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Abstract  25 

Water table drawdown across peatlands increases carbon dioxide (CO2) and reduces methane 26 

(CH4) emissions. The net climatic effect remains unclear. Based on observations from 130 sites 27 

around the globe, we found a positive (warming) net climate effect of water table drawdown. 28 

Using a machine-learning based upscaling approach, we predict that peatland water table 29 

drawdown driven by climate drying and human activities will increase CO2 emissions by 1.13 30 

(95% interval: 0.88 – 1.50 ) Gt yr
-1

 and reduce CH4 by 0.26 (0.14 – 0.52) Gt CO2-eq yr
-1

, 31 

resulting in a net increase of greenhouse gas (GHG) of 0.86 (0.36 – 1.36) Gt CO2-eq yr
-1

 by the 32 

end of the 21
st
 century under the RCP8.5 climate scenario. This net source drops to 0.73 (0.2 – 33 

1.2) Gt CO2-eq yr
-1

 under RCP2.6. Our results point to an urgent need to preserve pristine and 34 

rehabilitate drained peatlands to decelerate the positive (more warming) feedback among water 35 

table drawdown, increased GHG emissions and climate warming. 36 

 37 

  38 
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Covering only ~3 percent of the Earth’s land surface, peatlands store one-third of the 39 

global soil carbon
1
. Peat is formed through a slow accumulation of detritus with litter input 40 

exceeding decomposition rates in waterlogged environments. In pristine peatlands, a shallow 41 

water table or permanently waterlogged condition causes oxygen deficiency, allowing the 42 

accumulation of organic matter over millennia. These anaerobic conditions favor 43 

methanogenesis, and peatlands thus act as a global source of methane (CH4) of around 0.8 Gt 44 

CO2-eq yr
-1 

(1 Gt = 10
15

 g) 
2
. CH4 is a greenhouse gas (GHG) with a global warming potential 45 

that is 25 times that of carbon dioxide (CO2) over a 100-year time horizon
3
. Pristine peatlands 46 

are a sink of CO2 of around 0.4 Gt CO2 yr
-1

 at the global scale
2
. The balance between CO2 sinks 47 

and CH4 emissions determines the net climatic impact of peatlands. This balance is highly 48 

sensitive to changes in hydrology, particularly the water table position that regulates aerobic 49 

versus anaerobic conditions in the soil column and therefore the production and consumption 50 

processes of CO2 and CH4 in the soil profile
4
.  51 

Human induced drainage, over-extraction of groundwater and climate drying have 52 

substantially altered peatland hydrology and resulted in a widespread downward movement of 53 

water tables. Around 51 Mha of the world’s peatlands have been drained for agriculture or 54 

forestry
5
. Water table drawdown and associated land subsidence were observed in warm and wet 55 

peat regions such as Indonesia, Malaysia, Thailand, Florida (Everglades) and in specific summer 56 

dry regions such as California (Sacramento delta) and Israel (Lake Hula) 
6,7

, or in temperate 57 

countries like the Netherlands
8
. Peatlands across Europe were also found to have undergone 58 

substantial and widespread drying in recent centuries
9
. Globally, drainage and subsequent 59 

conversion of natural peatlands to agriculture and forestry are estimated to emit 0.31–3.38 Gt 60 

CO2-eq yr
-1

 GHGs (see Supplementary Table 1 for a summary of GHG emissions on degraded 61 

peatlands). These estimates rely on peatland area and GHG emission factors. Both the area and 62 

emission factors and their upscaling are highly uncertain 
5,10,11

. It is unclear to what extent and 63 

how water table drawdown directly regulate changes of GHG emissions as it is challenging to 64 

separate compounding effects of other variables such as land clearing and carbon input to the soil 65 

from the new land use types. 66 

 Field manipulation experiments provide the opportunity to quantify the direct impact of 67 

lowering the water table on peatland GHG emissions. We compiled data from 376 pairs of data 68 

points measuring net ecosystem exchange of CO2 (NEE), 532 pairs for CH4 emissions, 209 pairs 69 
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for gross primary production (GPP) and 407 pairs for ecosystem respiration (or soil respiration in 70 

the absence of live plants, RES). The data were extracted from 130 field sites as documented in 71 

96 publications (Supplementary Figure 1). NEE is jointly controlled by soil and vegetation (NEE 72 

= GPP + RES). Lowering water tables is expected to accelerate peat decomposition and soil CO2 73 

release by exposing C rich upper soil layers to oxygen. However, some studies measured either a 74 

decrease or no change in decomposition rates
12

. Increased, no significant change and decreased 75 

vegetation CO2 uptake  (GPP) were also observed from individual studies when the water table 76 

was lowered. Correspondingly, the sign of NEE changes in response to water table drawdown 77 

varies among studies (Supplementary Figure 11). On the other hand, studies mostly reported 78 

reductions in CH4 emissions by lowering the water table (Supplementary Figure 11). With highly 79 

uncertain soil emissions and plant uptake of CO2 but generally lower CH4 emissions, the net 80 

