ≤3.7°C, blue shade; continuous 
and dashed lines: reproductive and non-reproductive females, respectively). Panel (b): same model with ‘mean-daily-temperature-classes’ 
estimated under the projections under the climate warming scenario IPCC RCP 8.5 (high: ≥14.5°C; low: ≤6.5°C). In both panels (a) and (b), the 
intermediate ‘mean-daily-temperature-class’ was omitted for clarity. Panel (c): ‘total-active-time-per-hour’ fitted with a spline smoother of 
hourly temperature (as continuous variable) as a function of ‘reproductive-status’. Panel (d): ‘mean-altitude-used-per-hour’ fitted with a spline 
smoother of hourly temperature as a function of ‘reproductive-status’. Panel (e): daily pattern of ‘mean-altitude-used-per-hour’ fitted with a 
spline smoother of the hour as a function of ‘reproductive-status’. Panel (f): ‘maximum-daily-altitude-used’ as a linear regression of ‘mean-
daily-temperature’ in interaction with ‘reproductive-status’. For panels (a, b and c): N = 16 (i.e., minus six females for which collars could not be 
retrieved, hence activity data could not be downloaded, and two females for which the ‘reproductive-status’ could not be assessed); for panels 
(d, e and f): N = 22 (i.e., minus two females for which the ‘reproductive-status’ could not be assessed). Shaded areas denote the 95% confidence 
intervals. The panels marked with an asterisk represent predictions of the most parsimonious models (Tables S6.3b for panel a; S6.5c for panel 
b; S6.8 for panel d)
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(Figure 4e; Table S6.8). The maximum altitude used 
by ibex increased by 29.7 m and 25.2 m for each °C in-
crease in ‘mean-daily-temperature’ for reproductive and 
non-reproductive females, respectively (Figure 4f; Table 
S6.9). This would result in an average projected upward 
shift of around 89.2 m and 75.5 m respectively under RCP 
8.5 (62.4  m and 52.9  m under RCP 4.5), for the period 
2051–2070. The spatial projections of these forecasts 
onto our study area (Figure 5 – S6.4 – S6.5) revealed that 
these distributional upslope shifts would correspond to 
a reduction of available suitable habitats (RCP 8.5: 33% 
and 27% less available surface due to the conic mountain 
shape for reproductive and non-reproductive females, re-
spectively, consisting in +16% and +13% ‘rock’; −1% and 
+4% ‘scree’; −37% and −33% ‘grassland-mixed-rock’; 
−57% and −52% ‘grassland’; and no more ‘forest’, based 
on the current landcover).

During summer, the relative probability of use of 
land-cover types by female ibex varied over the day in 
concert with variations in activity and altitude used 
(Figure 6). ‘Rock’ and ‘scree’ were selected more than 
‘forest’ during daylight. ‘Grassland’ was positively se-
lected during the two activity peaks (early morning 
and late evening-early night). ‘Grassland-mixed-rock’ 
was selected more than ‘forest’ during daylight. With 
the exception of ‘grassland-mixed-rock’, all land cover 
types were negatively selected with respect to ‘forest’ 
at night.

DISCUSSION

In this work, we evaluated the hypothesis that behav-
ioural plasticity in space use promotes resilience to 
current climate change (Boyles et al., 2011; Huey et al., 

2012). We showed that female ibex used compensa-
tory behavioural mechanisms to cope with heat-stress, 
while satisfying foraging needs, at both annual (Q1; 
Figure 1a) and daily (Q2; Figure 1b) scales. Female 
ibex exploited the altitudinal gradient by migrating 
seasonally upslope in synchrony with variation in am-
bient temperature and vegetation green-up, surfing 
the green wave to benefit from delayed senescence of 
forage at high altitudes. Similarly, in summer, females 
also compensated for heat-stress through a bimodal, 
temperature-mediated, diel activity cycle. In particular, 
they foraged more intensively at dawn and dusk, when 
more productive habitats were selected, and rested in 
thermal-refuges at high altitudes during the hottest 
hours of the day. These responses were modulated in 
relation to reproductive constraints, as females with 
kids limited their diel altitudinal shifts, remaining at 
higher altitudes, and were highly active during the day, 
with little-to-no compensation at night. Our forecasts 
under climate change scenarios, however, indicate that 
these mechanisms will likely be insufficient to behav-
iourally shield Alpine ibex from future thermal stress, 
because: (1) critical temperatures will occur much more 
frequently, so that physiological and behavioural ther-
moregulation is likely to be stretched to the limit, with 
resilience to high temperature then becoming a selec-
tive pressure (Huey et al., 2012); and (2) habitats that 
provide shelter will become rarer due to the altitudinal 
limits of the mountain range. As reproductive females 
adopted a different behavioural tactic compared to 
non-reproductive individuals, remaining at higher al-
titudes and foraging more during daytime, the effects 
of increased temperature on Alpine ibex fitness needs 
to be further evaluated, considering the energetic and 
behavioural constraints of having kids at heel.

