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Abstract 13 

Thousands of chemicals are potentially contaminating      the environment and food resources, 14 

covering a wide spectrum of molecular structures, physico-chemical properties, sources, 15 

environmental behavior and toxic profiles. Beyond the description of the individual 16 

chemicals, characterizing contaminant mixtures in related matrices has become a major 17 

challenge in ecological and human health risk assessments. Continuous analytical 18 

developments, in the fields of targeted (TA) and non-targeted analysis (NTA), have resulted 19 

in ever larger sets of data on associated chemical profiles. More than ever, the implementation 20 

of advanced data analysis strategies is essential to elucidate profiles and extract new 21 

knowledge from these large data sets. Specifically focusing on the data analysis step, this 22 

review summarizes the recent progress in integrating data analysis tools into TA and NTA 23 

workflows to address the challenging characterization of chemical mixtures in environmental 24 

and food matrices.  As fish matrices are relevant in both aquatic pollution and consumer 25 

exposure perspectives, fish was chosen as the main theme to illustrate this review, although 26 

the present document is equally relevant to other food and environmental matrices. 27 

The key features of TA and NTA data sets were reviewed to illustrate the challenges 28 

associated with their analysis. Advanced filtering strategies to mine NTA data sets are 29 

presented, with a particular focus on chemical filters and discriminant analysis. Further, the 30 

applications of supervised and unsupervised multivariate analysis methods to characterize 31 

exposure to chemical mixtures, and their associated challenges, is discussed.  32 

Keywords  33 

chemical mixtures; mass spectrometry; non-targeted analysis; suspect screening;multivariate 34 

analysis;  emerging contaminants 35 
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1 Characterizing contaminant mixtures in fish: a complex issue 66 

The current inventories under the Registration, Evaluation, Authorization and Restriction of 67 

Chemicals (REACH) legislation in European Union or under the Toxic Substances Control 68 

Act (TSCA) of the United-States Environmental Protection Agency (US-EPA) indicate that      69 

over one hundred thousand chemicals, covering a wide spectrum of molecular structures and 70 

physical chemical properties, are      produced globally.      These chemicals may enter the 71 

environment as a consequence of their use in materials, consumer products, agriculture and 72 

industry, and the sound management of chemicals has been highlighted as one of the 17 Goals 73 

of the 2030 Agenda for Sustainable Development (United Nations, 2015). A growing 74 

evidence indicates that plants, animals and humans are continuously exposed to a multitude of 75 

chemicals over their lifetime, through various routes such as water or air (Hernández and 76 

Tsatsakis, 2017). Many chemicals are harmless or even beneficial while some others are a 77 

threat to human health and to the environment (European Chemical Agency, 2021). Some 78 

individual substances for example, such persistent organic pollutants (POPs), have been 79 

identified as a threat due to their persistence, bioaccumulation, toxic (PBT) potential, and 80 

long-term exposure to these substances, even at low-levels may be harmful (Dórea, 2008). In 81 

addition, the simultaneous exposure to multiple chemical substances may lead to additive, 82 

synergic or antagonist toxic effects (“cocktail effects”) and the characterization of mixtures is 83 

now recognized as key for both environmental and human health risk assessments (Pose-Juan 84 

et al., 2016). In this line, the European Food Safety Agency (EFSA) has initiated activities to 85 

study such combined exposures through the development of harmonized methodologies for 86 

combined exposure to multiple chemicals and recently published a guidance document 87 

(EFSA, 2019). The problem associated with exposure to chemical mixtures is global and is 88 

part of an environment-food-health continuum. In this context, sentinel species are commonly 89 

used since their observations may provide information about the presence, amount, type, and 90 
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effect of environmental contaminants. Fish has been recognized a relevant sentinel to monitor 91 

environmental contamination as well as suitable indicator of early contamination of the food 92 

chain (Sedeño-Díaz and López-López, 2012). 93 

The detection, identification and quantification of a wide range of contaminants in matrices 94 

such as fish remain challenging as (i) contaminants are mostly present at trace levels, (ii) they 95 

cover a wide range of physico-chemical properties, and (iii) environmental, food, and 96 

biological samples are relatively complex matrices to analyze. Many targeted analysis (TA) 97 

methods have been developed for over half a century to detect and quantify known 98 

contaminants (metals, pesticides, POPs, etc.     ) in abiotic and biological matrices. While 99 

some contaminants of emerging concern (CECs) have been identified, the current surveillance 100 

framework based on TA often fails in efficiently detecting new chemical hazards, since it 101 

does not involve the treatment of unknown/unexpected signals. This is particularly alarming 102 

considering the increasing number of anthropogenic chemicals potentially reaching the 103 

environment, and a possibly even greater number of their derivatives (e.g. metabolites and 104 

degradation products), which remain to be described. To address such a challenge, methods 105 

relying on non-targeted analysis (NTA) provide a complementary and more comprehensive 106 

assessment of chemical contamination, and allow for the identification of emerging and      107 

new chemical hazards (Altenburger et al., 2019; Sobus et al., 2018).  108 

In this context, continuous analytical developments have resulted in ever larger sets of data 109 

acquired to characterize chemical mixtures in food and environmental matrices. Depending on 110 

the initial goal of the analysis, the number of contaminants considered, the experimental 111 

design (e.g. the number of samples) and the analytical strategy (TA or NTA), gigabits or even 112 

terabits of data may now be generated within a single study. The exploration and 113 

interpretation of these large and complex data sets has thus emerged as another challenging 114 

task, and the use of advanced data processing methods has become essential for extracting the 115 
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relevant information and knowledge associated to these markers of chemical exposure. Key 116 

challenges associated with data processing strategies for NTA of foods were reviewed 117 

recently in the literature (Fischer et al., 2021).  With regards to data analysis tools, several 118 

methods have been developed on the basis of statistics and algorithms to describe cluster 119 

samples (e.g. according to contamination pattern) or interpret trends among variables and/or 120 

sample series. The selection of appropriate statistical tools and their use is therefore key to 121 

properly interpret the data.  122 

This document reviews the main data analysis tools reported for the characterization of 123 

contaminant mixtures from large and complex data sets in fish samples. The first section 124 

focuses on the current challenges associated to the analysis of data resulting from the 125 

integration of TA and NTA strategies to address chemical mixtures characterization.. The 126 

second section reviews some data filtering strategies to highlight chemical mixtures and new 127 

contaminants in upon NTA. Finally, key applications of multivariate analysis methods 128 

(MAM) are presented for the exploration of large sets of data of chemicals’ occurrence and 129 

the interpretation of contamination profiles. The present review focuses on methods based on 130 

LC or GC-MS, as their potential for NTA is now well established for trace contaminants. The 131 

authors nonetheless acknowledge that a range of analytical tools (e.g. FTIR, NMR, CE-MS) 132 

could be applied to NTA, with some emerging techniques (e.g. ion mobility) already 133 

anticipated to provide an additional characterization capability for the complex matrices 134 