GHG balance, therefore the global climatic impact of water table drawdown remains highly 81 

variable
13,14

.  82 

In order to deal with the heterogeneity of experimental results, we conducted a meta-83 

analysis based on random effect models to quantitatively summarize results across multiple 84 

studies. Our sign convention is a positive sign for CO2 or CH4 emissions to the atmosphere, and 85 

a positive sign for a water table depth (WTD) becoming deeper. ∆CO2,WTD represents the 86 

difference of NEE resulting from a drawdown of WTD, and ∆CH4,WTD is the same for the 87 

difference of CH4 emissions. ∆CH4,WTD is expressed as its CO2 equivalent assuming its global 88 

warming potential is 25 times of CO2 over the 100-year time span
3
. The net greenhouse gas 89 

(GHG) balance is defined by ∆GHG,WTD = ∆CO2,WTD + ∆CH4,WTD. Note here that ∆GHG,WTD, ∆CO2,WTD, 90 

∆CH4,WTD vary with the magnitude of water table drawdown.    91 

The estimated mean value of ∆CO2, WTD (Figure 1) is 62 mg CO2 m
-2

 h
-1

 (47 to 77), all 92 

ranges being defined as 95% confidence intervals (CI), meaning an increase of CO2 emissions 93 

(or a decreased sink) for a water table becoming deeper. This estimated mean value is 94 

significantly positive since the 95% CI does not overlap zero (Methods; Supplementary Figure 3) 95 

despite individual values of ∆CO2, WTD varying from -497 to 1234 mg CO2 m
-2

 h
-1

 across sites 96 

(Supplementary Figure 11). Complex responses and interactions of biotic and abiotic processes 97 

make it difficult to identify a unifying mechanism for NEE responses. Vegetation coverage, 98 

species composition, photosynthetic capacity, biomass allocation, substrate quality, nutrient 99 

availability, environmental conditions (e.g., soil temperature, water availability, aeration status), 100 
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peat physicochemical properties, microtopography, extent of changes in water level and 101 

experimental duration (short-term vs. long-term) are possible factors that have dominant 102 

influences on NEE responses from individual experiments. Overall, water table drawdown 103 

induced an increase in CO2 emissions from respiration exceeding that of GPP uptake (Figure 1b). 104 

In contrast, the estimated mean value of ∆CH4, WTD shown in Figure 1 is -26 mg CO2-eq m
-2

 h
-1

 105 

(95% CI: -35, -20), revealing a significant reduction of CH4 emissions or an increase in the CH4 106 

sink resulting from deceased methanogenesis and/or enhanced methanotrophy (Figure 1; 107 

Supplementary Figure 3). ∆CH4, WTD across sites go from -1120 to 484 mg CO2-eq m
-2

 h
-1

 108 

(Supplementary Figure 11). Using data from experiments that measured both NEE and CH4 109 

emissions, we estimated a significantly positive mean value of ∆GHG,WTD equal to 33 mg CO2-eq 110 

m
-2

 h
-1

 (9 to 57), which implies that lowering WTD leads to a net increase of radiative forcing. 111 

The result of an overall positive ∆GHG,WTD is robust and consistent among different estimating 112 

methods (Supplementary Figure 3).  113 

We then quantified the sensitivities of GHG fluxes to the magnitude of water table 114 

drawdown (∆WTD), and found that the overall average sensitivity to a 1 cm water table drawdown 115 

was 4.1 (95% CI: 3.3 to 5.0) mg CO2 m
-2

 h
-1

 for CO2 (NEE) and -2.9 (95% CI: -3.6 to -2.2 ) mg 116 

CO2-eq m
-2

 h
-1

 for CH4 (Methods, Supplementary Figure 4). The average sensitivity of ∆GHG,WTD 117 

was 1.6 (95% CI: 0.8 to 2.3) mg CO2-eq m
-2

 h
-1

cm
-1

 based on a subset of experiments that 118 

measured both NEE and CH4. No significant pattern in the regional values of ∆GHG,WTD was 119 

found (Supplementary Figures 5-10; Supplementary Discussion), because of the large inter-site 120 

variability of the observed fluxes, small sample sizes in arctic, tropical and coastal regions, and 121 

nonlinear responses to ∆WTD. The average sensitivity of ∆CH4,WTD to unit water table drawdown 122 

was smaller (less reduction) in tropical than boreal and temperate peatlands (Supplementary 123 

Figure 6). The difference between these regions was significant (95% CI not overlap) according 124 

to one of the weighting approaches considered. Respiration of coastal regions had a greater 125 

average sensitivity than non-coastal regions, while differences of NEE (or CH4) were 126 

inconsistent (Supplementary Figure 8). Undisturbed coastal regions are more likely to experience 127 

frequent flooding and anoxic conditions, leaving more labile peat susceptible to decomposition if 128 

the water table was lowered. Among different peatland types, the mean ∆CO2, WTD per unit ∆WTD 129 

was higher in swamps than bogs and fens (not significant, Supplementary Figure 10). Fens had 130 

higher mean ∆CO2,WTD and mean ∆GHG,WTD per unit ∆WTD than bogs.                131 
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Responses of GHG emissions to WTD were non-linear and covaried with peatland types, 132 

regions, land use and management histories, hydrology, vegetation characteristics, climate, and 133 

physicochemical properties of peat
4,13,15-17

. Therefore, upscaling above-estimates to the global 134 

scale can be problematic. To further understand how different factors regulated ∆CO2, WTD and 135 

