

New insights on eggshell mineralization and how they can contribute to maintain shell quality

Joël Gautron joel.gautron@inrae.fr

Lilian Stapane (INRAe, France), Alejandro Rodriguez-Navarro (University of Granada, Spain), Yves Nys (INRAe, France) and M.T. Hincke (University of Ottawa, Canada)

The chicken eggshell

Natural envelope to ensure physical defence of egg

- Protects the developing embryo
- Ensures that table eggs remains free of pathogens

Bacterial penetration

Shell quality depends on Numerous factors

- > Genetic
- Hen physiology (age, mold)
- > Environment of hens (lighting programs, temperature)
- > Nutrition and management of hens
- "Insult": rearing system, egg transport, egg sorting...

Genetic, optimal nutrition limit but do not eliminate breakage, notably for elderly birds

Extension of the Laying Period

The current genetic strategy is to improve persistency in lay and to extend the laying cycle of existing flocks (+ 40 days between 2000 and 2011; financial and environmental interest!)

Weekly decreased in egg quality between 70 and 90 weeks of age estimated to be quite linear: - 0.4 haught unit, - 0,02% for egg shell, + 0,05 cm2 egg surface (European data, 2015, practical conditions)

Origin of the calcium deposited in the shell

Desynchronization between calcium intakes and requirements

Régulation of calcium metabolism in laying hens

Improve the eggshell quality

Mass : nutrition, genétic, environemment, lightning programs
 fabric : genetic (eggshell matrix proteins)

The eggshell formation

- ✓ Eggshell biomineralization in uterus (fast process)
- ✓ 5-6 g of mineral (calcium carbonate) are deposited within a 20 h period

Mineral supply

3 Potential pathways

Adapted from L..Stapane-D-17/12/19 Hodges et Lörcher 1967; Jonchère et al., 2012; Brionne et al., 2014; Nys et Le Roy, 2018

The eggshell formation

- ✓ Eggshell biomineralization in uterus (fast process)
- ✓ 5-6 g of mineral (calcium carbonate) are deposited within a 20 h period

First events of nucléation

/lamillary

Knobs

ACC Calcite

Eggshell

Membranes

Calcite formation

Time 1 (5-6 h Post ovulation): ACC particles nucleate on the whole eggshell membranes. Form massive deposits Time 2 (6-7 h post ovulation): Interface-coupled dissolution precipation process Direct transformation of ACC into calcite aggregates on mammillary knobs

Larger calcite crystal units deposition

Time 3 (>7h post ovulation): Additional cristallisation events on calcite template

Rodriguez-Navarro et al., Journal of structural Biology, 2015

Time 4 (7-10h post ovulation): Caclcite deposition and fusion of adjacent cônes

Time 5 (11 to Oviposition):

- Formation of palisade layer. Generation of a compact layer with crystals all oriented perpendicular to the surface
- Deposition of a thin layer of vertical structure
- Cuticle deposition
- Oviposition, drying and cracking of cuticle

Pivotal stages of shell formation, crucial role of amorphous calcium carbonate (ACC)

phase (12 h)

Role of organic matrix proteins at pivotal events

✓ Stabilization of amorphous calcium carbonate (ACC)
 ✓ Polymorphs, morphology and size of crystals

Eggshell texture and mechanical properties

Predicted functional activities of the identified matrix proteins ?

(Marie et al., 2014, 2015a,b)

Involvment of vesicular system to transport and stabilize Amorphous calcium carbonate (ACC)

Arrest of calcification
Terminal phase

Proteins having a direct involvement in eggshell mineralization

 \checkmark Proteins with established role in the **biomineralisation**

Ovotransferrin is a Matrix Protein of the Hen Eggshell Membranes and Basal Calcified Layer

J. GAUTRON^a, M.T. HINCKE^b, M. PANHELEUX^a, J.M. GARCIA-RUIZ^c, T. BOLDICKE^d and Y. NYS^{a,*}

Formation de l'œuf et biominéralisation

Proteins having a direct involvement in eggshell mineralization

✓ Proteins with established role in the **biomineralisation**

Figure 1. Ovocleidin-17 bound to an amorphous (a) and a crystallized (b) calcium carbonate nanoparticle containing 192 formula units. The

Proteins having a direct involvement in eggshell mineralization

 \checkmark Proteins with established role in the **biomineralisation**

✓ Calcium binding proteins (CaBPs) interacting with calcium, favoring crystal nucleation and driving the morphology of crystals

• *Proteins with EF-hand and EGF-like calcium binding domains*

Proteins having a direct involvement in eggshell mineralization

✓ Proteins with established role in the **biomineralisation**

✓ Calcium binding proteins (CaBPs) interacting with calcium, favoring crystal nucleation and driving the morphology of crystals

- Proteins with EF-hand and EGF-like calcium binding domains
- ✓ Proteoglycans and proteoglycan binding proteins
 - proteoglycans have a negative charge to attract Ca2+ ions

Proteins involved in the regulation of proteins driving mineralization

- Proteins involved in the proper folding of the eggshell matrix to ensure calcium and mineral interactions and to ensure template to the mineralized structure
- Proteins inhibiting or activating proteins present in the mineralization milieu (non cellular).
 - \rightarrow Direct interaction with other proteins.
 - Molecular chaperone interact with proteins driving mineralization
 - Proteases and protease inhibitors (specific and controlled role during calcification process, either by degrading proteins or regulating processing of proteins into their mature forms)

CST3

LOC100859272

- ✓ Mineralization depends of the degree of protein phosphorylation
 - Kinases and Phosphatases

And now ? How to improve shell quality ?

• Mapping genes coding matrix proteins to detect polymorphisms and haplotype related to good quality shell

Physiology Understand the mechanisms of shell manufacturing and determine the origin of its weaknesses

Genetics
Classical and genomic selection

Recent Developments and Future Prospects :

- ✓ Genomic selection (precision, taking into account the male effect)
- ✓ Taking into account scientific advances in the knowledge of mechanisms
 - ✓ Candidate gene approach

Candidate Genes of eggshell calicification in laying hens (CACAO)

Eggshell Calcification Polymorphism Candidates (POLCACAO)

Complementarity of information between proteomics (candidate genes) and genomics results (QTL / Sequencing).

And then? How to improve shell quality ?

- Maping genes coding proteins to detect polymorphisms and haplotype related to good quality shell
- Identification of early biological markers associated to shell calcification.
- Influence of Vit D status (form of Vit D)
 - Age effect

Thank you for your attention