(Mullin et al., 2020, Hernandez-Mesa et al., 2017).  135 

While large data sets have been obtained using TA and NTA strategies for a range of 136 

environmental and food matrices, a relatively large number of studies is available on the 137 

chemical contamination of fish for both approaches. Fish are studied in the context of both 138 

aquatic pollution and consumer exposure to chemicals. Some fish species are known to 139 

accumulate relatively high concentrations of various chemicals (e.g. organic halogenated 140 



8 
 

contaminants) due to their position in trophic webs (Pérez et al., 2014; Törnkvist et al., 2011). 141 

Since they are an increasingly important part of the human diet, fish have been consequently 142 

identified as a major dietary source of contaminants for consumers (Rodríguez-Hernández et 143 

al., 2016). Therefore, studies on fish contamination were primarily selected to illustrate the 144 

present review. 145 

2 Integrating targeted and non-targeted analyses of contaminants  146 

Current monitoring programs and studies are acquiring a continuously increasing amount of 147 

data related to chemical contaminations in environmental and food matrices. Acquired with 148 

TA or NTA methods, these data sets are often partially explored using common basic data 149 

analysis tools and critical information may be lost (Cariou et al., 2016). An in-depth 150 

interpretation of these data sets is nonetheless a challenging task and requires effective data 151 

analysis strategies. In order to better understand the associated issues, the present section 152 

introduces targeted and non-targeted analysis workflows.   153 

2.1 Terminology 154 

In an attempt to facilitate the discussion within the present article, a general workflow 155 

integrating various TA and NTA strategies is described in Figure 1. Both approaches may be 156 

generally described as a sequence of steps including sample preparation, acquisition of the 157 

raw data (e.g. LC or GC-MS), data processing, data analysis and interpretation. Filters are 158 

applied at various stages of the data processing and analysis to obtain a list of key compounds 159 

for interpretation. The terminology in the field is not yet standardized (Hollender et al., 2019), 160 

and some terms may be defined differently in the current literature. In the present review, the 161 

following terminology will be used:  162 

● Data processing is used here as the generic term to designate all the post-acquisition 163 

steps from the transformation of raw data to extraction of relevant signal to be further 164 
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analyzed (see data analysis step) in light of the research question (Pourchet et al., 165 

2020).  166 

● Feature detection is a key step of the data processing which aims at converting raw 167 

data (e.g. LC/GC-MS data) into usable data and includes tasks such as denoising, peak 168 

picking, integration and alignment     . The output of this step is a list of molecular 169 

features (retention time, m/z), identified or not, with varying signal intensities across 170 

the samples. 171 

● Data analysis is used to refer to transformation of usable and formatted data into 172 

added value and new knowledge, aiming at describe and interpret the ultimate data set. 173 

The strategy and the tools of data analysis depend on the dataset and the expected 174 

outcome. This step often involves methods based on statistics and algorithms. 175 

● Filtering consists of removing signals/data corresponding to compounds which are 176 

not expected to contribute to the interpretation. It may be applied at different stages of 177 

the data processing/data analysis. 178 

● Data fusion: Various analytical instrumental platforms (e.g. LC or GC-HRMS, 179 

ICPMS…) may be applied to the analysis of chemical contamination. Data fusion, 180 

sometimes called data concatenation, is an approach combining data coming from 181 

different high-throughput platforms (Smolinska et al., 2014). Data fusion may be 182 

performed at different stages of the data processing/data analysis. 183 
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 184 

Figure 1: Integrating TA and NTA strategies to characterize contaminant mixtures. 185 

 186 

2.2 Data acquisition and resulting data set  187 

Taking fish as an example, a description of TA and NTA acquisition techniques and of 188 

resulting data sets is discussed in this section to understand their associated challenges in the 189 

context of data analysis. 190 

2.2.1. Targeted analysis (TA) strategies 191 

,Many TA methods have been designed for the analysis of fish contaminants such as trace 192 

metals (Kelly et al., 2018), organochlorine pesticides (OCPs), polychlorinated biphenyls 193 

(PCBs) and other POPs (Bayen et al., 2005, Halloum et al., 2017, Abdel Malak et al., 2018), 194 

antibiotic residues (Dinh et al., 2020), synthetic musks (Zhang et al., 2015). TAs are deployed 195 

in monitoring programs (e.g. European Union Marine Strategy Framework Directive, Great 196 

Lakes Fish Contaminants Surveillance Program), generating data sets, whose size is 197 

increasing as analytical methods improve in terms of analytical performances, throughput and 198 

multi-residue capacity (McGoldrick et al., 2010). For trace organic contaminants, sample 199 
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preparation usually consists of several extraction and purification steps designed to remove 200 

interfering matrix compounds and/or to concentrate the target contaminants (Ingenbleek et al., 201 

2021). The resulting extracts are analyzed by LC or GC-MS, e.g. using single or triple 202 

quadrupoles (selected or multiple reaction monitoring modes specific to the targets) or even 203 

high-resolution mass spectrometry (HRMS). High-purity analytical standards are commonly 204 

used as reference (chromatographic retention times, quantifier/qualifier ion ratios) and the 205 

addition of isotopic labeled compounds has become a standard practice for a confident 206 

quantification. For each compound and sample, signal intensities are commonly compared to 207 

the noise, corrected using procedural blanks or normalized to the original sample weight. 208 

Additional steps may also be carried out to improve the subsequent use of statistical tools for 209 

data analysis (e.g. conversion of non-detect values, log transformation, mean centering, 210 

variance scaling, etc). 211 

2.2.2. Non-targeted analysis (NTA) strategies 212 

 213 

NTA may be used to screen for the presence of new contaminants or to record a broad 214 

chemical fingerprint for fish species such as salmon, cod, pike (Tian et al., 2020, 2019). NTA 215 

does not imply the pre-selection of analytes nor the systematic analysis of their pure 216 

corresponding analytical standards (Ballin and Laursen, 2018, Schulze et al., 2020). NTA 217 

relies on sample preparation steps often compromising between an exhaustive extraction of 218 

the contaminants and the removal of interfering matrix endogenous molecules, e.g. lipids 219 

(Munaretto et al., 2016). Analytical techniques coupling LC and GC systems with HRMS are 220 

used to ensure the simultaneous detection of a large range of mass in a single scan (full-scan) 221 

with high mass accuracy (± 0.001 Da) and high resolution of mass (≥ 20 000) providing 222 

excellent specificity and selectivity, but compromising the sensitivity performance somewhat 223 