∆CH4, WTD, we built random forest models
18

 for these two quantities (see Methods). The random 136 

forests were built against site data using as predictors ∆WTD, WTD, CO2 (NEE) and CH4 137 

emissions under the high (shallow) water table treatment (WTDinitial, CO2,initial and CH4,initial in 138 

short), climatic, topographic, edaphic, biotic, management and experimental factors (Methods; 139 

Supplementary Tables 2, 3). We show in Figure 2 that CO2,initial, ∆WTD and WTDinitial are the most 140 

important predictors of ∆CO2,WTD, accounting for 53% of the Gini-based relative importance 141 

(Supplementary Table 4; Figure 2; Supplementary Figures 13, 15). Variations in ∆CH4,WTD are 142 

mostly explained by CH4,initial, ∆WTD and WTDinitial (relative importance: 88%; Supplementary 143 

Table 5; Figure 2; Supplementary Figures 14, 15). The models predict that peatlands with a 144 

stronger initial capacity of being CO2 sink (CO2,initial), a shallower WTDinitial, and experiencing a 145 

larger ∆WTD have a more positive ∆CO2, WTD value (Figure 2, red lines), and that peatlands with a 146 

larger CH4,initial flux to the atmosphere and a bigger ∆WTD experience a stronger reduction in their 147 

CH4 emissions, i.e., a more negative ∆CH4 WTD value (Figure 2, red lines).  148 

By scaling up using the random forest models, we found that arctic peatlands were more 149 

likely to have both positive and negative ∆CO2, WTD when conditions varied (Supplementary 150 

Figure 16). The average response curves showed that arctic peatlands were more sensitive to 151 

∆WTD and CO2,initial  over the whole predictor space (Supplementary Figure 17). ∆CH4,WTD of 152 

tropical peatlands could be less or greater than boreal peatlands when CH4,initial varied 153 

(Supplementary Figures 16, 17). Overall, both ∆CO2,WTD and ∆CH4,WTD were highly sensitive to 154 

∆WTD when ∆WTD was small (<10 cm), and also became highly sensitive to WTDinitial when 155 

WTDinitial was around the surface. ∆CO2, WTD stayed relatively constant when WTDinitial was 10 cm 156 

above the surface or 80 cm below the surface. ∆CH4,WTD was not responsive to WTDinitial for 157 

strong drying or wetting when WTDinitial got typically more than 33 cm below the surface or 21 158 

cm above the surface (Figure 2, Supplementary Figures 16, 17). That being said, the above-159 

mentioned broad patterns emerged from our analyses may not hold under some specific 160 

environmental conditions, due to the strong nonlinearity of response curves. Apart from these 161 

average responses, each individual paired experiment carried a unique response pattern as an 162 
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outcome of complex interactions involving peatland characteristics, climate and other 163 

environmental factors (Figure 2, grey lines; see Supplementary Figures 13, 14 for the responses 164 

to different factors).  165 

Based on future WTD predicted by de Graaf, et al. 
19

 under their “business as usual” 166 

water demand scenario and the RCP8.5 climate change scenario (Methods), we used the trained 167 

random forest models to compute global gridded CO2 (NEE) and CH4 emissions in response to 168 

future water table drawdown. We found both an increase of global peatland NEE, that is, a larger 169 

CO2 source or a smaller sink by 1.13 (95% probability interval: 0.88 – 1.50 ) Gt CO2 yr
-1

 and a 170 

reduction of peatland CH4 emissions by 0.26 (0.14 – 0.52) Gt CO2-eq yr
-1

, which together 171 

amounts to a net increase of GHG of 0.86 (0.36 – 1.36) Gt CO2-eq yr
-1

 by 2100 (see Figure 3 and 172 

Supplementary Figures 21, 23, 25, 27). This estimated net GHG budget was 0.73 (0.2 – 1.2) Gt 173 

CO2-eq yr
-1

 under the RCP2.6 climate scenario by 2100 (see Figure 3 and Supplementary 174 

Figures 22, 24, 26, 28). Under the scenario assuming a 40% less reduction of WTD than the de 175 

Graaf, et al. 
19

 prediction, the global ∆GHG,WTD reached 0.74 (0.5 – 1.29) Gt CO2-eq yr
-1

. A 80% 176 

less reductions of WTD than the de Graaf, et al. 
19

 prediction yields a global ∆GHG,WTD of 0.53 177 

(0.34 – 0.85) Gt CO2-eq yr
-1

. The RCP2.6 climate scenario and a 80% less reduction of water 178 

table drawdown together bring the global ∆GHG,WTD down to 0.42 (0.22 – 0.74) Gt CO2-eq yr
-1

. 179 

Note these estimates do not account for anthropogenic impacts other than water table drawdown, 180 

such as land use change or fires.  181 

Across different latitudes, regions with high CH4 reductions generally have high ∆CO2, 182 

WTD and ∆GHG,WTD. Mid- to high-northern latitudes and tropics dominate the global response of 183 

GHG budgets to water table drawdown due to their large areas (Figure 3; Supplementary Figures 184 

