Interactions positives entre bactéries lactiques favorisées par les dépendances nutritionnelles fondées sur l’azote

Fanny Canon, Marie-Bernadette Maillard, Gwénaële Henry, Anne Thierry, Valérie Gagnaire

Pour citer cette version :
Fanny Canon, Marie-Bernadette Maillard, Gwénaële Henry, Anne Thierry, Valérie Gagnaire. Interactions positives entre bactéries lactiques favorisées par les dépendances nutritionnelles fondées sur l’azote. IDF International Cheese Science and Technology Symposium, Jun 2021, virtual edition, Canada. , 2021. hal-03256846

HAL Id: hal-03256846
https://hal.inrae.fr/hal-03256846
Submitted on 10 Jun 2021

HAL est une archive ouverte pluridisciplinaire, destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Positive interactions between lactic acid bacteria promoted by nitrogen-based nutritional dependencies

Fanny Canon, Marie-Bernadette Maillard, Gwénaëlle Henry, Anne Thiery, Valérie Gagnaire
UMR STLO, INRAE, Institut Agro, FRANCE

CONTEXT & AIM
- Lactic acid bacteria (LAB) are associated and interact in fermented food products but the mechanisms underlying their interactions have rarely been investigated in depth.
- Nutritional dependencies, especially those regarding nitrogen sources, govern many microbial positive interactions (Canon et al., 2020).
- This study aims to investigate the exploitation of the proteolytic activity and amino acid auxotrophies of LAB strains to promote positive interactions between proteolytic (“donors”) and non-proteolytic “receivers” strains.

STRATEGY
- Selection of six LAB strains: 3 donors: proteolytic activity + volatile compounds production + lactose consumption 3 receivers: no proteolytic activity + hydrolysis of raffinose family oligosaccharides
- Development of a chemically defined medium containing caseins and lignin proteins as sole nitrogen sources (growth of proteolytic strains only)
- Association of pairs of donor/receiver strains to favour positive interactions (Figure 1)

RESULTS
- Growth of each pair strains in compartmented chambers (Figure 2) to facilitate bacterial growth monitoring at 30 °C for 24 h, orbital shaking 65 rpm
- Characterization of the resulting functional outputs:
 - Carbohydrate consumption, quantified by anion exchange chromatography
 - Volatile compound production, analysed by headspace GC-MS

Volatile compounds

- Ratio culture:control calculated for each volatile compound identified

Co-cultures increased the concentrations of volatile compounds associated with desirable flavours
- Co-cultures influenced volatile compounds production
- More differences were observed with stronger interactions
- Diacetyl (buttery), acetoin (milky), 2,3-pentanedione (butter), benzaldehyde (nutty) concentrations also increased

CONCLUSION & PERSPECTIVES
- The proteolytic activity of LAB can favour the growth of non-proteolytic LAB
- All proteolytic activities are not equally stimulating: moderate activities such as for Lla2125 and Lla244 lead to weak or no interactions
- Positive interactions changed carbohydrate consumption and production of volatile compounds
- The study of the nitrogen compounds used by the receiver strains will be further investigated to understand how the proteolytic and non-proteolytic strains positively interact