(Krauss et al., 2010; Lorenzo et al., 2018). 224 
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The resulting raw data sets contain many signals, some corresponding to possible molecules 225 

of interest (e.g. contaminants), whereas others are not relevant and sometimes undesired (e.g. 226 

interfering endogenous molecules). For each of these compounds, isotopologues, multi-227 

chargers, adducts, neutral loss and fragment ions may be recorded. As a result, several 228 

thousands of molecular features can be detected for each individual environmental (Hollender 229 

et al., 2017, Schulze et al., 2020) or food (Fisher et al, 2021) sample (). Most critically, signals 230 

corresponding to trace contaminants of interest can be tiny compared to the bulk signal of the 231 

sample. As an example, the peak height for LC-QTOF signals corresponding to bisphenols 232 

was as low as 103 in pike tissue extracts where the total intensities in the Total Ion 233 

Chromatogram reached about 108 (Tian et al., 2019). Considering the above challenges, data 234 

processing workflows need to be optimized to effectively pick up trace contaminants (Tian et 235 

al., 2019). Additional filtering and data analysis tools for the detection and identification of 236 

contaminants in NTA data are presented in Section 3 of this paper. 237 

2.3 Integrating TA and NTA strategies through data analysis 238 

As discussed above, up to several hundreds of chemicals are now included in environmental 239 

or food surveillance programs (Kantiani et al., 2010). While the number of monitored 240 

contaminants has gone up in the last decades, occurrence data are still often interpreted 241 

separately, following a traditional chemical class-by-class data analysis strategy. 242 

Interpretations are generally limited to relatively simple descriptive statistics such as mean, 243 

median, standard deviation (or variance) values, each variable being interpreted independently 244 

of the others. Such an approach provides little information on the exposure to chemical 245 

mixtures, or on the interactions and relationships between contaminants.   246 

Instead, multivariate analysis should be applied more broadly to contaminant monitoring  to 247 

explore more than two variables (i.e. more than two contaminants per sample sets) 248 

simultaneously and taking into account the effects of all variables on the response of interest 249 
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(Olivieri, 2008). Such approaches allow for a scientifically sound dimensionality reduction 250 

without relevant information loss. Besides, data visualization based on multivariate analysis 251 

tools often provides a simplified representation of contamination and facilitates the 252 

interpretation. Thus, such data mining approaches are interesting approach to solve multi-253 

variate and multi-response problems as expected when studying fish contamination.   254 

In the end, monitoring studies should aim at integrating data from both TA and NTA 255 

strategies. Indeed, the detection of an increasing number of chemicals in matrices such as fish 256 

has illustrated that contaminants cover an ever-increasing chemical space. Analytical 257 

workflows integrating both TA and NTA data appear as promising for a more comprehensive 258 

assessment of chemical mixtures. This can be achieved using data fusion at different stages of 259 

the analytical workflows (Figure 1). Finally, the integration of metadata (biological, 260 

environmental or physical-chemical parameters, spatial and temporal information) can lead to 261 

some investigation of the target systems as described for some applications below. 262 

3 Data mining strategies to highlight contaminants in NTA workflows 263 

As described above, NTA produces large complex sets of raw data. A key task for chemical 264 

hazard surveillance is to detect and identify contaminants, which is particularly challenging 265 

when it comes to new or emerging contaminants. Several strategies have been reported in the 266 

literature, that may be used individually or in combination to refine a list of key contaminants 267 

of interest. Some tools can be used to screen for the presence of unexpected contaminants, 268 

while others are effective at identifying new contaminants (Table 1). This section describes 269 

these various strategies, and includes a discussion on the importance of selecting the right 270 

approach to limit the number of false positives and false negatives.  271 
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3.1 Suspect screening using library database searching 272 

A common approach is the screening of unexpected contaminants using libraries of 273 

compounds which is part of the more global strategies known as suspect screening.. It is 274 

carried out against a database such as MassBank (Horai et al., 2010), GNPS (Wang, 2016), 275 

Metlin (Guijas et al., 2018), MS suppliers’ commercial databases, etc… that contains, at least, 276 

information on empirical formula and accurate mass of a more or less long list of compounds 277 

and additionally, can also contain information on their retention time in a defined LC system 278 

and the “in silico” or experimental MS/MS fragmentation compiled in libraries. Turnipseed et 279 

al. (2018) reported the use of a high-resolution mass spectrometry screening method for 280 

veterinary drug residues in incurred fish and imported aquaculture samples. On top of 281 

detecting and identifying veterinary drugs including quinolones, fluoroquinolones, 282 

avermectins, dyes, and aminopenicillins at residue levels in fish, the approach allowed for the 283 

discovery of unexpected residues and drug metabolites in various fish samples. This approach 284 

was also reported to support the identification of previously unreported contaminants in pike 285 

fish muscles (Tian et al. 2019) or to successfully extend targeted approach, revealing 286 

additional chemicals (i.e, plastic related products, pharmaceutical products, pesticides) in 287 

several samples of fish species intended for consumption (i.e, Merluccius australis, Sparus 288 

aurata, Dicentrarchus labrax) (Musatadi et al., 2020). 289 

 290 
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Table 1: Examples of filtering and data analysis strategies to detect and identify new contaminants in fish and other matrices via NTA. 291 

Expected outcome Matrix Analytical technique Data processing and mining/Software Reference 
Food safety assessment 

Identify unknown toxins, illegal 
additives or toxicants in food 

poisoning from fish 

Mussels and oysters C18 HSS T3 column 
HPLC-ESI-QTOF 

Case control study: pairwise comparison (T-test) and multivariate 
analysis (PCA and PCA-DA)/ MarkerViewTM software 1.2.1 

(Dom et al., 2018) 

4 fish samples including 1 control BEH C18 column 
UHPLC-Q-Orbitrap 

Case control study: differential analysis combining PLS-DA and t-test/ 
SIMCA-P 11.0 

(Fu et al., 2016; 2017) 

Eel, yellow croaker, and tilapia Supelco Ascentis Express C18 
UHPLC-Q-Orbitrap 

Suspect-screening: screening of veterinary drug residues in incurred 
fish and imported aquaculture samples. 

(Turnipseed et al., 2018) 

Identify degradation products 
and metabolites in food 

Food matrices Zorbax Eclipse XDB-C8 
HPLC-CID-TOF 

MS fragmentation of homologues: identification of pesticide 
transformation products via “fragmentation-degradation” relationships. 

(Garcıa-Reyes et al., 2007) 

Environmental risk assessment and management 
Identify emerging 

bioaccumulative contaminants in 
biota  

Lake Ontario trout DB-5HT column 
GC-TQFT 

Mass defect filtering: screening halogenated environmental 
contaminants 

(Jobst et al., 2013) 

European eel (Anguilla Anguilla) 
muscle 

Hypersil Gold analytical 
column UHPLC-Q-Orbitrap 

Mass defect filtering: screening halogenated environmental 
contaminants  

(Cariou et al., 2016) 

Pike (Esox lucius) muscle Poroshell Phenyl-Hexyl 
HPLC-ESI-QTOF 

Suspect-screening: screening plastic-related chemicals and other 
contaminants in samples from the St. Lawrence River, Canada 

(Tian et al., 2019) 

Freshwater organisms (Lumbriculus 

variegatus, Hexaenia spp, Pimephales 

promelas) 

DB-5HT GC column 
GC-FTICR 

Mass defect filtering: mass defect filtering on an H/Cl mass scale, H/Cl 
mass defect plot 

(Myers et al., 2014a) 
 

Fish livers (23 freshwater fish species) Poroshell Phenyl-Hexyl 
 HPLC-ESI-QTOF 

Suspect screening + Differential analysis: Comparison of benthic and 
water-column foraging strategies group. Comparison upstream and 
downstream of wastewater treatment plants.  