21, 22). Inferred from several drained peat sites in Finland, Laine, et al. 
14

 suggested a reduced 185 

GHG emission from northern peatlands under future drying because of lower CH4 emissions and 186 

enhanced vegetation CO2 uptake offsetting peat CO2 emissions. We found negative ∆GHG, WTD 187 

over Finland (Supplementary Figures 23,24). Across northern peatlands, positive ∆GHG, WTD 188 

outweighs negative ∆GHG, WTD, resulting in the positive (warming) feedback on future climate. 189 

We acknowledge large uncertainties in predicting future GHG emissions over northern 190 

peatlands. In particular, permafrost thawing, a critical process that has dramatic impacts on the 191 

climate system
20

, was not included as a predictor in our model. Arctic warming and permafrost 192 

thaw can alter peatland hydrology. Thermokarst peatlands form as a result of permafrost thaw. 193 
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Thermokarst peatlands are known for their localized patchy landscape with distinguished dry-194 

wet zones and irregular hummocks and hollows. Considering the big sensitivity of GHG to ∆WTD 195 

in arctic peatlands, widespread alterations of hydrology could dramatically change arctic GHG 196 

budgets.   197 

Peatlands in Scandinavia, coastal region or along river networks are predicted to 198 

experience high reductions in CH4 emissions in response to future water table drawdown 199 

(Supplementary Figures 25,26). Latitudinal average CH4 reductions are higher in tropics than 200 

high latitudes. High CH4 fluxes, relatively large change of WTD, and its warm environment 201 

make Amazonian peatlands the largest contributor to total CH4 reduction in tropics. This 202 

prediction is subject to large uncertainties because of few field observations in Amazonnian 203 

peatlands. Few field studies in Amazonian peatlands documented high CH4 fluxes
21,22

. The 204 

spatiotemporal variability, hydrologic and biogeochemical controls of CH4 emissions across 205 

Amaznonian peatlands remain poorly understood. Southeast Asian peatlands show low CH4 206 

emissions in comparison to temperate and boreal peatlands 
13

, most likely due to poorer substrate 207 

quality (lower carbohydrate and greater aromatic content) of tropical peats 
23

. It remains largely 208 

unclear whether the low CH4 fluxes are widespread across tropics, or biases from limited sample 209 

size and coverage. Boreal and temperate peatlands had experienced widespread drainage and 210 

peat conversion before the 21
st
 century, while tropic peatlands are subject to large scale 211 

disturbance in the future
24

. The recent discovery of the world's largest tropical peatland in Congo 212 

basin
25

 highlights the need for additional field observations in tropics to understand hydrological 213 

controls on CH4 emissions.      214 

A less controversial issue in tropics is the higher CO2 emissions following water table 215 

drawdown. Tropical peatlands contain about 5-10% of global soil carbon
26

. Earlier
13

 and our 216 

syntheses (Supplementary Figure 6) found an increase in emission of at least 10 mg CO2 m
-2

 h
-1

 217 

by respiration for each 1cm water table drawdown. Many tropical peatlands are occupied by 218 

swamp forests, and some of them were converted into agricultural land uses with a lowering of 219 

the WTD, which would result in an increase in CO2 emissions
27

. In Southeast Asia, 25% of 220 

deforestation occurs in peat swamp forests
27

. Water table management and conservation of 221 

tropical swamp forests are critical for climate mitigation in the tropics, due to the high CO2 222 

emissions from swamp forests and the positive feedbacks among water table drawdown, GHG 223 

emissions and climate warming. Under RCP8.5 where CO2 emissions continue to rise throughout 224 
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the 21st century with  warmer climate conditions, global ∆GHG,WTD is predicted to increase by 225 

18% more than under the less warm RCP2.6 scenario. These estimates are rather conservative, 226 

because we did not account for the effect of lowering the water table under a warm and drying 227 

climate on ∆GHG,WTD. Positive contributions of water table drawdown to GHGs accelerate future 228 

GHG emissions through climate feedback. 229 

This study reveals that despite water table drawdown reduces global peatland CH4 230 

emissions, increased CO2 flux outweights the climate benefits of reduced CH4 in terms of global 231 

warming potential. Many other adverse environmental and ecological impacts associated with 232 

peatland water table drawdown
 
have already motivated national and international actions to 233 

preserve pristine peatlands and rewet drained peatlands. Controlling the magnitude of future 234 

water table drawdown is an effective measure as future ∆CO2, WTD and ∆CH4, WTD are largely 235 

regulated by ∆WTD (Supplementary Tables 6-8). Rewetting to ~10 cm above-surface greatly 236 

reduces CO2 emission, it may also increase CH4 emissions, especially in regions where pristine 237 

peatlands are strong CH4 emitters. Instead of rewetting all drained peatlands, care must be taken 238 

in regional implementation, as the tradeoff between CO2 decrease and CH4 increase is dependent 239 

on many local factors. Climate change mitigation strategies outside peatlands that aim to limit 240 

global warming are also critical for lowering peatland GHG emissions. Finally, despite 241 

significant progresses in peatland studies over recent decades, there are still large uncertainties in 242 

quantifying peatland CO2 (NEE)
28,29

, CH4 emissions
30

 and WTD
19

 dynamics over large spatial 243 

scales. Arctic, coastal and tropical regions are highly vulnerable, but largely understudied, 244 