F I G U R E  5   Spatial projection of the ‘maximum-daily-altitude-used’ (25%–75% of the distribution) by reproductive female ibex in the 
Marmolada massif in summer, according to IPCC RCP 8.5 warming scenario. Blue line-delimited polygons: projection for 2006–2025; red 
line-delimited polygons: projection for 2051–2070; shaded area: overlap between the two projections. See Fig. S6.4 for non-reproductive females, 
scenario RCP 8.5; Fig. S6.5 for both reproductive and non-reproductive females, scenario RCP 4.5. The image was generated with QGIS 3.16 
(QGIS.org, 2021. QGIS Geographic Information System. QGIS Association)
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Species that are exposed to an increase in tempera-
ture beyond the thermal limits within which they evolved 
are expected to experience decreased fitness (Huey et al., 
2012), as they pay an energetic cost through either heat 
dissipation, or reduced resource intake (Speakman & 
Krol, 2010). The temperature trends in the Alps may in-
duce a contraction or diel time-shift of foraging bouts 
(Bourgoin et al., 2011; Grignolio et al., 2018; Mason et al., 
2014b). Here, we showed that female ibex drastically re-
duced activity above the threshold value of 13–14°C (pre-
viously reported as limits for heat-stress: Aublet et al., 
2009; Signer et al., 2011) and compensated by increasing 
twilight and nocturnal foraging (P2.1a), a behaviour so 
far not investigated in ibex. The total daily time spent 
foraging was, as a result, almost constant across a wide 
range of mean daily temperatures (P2.1b). At the same 
time, ibex selected forage habitats during peak activ-
ity, and refuge habitats during resting periods (P2.2). 
Therefore, by moving altitudinally (P2.1c) through food-
rich habitats when shifting between resting sites, female 
ibex optimised access to both thermal-cover and high 
quality resources. In this context, reproductive females 
are particularly affected by environmental constraints 
because, as ‘follower’ ungulates (Lent, 1974), they must 
trade-off their higher energetic requirements against 
the vulnerability and limited mobility of offspring 
(Barber-Meyer & Meach, 2008). Reproductive females 
were shown to select specific habitats (Grignolio et al., 
2007), typically remaining at high altitude, likely to limit 
movements, obtain thermal protection and access refuge 
areas. Climate models indicate a marked increase (from 
8% to 25%) in the proportion of summer days leading 
to heat-stress, to which ibex may respond by further 

shifting foraging towards the night (by one hour in addi-
tion to that currently observed on hot days) and upslope 
(up to 90 m). Activity budget compensation of reproduc-
tive females, that we show for the first time in an Alpine 
ungulate, might be limited by the lessened mobility of 
kids at night on steep and treacherous cliffs. Moreover 
the spatial projections showed that further range shifts 
towards higher elevations would be limited by moun-
tain ridges, and the likely reduction in foraging habitats 
(up to 60% less, based on current landcover). Temperate 
conditions are intruding into Alpine regions, with a pre-
dictable upward shift of vegetation (Rubel et al., 2017), 
especially forest habitat (Leonelli et al., 2011). For grass-
lands, however, this shift will be likely limited in the 
Dolomites because of the lack of specific adaptations of 
plants to rocky and unstable substrates (Cannone et al., 
2003).

Climate affects mountain ungulates even indirectly, 
via spatio-temporal variation of forage availability 
(Aikens et al., 2020). In a capital breeder, like Alpine 
ibex (Toïgo et al., 2002), fitness depends on cumulative 
resource acquisition throughout summer. In our study, 
we showed that activity of female ibex varied across the 
year, driven mainly by temperature (P1a), while seasonal 
altitudinal migration positively depended both on tem-
perature (see Herfindal et al., 2019) and the increase in 
vegetation productivity (P1b), previously shown to index 
availability of high quality vegetation (Hamel et al., 
2009). This expands on previous studies that indicated 
a trade-off between the selection of thermal refuges vs. 
optimal forage habitats (Brivio et al., 2019; Mason et al., 
2017). Notably, ibex increased rapidly their activity in 
late winter and started to move upslope a few weeks 

F I G U R E  6   Plot of the coefficients of the relative probability of use of land-cover types (‘grassland’: green filled circles, ‘grassland-mixed-
rock’: turquoise squares, ‘rock’: blue triangles, ‘scree’: red open circles) by 24 female ibex in summer, monitored in the Marmolada massif from 
2010 to 2016, as estimated by hourly Resource Selection Functions. Used locations refer to each hour, and are conditionally matched to all 
available locations on the same day. The coefficients are relative to ‘forest’ as the reference category
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later. Hence, our results suggest that ibex initially fed 
on new shoots of vegetation in the winter range at the 
snowmelt, before exploiting the altitudinal gradient in 
vegetation green-up by migrating upslope. During this 
period, ibex were able to access areas with a more rapid 
green-up compared to their winter ranges, despite lower 
absolute vegetation productivity (P1c). As the green-up 
slowed, female ibex ceased their altitudinal migration, 
remaining at altitudes that experienced a delay in veg-
etation senescence, thus optimising resource acquisition 
up to the onset of winter (35th-42nd week). Our evidence 
is one of the first demonstrations of the Green Wave 
Hypothesis for a Caprinae (but see Jesmer et al., 2018), 
as it was previously tested for grazers and intermediate 
feeders (Aikens et al., 2020; Bischof et al., 2012; Geremia 
et al., 2019; Merkle et al., 2016). Furthermore, our results 
indicate the importance for ibex of acquiring high qual-
ity resources also later in the season, exploiting delayed 
senescence of vegetation at high altitudes. This can be 
expected in a capital breeder, relying on cumulative re-
source acquisition more than on instantaneous high 
gain, opposed to income breeders (Kerby & Post, 2013). 
Further research on the biomass and quality of plant spe-
cies consumed in these extreme environments in relation 
to green-up phenology could clarify the potential impact 
of climate change on behavioural adaptations, and the 
consequences for individual fitness (Mason et al., 2014a; 
Lovari et al., 2020), such as the potential mismatch with 
the energetic demands of species (Williams et al., 2017).

The conservation ecology of this and other iconic moun-
tain ungulates under direct and indirect threats of climate 
change would greatly benefit from large-scale comparative 
studies across a range of geomorphological contexts. In 
this regard, it will be important to evaluate whether phys-
iological traits are becoming maladaptive, and to what 
degree behavioural responses provide mechanisms to 
compensate for higher temperatures and so increase resil-
ience, as we have shown here for the Alpine ibex.
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