(Baesu et al., 2021) 

Human blood as example of biological 
samples 

Acquity UPLC HSS C18 SB 
column 

UPLC-Q-ToF 
or UHPLC-Orbitrap 

Time-trend screening: to flag reoccurring peaks in a time series. 
Selection of peaks displaying an increasing trend using time trend ratios 
and Spearman’s rank correlation coefficient/ MATLAB and Microsoft 
Excel 

(Plassmann et al., 2016; 
2018) 
 

Lake trout and walleye 

bream bile from Great Lakes 
GC×GC-TOF HRT 

 
Mass defect filtering: mass defect filtering on an H/Cl mass scale, H/Cl 
mass defect plotting/ Leco, ChromaTOF v1.90.60 and Microsoft Excel 

(Fernando et al., 2018) 
 

Lake Michigan trout 
 

UPLC-QToF 
 
 

MS fragmentation of homologues: screening algorithm initialized 
using a candidate formula matrix based on mass spectral profiles and 
likely fragmentation pathway/ MATLAB 

(Baygi et al., 2016) 
 
 

Identify degradation products, 
metabolites, precursors in biota 

Chelonia mydas green sea turtles UHPLC-ESI-QTOF Case control study. multivariate analysis (PCA) to simultaneously 
detect biomarkers of exposure (xenobiotics) and biomarkers of effect 
(endogenous compounds) 

(Heffernan et al., 2017) 
and companion paper 
(Gaus et al., 2019) 

Identification of toxic 
compounds 

Bream bile from Lake Bergumermeer, 
River Dommel, Amsterdam North Sea 

Canal (Netherlands) 

GC-MSD Effect-directed analysis: identification of endocrine disruptors (ER-
CALUX-assay + HPLC fractionation + GCMS analysis)     

(Houtman et al., 2004) 

Liver and blubber of high-trophic-level 
animals   

GC-MSD Effect-directed analysis: identification of dioxin-like and androgen 
receptor antagonist  

(Suzuki et al., 2011) 
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3.2 Chemical filters 292 

Many chemicals share the same fate in the environment because of similarities in terms of 293 

composition or physicochemical properties. Using the knowledge built in the fields of 294 

environmental and food sciences in the last decades, strategies have been designed to identify 295 

contaminants which may be part of homologue series or who share some composition or 296 

structural similarities. 297 

3.2.1 Mass defect filters and isotopic profiles 298 

The majority of the PBT substances, notably covered by the Stockholm convention, are 299 

polyhalogenated (Scheringer et al., 2012), recent studies have thus focused on identifying 300 

halogenated compounds as a screening approach to detect new contaminants. Halogenated 301 

atoms, especially chlorine and bromine, exhibit a relatively higher mass-defect (MD) 302 

(difference between the exact mass and the nominal mass of an element) as compared to other 303 

common elements (C, H, O, N), and atypical MS isotopic profiles. These two distinct 304 

attributes make halogens relatively straightforward to highlight in a mass spectrum, especially 305 

when accurate mass measurement are obtained using HRMS instruments (Kaufmann, 2012). 306 

As a result, feature filtering methods based on MD have been developed for the screening of 307 

halogenated contaminants (Sleno, 2012, Jobst et al., 2013). The principle of MD filtering is to 308 

remove all data outside a pre-defined and limited MD range. A relatively simple way to 309 

visualize and distinguish ions with a particular MD from other ions is to plot the fractional 310 

part of the m/z (i.e. MD) against the m/z. Originally based on an exact mass reference of 311 

12.0000 for 12C (International Union of Pure Applied Chemistry) or of 14.0000 for 12CH2 312 

(Kendrick, 1963), a modification of MD plot scale has been proposed for halogenated 313 

compounds based on the substitution of chlorine for hydrogen, thus using H/Cl mass scale of 314 

34.0000 Da (-H/+Cl). In the corresponding H/Cl-scale MD plots, chlorinated homologue 315 
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series plot on horizontal lines (see example from Cariou et al., 2016 in Figure 2). H/Cl and 316 

H/Br conversion factors being almost equal (1.001148 versus 1.001149, respectively), MD 317 

plots can be also effective at visualizing clusters of brominated compounds. The use of MD 318 

between the two natural and stable isotopes separated by 2 nominal atomic mass units, for 319 

both Cl and Br atoms (1.9971 for Cl and 1.9980 for Br) and ion ratio criteria is good 320 

combination to effectively identify chlorinated and brominated ion clusters. Filtration 321 

algorithms based on MD and isotopic profiles have been successfully applied to Fourier 322 

transform mass spectrometry for the screening of halogenated bioaccumulative compounds in 323 

freshwater organisms (Lumbriculus variegatus, Hexagenia spp., and Pimephales promelas) 324 

exposed to contaminated soil from a recycling plant fire site (Myers et al., 2014b). Various 325 

bioaccumulative contaminants were identified including polychlorinated naphthalenes 326 

(PCNs), polychlorinated dibenzofurans (PCDFs), or chlorinated and mixed 327 

brominated/chlorinated anthracenes/phenanthrenes, and pyrenes/fluoranthenes. The same 328 

approach allowed the identification of 60 non-targeted halogenated species in lake trout from 329 

the Great Lakes (Fernando et al., 2018) or hexabromocyclododecane and chlorinated paraffins 330 

in muscles of the European eel (Anguilla anguilla) from the Loire river in France (Cariou et 331 

al., 2016). In each of these studies, the resulting thorough data filtering (from 9789 initial 332 

obtained features to 589 clusters for instance in Cariou et al., 2016) allowed for the 333 

optimization of the molecular formula assignment. In order to facilitate the wider application 334 

of this approach and accelerate the overall data processing, Léon et al. (2019) proposed a 335 

user-friendly software named HaloSeeker. The software consists in an ergonomic web user 336 

interface facilitating peak picking, deconvolution, halogenated feature filtering, MD plot and 337 

chemical formula assignment.  338 
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 339 

Figure 2. Example of H/Cl-scale MD plot obtained for a muscle eel sample extract 340 
reproduced with permission from Cariou et al., 2016. 341 