especially in the area of long-term vegetation adaptation. Dominant control on the response of 245 

peatland carbon to water table drawdown may also vary with timescales. As a first step, we 246 

assessed the uncertainty of our prediction through combining different datasets to account for 247 

currently known major uncertainty sources, which is yet to be all inclusive. Additional 248 

observations especially from those under-sampled regions will enable us to reduce the 249 

uncertainty in the estimated response of peatland to climate change and developing appropriate 250 

mitigation strategies in the future.  251 

 252 
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 334 

Methods   335 

Data collection   336 

We extracted values of GHG fluxes for NEE, ecosystem respiration (or soil respiration in 337 

the absence of live plant), GPP, CH4 emissions, WTD and ancillary environmental variables 338 

from water table manipulation experiments carried out through mesocosms or/and in-situ field 339 

conditions. Mesocosm experiments normally enclose relatively large intact peat monoliths to 340 

manipulate WTD in well-controlled conditions. in-situ field experiments alter WTD through 341 

draining, ditching, precipitation exclusion, flooding, building dams or groundwater extraction. 342 

Difference in ∆CO2,WTD and ∆CH4,WTD between these two types of experiments is not significant 343 
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(95% CI overlap). We do not separate mesocosm experiments from experiments without peat 344 

enclosure. We treat them as different approaches to manipulate water table depth. We used the 345 

ISI Web of Science database to conduct literature search for the papers published before October 346 

2020 with query terms including “ water table”, “carbon”, “methane”, “respiration”, “NEE”, 347 

“primary production”, “drain” and “peatland”. More papers were identified through the Chinese 348 

CNKI platform. Studies included in our database were selected according to several criteria. The 349 

study should measure at least WTD and one flux of CO2 or CH4 under both low- and high-water 350 

table treatments over the same time period in the same geographic region and have the same 351 

natural background and land use type. Studies that compare ecosystem responses under altered 352 

water table during different time periods, for example, from Merbold, et al. 
31

, were not 353 

incorporated. Studies using laboratory peat columns, with synthetic/repacked soils, artificial 354 

additions (ameliorant, biochar or compost) or through incubations or have a treatment less than 1 355 

month were also excluded. Around 1/3 of studies experienced water table disturbance 10 years 356 

earlier. Some papers reported ecosystem responses to several water table treatments at the same 357 

location. In these cases, we rearranged and paired the datasets to have different combinations of 358 

low vs. high water table treatments. For those papers reporting multiple values across several 359 

years, we compared results from meta-analysis that separates vs. lumps each year’s mean 360 

response. Differences are minor, and we reported results without lumping. In total, we obtained 361 

96 papers that cover 130 locations, mostly in the northern hemisphere (Supplementary Figures 1, 362 

2). A pair of data points reflecting ∆WTD effects on carbon flux includes a target GHG data from 363 

two treatments corresponding to a low and high water table depth in a specific site. In total, we 364 

have 376 pairs on NEE (CO2), 532 pairs of CH4, 209 pairs of gross primary production (GPP) 365 

and 407 pairs of ecosystem respiration (or soil in the absence of live plants, RES) measurements.  366 

For carbon fluxes, we extracted mean values of emission for each treatment, standard 367 

deviations (SD), and sample sizes from each published study. If standard error (SE) rather than 368 

SD was reported, SD was calculated from SE. For experiments that did not document SD or SE 369 

(3-20% of the experiments), we estimated the variance through scaling the mean of each 370 

experiment by the average coefficient of variation within each treatment and each GHG. We also 371 

extracted mean WTD before and after water table manipulation and other ancillary information 372 

(Supplementary Tables 2, 3).  373 

Response quantification     374 
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For each pair of data points, we use the difference (        in unit of mg CO2-eq m
-2

 h
-1

) 375 

in the mean value (over experimental replicates) of each CO2 or CH4 flux under high (shallow)- 376 

(     ) and low (deep) -water table (   ) (Equation 1) as a metric to quantify the effect of water table 377 

drawdown. We chose the difference instead of the odds ratio (log) to incorporate experiments in 378 

which       and     vary in sign. 379 

                          (1) 380 

We conducted the meta-analysis with the random-effect model (assuming that between 381 

study variations are randomly distributed) and the inverse variance weighting scheme
32

 based on 382 

the extracted values of SD and sample sizes through the Metafor package in R version 3.6.2 
33

. 383 

The between study variance (heterogeneity, τ
2
) was quantified through the restricted maximum-384 

likelihood method
33

. 95% confidence interval (CI) was estimated as the Wald-type (i.e., normal) 385 

CI if the standardized residuals of observations are not strongly deviated from theoretical 386 

quantiles of a normal distribution. Otherwise, we applied a bootstrapping CI estimation. We 387 

randomly sampled 90% of the original datasets with replacement and estimated the mean effect 388 

1000 times. 95% CI was calculated as the 2.5% and 97.5% quantiles of the 1000 estimates in R 389 

3.6.2 
33

. To test the robustness of our conclusion towards an overall positive or negative 390 

response, we conducted additional meta-analyses under alternative assumptions. First, we 391 

assessed whether the conclusions depended on how individual studies are weighted 
34