 342 

Mass defect filtering was also reported for the screening of bioaccumulative fluorinated 343 

contaminants in aquatic biota, including fish (Myers et al., 2014a). The mass defect and 344 

isotopic profiles of fluorine atoms are however less specific than for Cl and Br, and their use 345 

may lead to a relatively high rate of false positives (Liu et al., 2019). A combination of CF2-346 

scale MD plot and homologous series searching has been proposed to flag poly- and 347 

perfluoroalkyl contaminants in full-scan data sets using mass differences of 49.997 for CF2 348 

units, 99.994 for CF2CF2 units, 64.012 for CH2CF2 units = 64.012 or 65.991 for CF2O units 349 

(Liu et al., 2019). This approach can be therefore extended to other large classes of 350 

homologues which could be manufactured or used as chemical mixtures.  351 
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3.2.2 Other approaches for the identification of homologue series 352 

In addition, compounds part of a homologue series may share similarities in terms of 353 

chromatographic or mass spectrometry behavior. Non-commercial software workflows, such 354 

as enviHomolog web (Loos and Singer, 2017), have been developed for the extraction of 355 

homologue series based on the identification of repeating patterns in the hyphenated HRMS 356 

data. Neutral loss, i.e. fragments lost as neutral molecules, has also been proposed as a feature 357 

filtering tool to screen for the presence of series of homologue compounds. Baygi et al. 358 

(2016) developed a candidate list screening algorithm on the basis of:  (1) a molecular 359 

formula matrix for the possible ions for fluorinated homologues (CcOoFfClclHhSs, with c = 4-360 

10, o = 2 for carboxylic forms, = 3 for carboxylic ether and sulfonate forms, = 4 for ether 361 

sulfonate form, and the summation of f, cl and h set so that all carbon atoms were fully 362 

saturated and the compound was deprotonated) previously discovered from fluoropolymer 363 

discharged impacted compartments; and (2) a candidate compound spectra matrix developed 364 

using a statistical approach developed by Yergey (1983)  (see details in Baygi et al., 2016) to 365 

calculate theoretical isotopic distribution of each candidate. This algorithm allowed to 366 

reference 3570 possible compounds in Lake Michigan trout data files, highlighting the 367 

presence of 30 polyfluorinated chemical formulas reported for the first time in environmental 368 

matrices.  369 

3.3 Differential analysis 370 

The differential analysis approach investigates NTA data profiles among groups of samples to 371 

isolate features of interest. This strategy, similar to that implemented in metabolomics - to the 372 

nuance that it is in this case to detect markers of exposure and not effect (Hernandez-Mesa et 373 

al., 2021) - consists in the comparison of signals between two or more groups of samples of 374 

interest. It is often guided by the experimental design and relies on the application of 375 
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discriminant analysis (univariate or multivariate) tools to reveal the molecular features or the 376 

compounds of interest. 377 

3.3.1 Non-target time trend screening 378 

Non-target time trend screening consists in comparing MS profiles of samples collected over 379 

several periods.  Using time-series data sets from samples analyzed at different time points, 380 

compounds that show a meaningful trend are studied (Peters et al., 2010). The principle of 381 

this filtering strategy relies on peak occurrence and intensity assuming that reoccurring peaks 382 

with increasing (or decreasing) intensity in the time series correspond to contaminants of 383 

interest, while reoccurring peaks with constant intensity more likely refer to endogenous 384 

substances. Peaks displaying an interesting trend may be filtered from randomly fluctuating 385 

peaks using time trend ratios and Spearman’s rank correlation coefficients. This strategy 386 

allows for considerable reduction of the size of datasets (Plassmann et al., 2016); it was 387 

successfully applied in environmental matrices to highlight biooaccumulative contaminants 388 

such as POPs exhibiting increasing intensity in the time series (Miller et al., 2014, Nyberg et 389 

al., 2015), while it was also reported a successful approach to investigate time series of polar 390 

contaminants in abiotic matrices (Albergamo et al., 2019). Such long-term data is also key for 391 

assessing the efficiency of measures taken to reduce contamination (Ek et al., 2021). 392 

3.3.2 Comparison of samples of different origin. 393 

Differential analysis can also be applied by comparing samples considered “contaminated” 394 

versus control samples. Fu et al. (2016) developed for example a data reduction strategy based 395 

on differential analysis to screen illegal additives in fish. An unsupervised partial-least square 396 

discriminant analysis (PLS-DA) was applied on UHPLC-HRMS features (m/z, tR and peak 397 

response (> 1000 ions), after extraction solvent blanks, internal standard calibration and ion 398 

fusion filtration, for comparing suspected fish samples versus a control fish sample. Ions with 399 
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variable importance in the PLS-DA projection (values >1.0) were selected for t-test analysis 400 

(required p-value < 0.01). Then, the retained ions were analysed by calculating the peak 401 

intensity ratio between the suspected sample and the control sample. Ions with a fold change 402 

of 10 were considered to be high risk compounds. With such approach, 69 ions were retained 403 

for database searching. Other possible questions could be addressed in applying the same 404 

strategy. For instance, the differential analysis of HRMS profiling of packaged fish fillet 405 

sample vs. unpackaged fish fillet sample could be useful to assess the impact of food 406 

packaging on chemical contamination of edible fish (provided that the fish have the same 407 

origin) and possibly identify non-intentionally added substances (Sanchis et al., 2017). The 408 

comparison of fish samples from industrial zones and unexposed area would help for discover 409 

new bioaccumulative contaminants. This approach was recently reported for the comparison 410 

of contaminant profiles in fish sampled upstream and downstream of wastewater treatment 411 

plants (Baesu et al., 2021). Through the application of differential analysis and data 412 

visualization tools such as volcano plots, erythrohydrobupropion was identified for the first 413 

time in fish livers, and was also found at higher concentrations in fish livers sampled 414 

downstream vs. upstream. 415 

Similarly, a methodology combining a non-target HRMS analysis with multivariate statistical 416 

analysis has been proposed to simultaneously detect biomarkers of exposure (i.e. xenobiotics) 417 

and endogenous metabolites in blood of green sea turtles (Chelonia mydas) on the Great 418 

Barrier Reef (Heffernan et al., 2017). The simultaneous detection of exogeneous and 419 

endogenous compounds through full-scan mode may be used to identify cause-effect 420 

relationships and thus indirectly highlight toxic contaminants (Hernandez-Mesa et al., 2021). 421 

In order to investigate the potential influence of xenobiotics, HRMS profiling of case 422 

‘samples’ corresponding to turtles from two coastal sites impacted by urban/industrial or 423 

agricultural activities were compared with those of ‘control’ sample corresponding to turtle 424 
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from a remote offshore site. Prior to multivariate analysis, the number of spectral features was 425 

reduced from 4761 to less than 100 by two-to-two comparison of sites, in using several 426 

criteria: significance (p-value < 0.05), effect size (log fold-change > 0.05), monoisotopic mass 427 