.We 392 

applied the fixed effect model with weighting based on the number of replicates and with a 393 

uniform weighting. For studies with sample size not published (~20%), we used the average 394 

sample size from our database for corresponding gases. For the fixed effect model, we estimated 395 

the 95% CIs of the mean response through 10000 times bootstrapping using the bootES library
35

. 396 

A significant asymmetry of the funnel plot indicates the bias in compiled studies which tend to 397 

report more results with a significant response compared to studies without. We conducted an 398 

asymmetry test through the regtest function of the Metafor package. We did not detect the 399 

publication bias in the combined effect of CO2 and CH4 (p=0.31). For CO2 or CH4 alone, the 400 

funnel plot (p< 0.01) is significantly asymmetry. We corrected the publication bias through the 401 

trimfill function in Metafor. These tests, the fixed effect models and with correction of potential 402 

publication bias, pointed to consistent signs of the overall effects. The average responses are 403 

robust (Supplementary Figure 3).  404 
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The average sensitivity of        to unit change of ∆WTD (
      

    
, mg CO2-eq m

-2
 h

-1
 cm

-405 

1
) was quantified similarly with the random effect model and the inverse variance weighting 406 

scheme. Note that we do not account for variance in WTD, assuming it is relatively well 407 

measured in manipulation experiments. For regional analyses, we grouped samples into arctic 408 

(north of 66.5 ºN ), boreal and temperate (30ºN – 66.5ºN, 66.5ºS – 30ºS ) and tropical regions 409 

(30ºS – 30ºN). We also compared coastal vs.non-coastal regions, and among peatland types (bog, 410 

fen, marsh, swamp).        411 

Response attribution         412 

Water table manipulation studies differ in peatland types, nutrient status, background 413 

climate and other experimental designs (e.g., initial water table depth, drainage duration and the 414 

magnitude of drainage). Combining driving factors reported from individual studies and the 415 

availability of data across studies, we tested a list of factors to understand what drive ∆CO2, WTD 416 

and ∆CH4, WTD through the random forest method. These factors include WTD and carbon fluxes 417 

under high water table treatment (WTDinitial, CO2,initial  or CH4,initial ), the magnitude of water table 418 

manipulation (∆WTD), manipulation duration (short: <1 year; medium: 1-10 years; long: > 10 419 

years), experimental type (mesocosm vs. in-situ), land management (managed or not), climatic, 420 

topographic (elevation) and edaphic properties (Supplementary Tables 2, 3). Climatic factors 421 

include mean annual precipitation, mean annual temperature, wind speed, solar radiation, vapor 422 

pressure, aridity (the ratio between potential evapotranspiration and precipitation), potential 423 

evapotranspiration and a range of other bioclimatic variables characterizing the annual trend, 424 

seasonality and extreme climatic conditions. Edaphic properties involve bulk density, pH, soil 425 

carbon content, soil nitrogen, soil phosphorus, soil potassium, cation exchange capacity, base 426 

saturation, clay content, sand content, silt content and volumetric moisture content.  427 

Random forest is an ensemble machine learning approach that generates a number of 428 

decision trees
18

, and is capable of capturing non-linear interactions. We sequentially added 429 

explanatory variables one at a time and selected the random forest model that yielded the highest 430 

R
2
 and the lowest root mean square error (RMSE) through leave-one-out cross-validation 431 

(LOOCV). Climatic, topographic and edaphic factors that are not documented in individual 432 

studies were extracted from high resolution data sources listed in Supplementary Table 3. For 433 

∆CO2, WTD, the selected random forest model (with LOOCV R
2
=0.52, RMSE= 134 mg CO2 m

-2
 h

-434 

1
, Supplementary Figure 11) was built through CO2,initial, ∆WTD, WTDinitial, soil nitrogen, soil 435 
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carbon content, potential evapotranspiration, bulk density, volumetric water content at -10 kPa, 436 

soil pH, wind speed, soil clay content, solar radiation and elevation (Figure 2 and Supplementary 437 

Figure 13). The first three predictors accounted for 53% of the relative importance 438 

(Supplementary Table 4). ∆CH4, WTD are predictable (LOOCV R
2
=0.72, RMSE = 81 mg CO2-eq 439 

m
-2

 h
-1

, , Supplementary Figure 11) through CH4,initial, ∆WTD, WTDinitial, wind speed, soil nitrogen 440 

content, aridity, manipulation duration (Figure 2 and Supplementary Figure 14). The first three 441 

predictors accounted for 88% of the relative importance (Supplementary Table 5). Tropics 442 

contribute significantly to CO2 and CH4 budgets. The small sample size of tropical studies makes 443 

building regional random forest models infeasible. Despite being built over samples around the 444 

world, the model performance is comparable between tropical samples (∆CO2, WTD, R
2
=0.49, 445 

RMSE = 121 mg CO2 m
-2

 h
-1

; ∆CH4, WTD: R
2
=0.66, RMSE = 48 mg CO2-eq m

-2
 h

-1
; 446 

Supplementary Figures 11, 12) and the rest of the world. Earlier synthetic studies revealed that 447 

relationships between water table and peatland greenhouse emissions were modified by peatland 448 

types, region and disturbance etc 
15,16

. We reconstructed the functional relationship between 449 

∆CO2, WTD ( or ∆CH4, WTD) and different predictors for each individual study, i.e., the Individual 450 