(ignoring isotopes, adducts and ion products generated during the ionization process) and 428 

retention time (> 1 min). This step wise data reduction strategy allowed to focus on the most 429 

significant spectral features for subsequent identification. Then PCA established on selected 430 

features enabled the discrimination of samples according to the three sites despite inter-431 

individual variability. The spatial difference of xenobiotic profiling was key to validate the 432 

selection of features of concern.  433 

 434 

3.4 False positives and negatives issues 435 

Filtering methods are critical in the identification of new contaminants in complex 436 

environmental and food matrices, such as fish tissues. However, several considerations need 437 

to be included when selecting and deploying data filtering. Inappropriate filtering parameters 438 

may be ineffective in eliminating irrelevant compounds (increasing the likelihood of false 439 

positives) or may be too stringent (false negatives) (Schulze et al., 2020).  440 

The impact of sample preparation on the false discovery rate of contaminants is obvious, and 441 

experimental conditions are often optimized to limit the number of false negatives in complex 442 

matrices such as fish (Du et al., 2017). Instrumental conditions, for example selecting data-443 

independent or data-dependent acquisition in HRMS, can influence the success of library 444 

searching to identify non-targeted compounds or metabolites (Wu et al. 2020). However, the 445 

choice and the parametrization of a filtering step should be also aligned with the experimental 446 

conditions (e.g. types of extraction, chromatography or ionization) and performances (e.g. 447 

mass measurement errors, retention time shifts). For example, homologue series searching 448 



23 
 

and formula searching should be guided by a knowledge of chemical space covered by a 449 

specific type of sample preparation or mass spectrometry ionization mode. The 450 

parametrization of the data processing pipeline should also be considered, as each step may 451 

impact the success rate of the identification of contaminants. As an example, the type of 452 

imputation method for missing values can have major effect on the results of subsequent 453 

statistical data mining (comparison performed in Hrydziuszko and Viant, 2012; Wei et al., 454 

2018). In that way, the selected NTA pipeline strategy should be assessed using spiked 455 

matrices or reference material on the model of what is being done in other fields of 456 

metabolomics (Ribbenstedt et al., 2018). Spiking model contaminants at trace level has been 457 

reported for eel (Wu et al., 2020), pike fish (Tian et al., 2019), but reference materials are still 458 

lacking to assess NTA workflows. 459 

Hollender et al. (2017) pointed out the limitations related to suppression of signals in matrix-460 

rich samples and the biases that can generate samples comparison. For differential analysis, 461 

the definition of the control or reference group of samples is critical to dissociate 462 

contaminants from endogenous compounds. Homogeneity among the sample populations in 463 

terms of age, gender, species is often key to limit inter-individual and interspecies variability 464 

and better highlight, using discriminant analysis, the variability related to the “treatment” only 465 

(exposition to additives, exposition to industrial sources). 466 

4 Multivariate analysis to characterize contaminant mixtures  467 

The chemical contamination profile of fish may be impacted by several factors including 468 

contamination sources, physical and chemical environmental parameters and uptake of 469 

pollutants by fish, itself influenced by a variety of factors such as exposure pathways (e.g. 470 

through water or diet), elimination processes, growth rate, age, lipid contents, etc.      471 

(Wenning and Erickson, 1994). Besides, the environmental fate of chemicals and their trophic 472 
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transfer obviously depend also on their own physico-chemical properties. Because of the 473 

multitude of possible combinations of influencing factors, the description and interpretation of 474 

fish contamination profiles can be intricate task. As reviewed by Mas et al. (2010) and 475 

Wenning and Erickson (1994) for instance, various types of multivariate methods, or 476 

“chemometric multivariate methods”, have been developed and are now available in common 477 

statistical software packages (See examples in Table 2). However, the selection of efficient 478 

data analysis methods is not always straightforward since it is dependent on the goal of the 479 

study and key properties of the datasets. The present section provides a brief description of 480 

some multivariate analysis tools, their applications to contaminant mixtures in matrices such 481 

as fish, and some considerations to properly interpret their results.  482 

4.1  Categories of multivariate analysis methods (MAMs) 483 

Multivariate analysis methods have been applied for several decades in environmental studies 484 

to reduce dimensions, to classify variables or samples, to select variables or to predict 485 

phenomenon in order to simplify interpretation of environmental systems. MAMs may be 486 

categorized under two main categories: unsupervised multivariate analysis methods 487 

(UMAMs) and supervised multivariate analysis methods (SMAMs). The selection of a MAM 488 

is critical to provide an appropriate interpretation. Gibert et al., (2018) recently reviewed the 489 

differences between UMAMs and SMAMs, and proposed guidelines to select the appropriate 490 

methods according to the scientific question and the structure of data sets. Briefly, the main 491 

goal of UMAMs is to provide an in-depth understanding of the system and a general 492 

description of the global interactions. SMAMs aim to explain the specific behavior of a 493 

response variable (defined as variable of interest to be explained) by explanatory or 494 

independent variables. In the first case, all the variables are processed equivalently without a 495 

priori. In the latter case, a prediction is assumed for the response variable and predictor 496 

variables are used to explain it.  497 
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There are two groups of UMAM techniques (Gibert et al., 2018): (i) associative methods 498 

which help to identifying relationships among variables (e.g. contaminant concentrations) and 499 

include for instance principal component analysis (PCA) and correspondence analysis (CA); 500 

and (ii) descriptive methods which are used to assess relationships among objects (e.g. 501 

samples, sampling locations, fish species, fish tissues, etc.     ) and include self-organizing 502 

maps, statistical clustering, etc. SMAMs are seldom applied to only describe the system but 503 

may be used to build predictive methods (e.g. multiple linear regressions, analysis of variance 504 

such as ANOVA) or classifier/discriminant methods (e.g. decision-trees, discriminant 505 

analysis). Table 2 summarizes key applications of MAM to data sets in the context of 506 

contaminant mixtures in fish and their interest in environmental and health risk assessment.  507 
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Table 2: Applications of MAMs for the assessment of contaminant mixtures in fish. 508 

Types of contaminants Matrix MAM Interpretation Software Reference 
23 trace metals, 80 PCBs, 
chlorinated hydrocarbons, 
OCPs, BFRs 

3 species of Eurasian caviar HC 
Squared Euclidean 
distance 

Identify groups of caviar samples 
Determine within-group linkages 
 

Excel and SPSS, 
version 4 
 

(Wang et al., 
2008) 

23 OCPs, 18 PCBs Ten common aquatic product species 
from Northeast China 

PCA Assess species-specific bioaccumulation  
Identify groups of species according to contaminants concentrations 

not specified (Fu et al., 2018) 

7 OCPs, 19 PCBs Muscle samples of 3 Cyprinidae 
species from Vransko Lake (Croatia) 

SOM 
 
 
DT 

Identify patterns among OCP and PCB congeners in freshwater fish 
searching for clustering based on different fish species and sampling 
months. 
Classify samples according to fish species or seasons 

MATLAB 
 
STATISTICA, 

(Romanić et al., 
2018) 
 