Conditional Expectation (ICE)
36

 (grey lines in Figure 2). Variations among ICE curves capture 451 

the context-dependent response patterns.                 452 

Mapping future impact     453 

∆CO2, WTD and ∆CH4, WTD at the end of 2100 were predicted using the random forest models 454 

built above (Methods: Response attribution), with predictors such as ∆WTD, WTDinitial, CO2,initial 455 

(or CH4,initial) and future climatic conditions (wind speed, solar radiation, potential 456 

evapotranspiration, aridity), assuming that edaphic and topographic factors (soil carbon, soil 457 

nitrogen, bulk density, volumetric water content at -10 kPa, soil pH, soil clay content, and 458 

elevation) remain equal to their current levels due to their relatively slow change rates. Average 459 

∆CO2, WTD and ∆CH4, WTD were estimated through different (if available) predictor datasets (see text 460 

below and Supplementary Table 3). To verify our main results are not outcomes of overfitting, 461 

we made predictions with the top three most important predictors, which yielded a global 462 

∆GHG,WTD of 1.47 Gt CO2-eq yr
-1

 (∆CO2,WTD: 1.59,  ∆CH4,WTD: -0.12 ). This value is larger than the 463 

prediction from the random forest model built in previous section, and our conclusion of an 464 

overall positive ∆GHG,WTD is robust. CO2,initial and CH4,initial from predicting datasets are within the 465 

range spanned by observation datasets used to train the random forest models (Supplementary 466 
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Figure 20 and Supplementary Table 2). We set the upper limit of ∆WTD to be 300 cm. We varied 467 

this boundary value from 100 to 400cm,  and our results stayed the same as ∆CO2, WTD and ∆CH4, 468 

WTD are not responsive to further increasing ∆WTD beyond 100cm (Figure 3b, e). Similarly, we set 469 

the upper limit of WTDinitial close to the upper limit of the training dataset (around 100cm) to 470 

avoid extrapolating. ∆CO2, WTD and ∆CH4, WTD are not sensitive to WTDinitial when water table depth 471 

is deep (Figure 3c, f). We checked that increasing this boundary value did not change our results.    472 

Future WTDs were projected through a physically based global hydrology and water-473 

resources model PCR-GLOBWB that was coupled to the global groundwater flow model 474 

(MODFLOW) with future climate forcing (HadGEM2-ES) under RCP8.5 GHG emission 475 

scenario and ‘business-as-usual’ water consumptions from de Graaf, et al. 
19,37

. By ‘business-as-476 

usual’, per capita water demand for industry, domestic and livestock uses as well as irrigated 477 

area were assumed to remain constant after 2010. Per unit irrigation demands vary with the 478 

projected climate change. Total future water consumption varies with the projected trends in 479 

population growth and economic development. HadGem2-ES was chosen to capture the average 480 

climatic conditions predicted from GCMs within the Inter-Sectoral Impact Model 481 

Intercomparison Project (ISIMIP, https://www.isimip.org).  RCP8.5 was used to represent 482 

climatic conditions under the worst-case scenario for future GHG emissions. This coupled 483 

modeling tracks a range of key processes that are critical in global hydrology and water table 484 

dynamics, particularly precipitation, evapotranspiration, runoff, infiltration, surface-groundwater 485 

interactions, capillary rise, groundwater discharge, recharge and lateral flows, water-use by 486 

agriculture irrigation, industries, households and livestock, and return flows of unconsumed 487 

withdrawn water, and showed robust estimates, as compared to observations
37

. This is 488 

considered as the best available dataset on future WTD while we acknowledge potentially large 489 

uncertainties. ∆WTD is the difference between the average WTD during 2050-2100 (future) vs. 490 

1960-2010 (historical). To assess the impact of uncertainties in future ∆WTD quantifications, we 491 

conducted additional predictions with future ∆WTD being 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6 and 1.8 of 492 

previous quantifications (Supplementary Table 8). 493 

We used FLUXCOM NEE to estimate CO2 (NEE) before water table drawdown 494 

(CO2,initial). FLUXCOM NEE merged eddy covariance and remote-sensing observations through 495 

three machine learning techniques (MARS, ANN, RF) 
29

. In addition, we incorporated an 496 

ensemble (18 in total) estimation of NEE generated by land models LPJ-GUESS, LPJML, 497 
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ORCHIDEE-DGVM, ORCHIDEE, VEGAS and VISIT driven by different climate forcing 498 

within the ISIMIP framework (Supplementary Table 3). CH4 emissions are higher over wetland 499 

compared to upland soils 
38

. We used gridded dataset from the Wetland CH4 Inter-comparison of 500 

Models Project (WETCHIMP) which quantified CH4 emission rate per wetland area from 7 501 

models (LPJ-Bern, CLM4Me, DLEM ORCHIDEE-ALT, ORCHIDEE, SDGVM and LPJ-WSL) 502 

to cover uncertainties in CH4,initial 
30,39

. Peatland is defined through the PEATMAP
40

, which 503 

combines geospatial information from a variety of peatland-specific databases and histosol 504 

distributions from the Harmonized World Soil Database V1.2 (HWSD) in the regions where 505 

peatland-specific information are not available. The total global peatland area is 4.23 million km
2
 506 

from PEATMAP. We assume no changes in future peatland distribution while acknowledging 507 

uncertainties in peatland area and that future peatland area may expand or shrink with new 508 

discoveries, under future climate change or land use. We tested the duration of water table 509 

manipulation with the manipulation variable going from long (>10 years), medium (1-10 years) 510 

to short-terms (<= 1 year). The impact of manipulation duration is not big, and we reported 511 

results with long-term duration.        512 

Future climatic conditions were predicted from GCM runs driven by RCP8.5 (worst) and 513 

RCP2.6 (optimistic) emission scenarios (see ISIMIP). We chose simulations from three GCM 514 

models i.e., the GFDL-ESM2M (wettest), the HadGEM2-ES (average) and the MIROC-ESM-515 

CHEM (driest) to account for climate uncertainties. Future potential evapotranspiration (PET) 516 

and the aridity index (the ratio between precipitation and PET) were estimated using the Penman 517 

Monteith equation for a hypothetical short grass as the reference surface ( python package, 518 

PyETo, https://github.com/Evapotranspiration/ETo). 519 

We applied bootstrap resampling and ensemble prediction to estimate prediction 520 

uncertainties. For ∆CO2, WTD, we randomly sampled 80% of our observation samples to build one 521 

random forest model. This random model was then used to make future predictions with 522 

different combinations of predictor datasets. We repeated this bootstrap resampling, random 523 

forest model building and future prediction 200 times. In total, we had 25200 (200 x 21    524 

CO2,initial x 2 WTDinitial x 3 Climate) ensemble members and we calculated the 95% probability 525 

interval as the indicator of prediction uncertainty. Bootstrap resampling provides reasonable 526 

estimation of prediction uncertainty for random forest models
41

 and the ensemble approach can 527 

take into account of both uncertainties from random forest algorithms and from predictor 528 

https://github.com/Evapotranspiration/ETo
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variables. Similarly, we conducted 8400 predictions for ∆CH4, WTD through 200 times bootstrap 529 

resampling, 7 CH4,initial  datasets, 2 WTDinitial datasets and 3 climate datasets (Supplementary 530 

Table 3). To quantify contributions to future ∆CO2, WTD and ∆CH4, WTD, we conducted a series of 531 

predictions (Supplementary Tables 6, 7) through sequentially replacing climate, ∆WTD, WTDinitial 532 

and CO2,initial (or CH4,initial) by corresponding reference level datasets listed in Supplementary 533 

Table 3.     534 

 535 

  536 
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 537 

Code availability 538 

Calculations were conducted through Python 3.7.3, R 3.6.2  and ferret 6.72. Data processing 539 

code and code used to generate figures are provided through 540 

https://doi.org/10.6084/m9.figshare.13139906.v3 
42

. 541 

Data availability 542 

Source datasets and global maps generated in this study are available at 543 

https://doi.org/10.6084/m9.figshare.13139906.v3 
42

.  544 
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 596 

Figure legends 597 

Figure 1. Effects of water table drawdown on peatland CO2 and CH4 fluxes. a, the net exchange 598 

of CO2 (NEE), CH4 and their combined response (GHG). b, ecosystem respiration (or soil 599 

respiration in the absence of live plants, RES) and photosynthetic CO2 uptake (GPP). n is the 600 

number of experiments. Mean effect sizes were obtained through the meta-analysis. Error bars 601 

correspond to 95% confidence intervals. The unit of CH4 is expressed as its CO2 equivalent 602 

assuming its global warming potential is 25 times of CO2. We define a positive sign for 603 

emissions to the atmosphere and vice versa.         604 

 605 

Figure 2. ∆CO2,WTD and ∆CH4,WTD in response to predictors. One grey line captures responses per 606 

one pair of field studies to a gradual increase of the corresponding predictor while holding other 607 

predictors constant. Red lines are the averages across individual studies. We show the top three 608 

most important predictors ordered in declining importance from left to right (See Supplementary 609 
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Figures 13, 14 for other predictors). WTDinitial, CO2,initial and CH4,initial are water table depth, net 610 

ecosystem exchange of CO2 and CH4 under high water table. ∆WTD is the magnitude of water 611 

table drawdown. Rugs at the bottom indicate the distributions of predictors.  612 

 613 

Figure 3. GHG changes (∆GHG,WTD=∆CO2,WTD+∆CH4,WTD) in response to water table drawdown by 614 

2100. Panels a, b show results with RCP8.5 climatic variables, and c, d under RCP2.6. 615 

Latitudinal totals (b, d) were estimated through the average values per area across 0.1 degree 616 

latitude band and peatland areas (Supplementary Figures 21, 22), and were smoothed with a 617 

window size of 5 degrees. Shading areas are 95% intervals. White region show locations with 618 

small ∆GHG,WTD or with negligible water table drawdown. Spatial distributions of ∆CO2,WTD and 619 

∆CH4,WTD are provided in Supplementary Figures 25, 26 and the 95% intervals in Supplementary 620 

Figures 27, 28.          621 

  622 
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