PCBs, OCPs, PBDEs Whole fish and fillet of 5 species 
from Charleston Harbor and 
tributaries (South Carolina, USA) 

Heat map + complete 
linkage clustering 

Identify patterns of contaminant loads by fish species and location not specified (Fair et al., 2018) 

PCDDs, PCDFs, PCBs Liver of coalfish and cod, eel, pike 
perch, farmed salmon 

PCA Investigate differences in congener profiles of marine fish, shellfish and 
farmed fish (salmon) 

not specified (Van Leeuwen et 
al., 2007) 

7 OCPs, 17 PCBs Fillet of edible marine fish species 
from Adriatic Sea 

SOM 
 
DT 

Identify OCP and PCB pattern in marine fish according to species, years and 
fishing zone 
Classify samples according to fish species and sampling seasons 

MATLAB 
 
STATISTICA 

(Vuković et al., 
2018) 
 

PBDEs, PCBs, OCPs The patagonian silverside (O. 

hatcheri) collected along the Negro 
River 

PCA Reveal the relationship among sampling sites and the accumulation of 
contaminants in each fish tissues 

InfoStat 2008 (Ondarza et al., 
2014) 

18 PCBs, 7 PBDEs, 17 
PFASs, BPA, 5 OH-PAHs, 
4 Aps 

Muscle and bile of European eel 
Anguilla anguilla 

PCA Discriminate contaminant levels in the muscle and bile of eels from different 
sites and life stage, as well as their biometric parameters 

STATISCA, 
version 7 

(Couderc et al., 
2015) 
 

58 PCBs, 6 PBDEs 
 

Whole fish and eggs of fish 
(Chinook and salmon, brook trout, 
mottled sculpin) 

PERMANOVA, 
NMDS 
 

Compare and assess relationships between POP pattern of resident fish 
species of Great Lakes and with migratory salmon 

R version 3.0.3 
 

(Gerig et al., 
2015) 
 

19 contaminants (OCPs, 
PCBs) 

Salmonids and cyprinids fish PCA Discriminate fish species according to organochlorine contaminant profiles 
and identify variables responsible of the variance. 

PLS Toolbox 
v3.5 

(Peré-Trepat et al., 
2006) 

7 PCBs, 18 OCPs, 16 
PAHs 

Eel muscle tissues PCA 
 
DA 

Characterize the correlations between PCB, OCP, PAH concentrations and 
biological responses 
Classify the different sampling sites 

ADE (van der Oost et 
al., 1997) 
 

168 organic chemicals Fish tissues SOM, canonical 
correlation analysis 

Investigate deviations from linear relationships between log BMF and log 
Kow calculated from concentrations of contaminants in fish tissue and 
identify structure-related bioaccumulation patterns 

MATLAB 2014 (Grisoni et al., 
2018) 
 

OCPs, PCBs Muscle and liver of fish from 
European mountain lakes 

PCA, PLS Assess the dependence of compounds on geographical and temperature and 
physiological parameters 

MATLAB 6.5, 
PLS 3.5 Toolbox 

(Felipe-Sotelo et 
al., 2008) 
 

PCBs, α-HCH, HCB and 
trace metals 

Liver and muscle of Canadian 
Atlantic Cod 

PCA with ANCOVA 
and MANCOVA 

Investigate time trends of contaminant levels in fish tissue SYSTAT v 5.0 (Misra et al., 
1993) 

16 PAHs, 29 PCBs Liver and muscle of sharks from 
Galveston Bay 

PERMANOVA 
SIMPER analysis 
 
PCA 
 

Compare liver and muscle congener profiles among the three species 
Determine the congeners contributing to the greatest differences between 
species 
Investigate and visualize correlation between contaminant concentrations in 
fish and biomarker activity 

R version 3.3.3 (Cullen et al., 
2019) 
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partial redundancy 
analysis (pRDA), 

Determine which congeners were correlated with EROD and GST activity 

21 PCBs, 28 OCPs Muscle tissues of fish from the 
Yadkin Pee Dee River (Caroline, 
USA) 

PCA, 
 
Linear mixed effect 
model 

Identify relationships between environmental contaminants and intersex 
occurrence and severity 
Predict intersex potential 

JMP Pro 12 (Grieshaber et al., 
2018) 
 

28 PCBs, 5 OCPs, 2 
PBDEs, 4 trace metals 

Liver of flounder from two estuarine 
areas in the Netherlands 

PCA Visualize correlations between contaminant concentrations and biomarker 
responses 

not specified (Schipper et al., 
2009) 

HC: hierarchical cluster analysis; PCA: Principal Component Analysis; SOM: self-organizing maps; DT: Decision Tree; PERMANOVA: 509 
Permutational multivariate analysis of variance; NMDS: non-metric multidimensional scaling; PLS: Partial least-square regression; 510 
(M)ANCOVA: (multivariate) analysis of covariance.511 
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4.2 Applications of unsupervised multivariate analysis methods (UMAMs) 512 

Unsupervised descriptive and associative multivariate methods are commonly reported to 513 

explore data sets associated to the study of multi-contamination of fish since they do not 514 

require prior assumptions on the target system. The application of UMAMs allows reducing 515 

the complexity of a system by grouping homogeneous objects (e.g. fish samples having 516 

similar contamination profiles) or associated variables (e.g. identify relationships among 517 

contaminants or with environmental and biological parameters). 518 

4.2.1. Descriptive UMAMs 519 

The application of descriptive UMAMs to environmental/food samples such as fish allows for 520 

the description and the categorization of sample groups according to homologous 521 

contamination patterns. Cluster analysis is a widely used method to partition a set of objects 522 

into two or more clusters based on their similarities (Johnson and Wichern, 2002). 523 

Hierarchical cluster analysis indicates sample groupings by ranking inter-sample similarities 524 

(linkage clustering) and the resulting output data are represented on a dendrogram, i.e. a tree 525 

on which the more the link height between nodes (samples) decreases, the more the similarity 526 

between nodes is high. For instance, Wang et al. (2008) performed a hierarchical cluster 527 

analysis (HCA) to conduct a preliminary assessment of health risks associated with the 528 

consumption of caviar, and identified different groups of caviar samples according to the 529 

concentrations of a hundred contaminants including PCBs, chlorinated hydrocarbons, OCPs, 530 

BFRs and trace metals (reproduced in Figure 3A). Using HCA, several groups were 531 

distinguished, first by species, and then origin, supporting a discussion based on trophic levels 532 

and/or contamination sources. A similar approach, using the combination of heat map and 533 

complete linkage clustering, allowed for the simultaneous visualization of the patterns of 534 

PCBs, OCPs and PBDEs across various fish species from multiple locations (Fair et al., 535 
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2018). Heat map colors allow for the visualization of the relative contaminant levels in each 536 

samples in comparison to the average in all the samples.  537 

Romanić et al. (2018) reported the application of Kohonen self-organizing maps (SOM) to 538 

identify pattern of OCP and PCB congeners in 3 freshwater Cyprinidae species collected at 539 

three different sampling periods in Vransko Lake (Croatia) (Figure 3B). The SOM consists in 540 

a regular neuron network (usually a two-dimensional grid), where input data are distributed 541 

using a finite set of models with the following principle: more similar models become 542 

automatically associated with nodes that are adjacent in the grid, whereas less similar models 543 

are situated farther away from each other in the grid (Kohonen, 2013).  544 

Such an approach has proved particularly interesting for describing the contamination patterns 545 

of the three fish species and for identifying the main variables that explained the observed 546 

differences (Romanić et al., 2018).  547 

4.2.2. Associative UMAMs  548 

Another common approach for data reduction is to identify and combine correlated variables. 549 

Principal components analysis (PCA) is probably one of the most commonly used MAM 550 

(Table 2). PCA is of particular interest to highlight correlations between different variables 551 

and to visually discriminate groups of samples. PCA consists of a projection of variables as 552 

points in bi or tri-dimensional space in preserving most of the existing relations among 553 

samples and variables (Abdi and Williams, 2010). Dimensions of the new space are created 554 

by the associations of correlated variables and are called principal components (PCs). PCA is 555 

often combined with clustering analysis to distinguish sample groups in a 2D new space. One 556 

of the first studies attesting the power of PCA modelling of multivariate data such as those 557 

encountered in complex chemical mixtures study in aquatic biota (Stalling et al., 1985) was 558 

performed using poorly performing computer processes compared to those available today. 559 
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Benefiting from computer advances, applications of PCA has generalized. Van der Oost et al., 560 

(1997) demonstrated for instance the importance of monitoring biota such as fish for the 561 

assessment of freshwater pollution since no clear discrimination between moderately and 562 

heavily polluted sites could be made using PCA on sediments only. In their study, the joint 563 

application of univariate analysis methods, PCA and discriminant analysis on a data set 564 

including PCBs, OCPs and PAHs concentrations in eels (Anguilla anguilla) from six 565 

Amsterdam freshwater sites, allowed for: (i) the classification of the environmental quality of 566 

the sites resulting from sample discrimination, (ii) the identification of contaminants 567 

responsible to this ranking, (iii) the examination of relationships between exposure to organic 568 

trace pollutants and biochemical responses in eel. The combination of univariate analysis and 569 

PCA has been also successfully applied to discriminate muscle and bile samples of European 570 

eel Anguilla anguilla collected along the Loire Estuary in France according to the pattern of 571 

an extended number of class of contaminants (PCBs, PBDEs, PFASs, BPA, OH-PAHs, APs) 572 

and biometric parameters (Couderc et al., 2015), reproduced in Figure 3C). The variability 573 

among eels was mainly explained by the trophic level, body weight, lipid weight, and PBDE 574 

contents on the first component and PFAS and gonadosomatic index on the second 575 

component. Correlations between biometric parameters (body weight and trophic level) and 576 

concentrations of PCBs and PFAS were also identified through this MAM approach. This 577 

method allowed for the distinction between eel individuals from two sites, Bellevue and 578 

Haute Indre, the former presenting the highest PFAS and PCB levels. The additional 579 

consideration of biomarkers of effects (e.g. oxidative stress, biotransformation enzyme, 580 

genotoxic parameters) in PCA may provide insights on the possible cause-effect relationships 581 

as illustrated by Schipper et al. (2009) for instance. It should be noted though, as pointed by 582 

Bellavia et al. (2019), that PCA allows the identification of individual contribution to the 583 
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mixture, but PCA is not a quantification method of the contribution of each component of the 584 

mixture on observed effects.  585 

4.3 Applications of supervised multivariate analysis methods (SMAMs)  586 

The choice of a SMAM rather than an UMAM depends on the possibility to perform an 587 

assumption on the target system (i.e., contamination profiles of two groups of fish samples are 588 

differentiated by the concentration of one chemical substance and the question is what are the 589 

variables that may explain this difference). SMAMs allow for the statistical test of assumption 590 

using the entire dataset, and may be used to build predictive models.  591 

4.3.1. Discriminant SMAMs 592 

Fish contamination can be explored through supervised discriminant methods (Table 2). 593 

Among these approaches, decision tree (DT) analysis was recently reported to assess fish 594 

multi-contamination (Romanic et al., 2018; Vukovic et al., 2018). DT analysis is a supervised 595 

learning algorithm that can be used in both regression and classification problems (Debska 596 

and Guzowska-Swider, 2011). DT consists in a tree-shaped graphical representation of every 597 

possible outcome of a decision. Tree starts with a root node which represents all the samples 598 

and is further divided in homogeneous sub-nodes according to successive decision rules 599 

(values of single variables that best divide the data into two or more groups as homogeneous 600 

as possible). Romanic et al. (2018) applied DT models, in combination with SOM analysis 601 

(see section SDAM), to discriminate freshwater fish samples according to species and 602 

sampling seasons (2014 and 2016). Vukovic et al. (2018) reported the same approach (SOM 603 

combined with DT) to investigate POPs in edible fish species from different fishing zones of 604 

Croatian Adriatic. Results from DT (Figure 3D) indicated that fish collected on two sampling 605 

dates (2014 and 2016) could distinguished from each other based on PCB-74 levels (threshold 606 

at 0.066 ng.g -1). In both these studies, DT models provided complementary results to the 607 
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SOM approach, pointing at the levels of a specific variable that may discriminate fish 608 

samples.  609 

Discriminant SMAM may be also combined to UMAM. In a recent study, Cullen et al., 610 

(2019) combined PCA and a partial redundancy analysis (pRDA) to study POP contamination 611 

in shark species from the northwestern Gulf of Mexico. pRDA aims to summarize linear 612 

relationship between components of response variables and explanatory variables in removing 613 

the effect of one or more explanatory variables with strong effect (Anderson, 2017). Cullen et 614 

al. (2019) evaluated, through pRDA, correlations between POP congeners and biomarker 615 

responses (ethoxyresorufin-O-deethlyase, EROD and glutathione S-transferase, GST) while 616 

limiting the effect of interspecific variability of POP concentrations between the 3 studied 617 

shark species (Carcharhinus leucas, Carcharhinus limbatus, Sphyrna tiburo). This method 618 

may be particularly useful to highlight weakly pronounced relationships, especially when the 619 

sample sets are heterogeneous.  620 

 621 

4.3.2. Predictive SMAMs 622 

Predictive SMAMs often involve establishing a regression model to explain a variable with 623 

others. The analysis of variance (ANOVA) is probably the most common statistical method 624 

for hypothesis testing on fish multi-contamination (Table 2). ANOVA is a type of general 625 

linear model which aims at testing if the means of two or more populations are equal, and 626 

assesses the effect of (and interactions between) various factors (dependent variable) on some 627 

variable response (Henson, 2015). The multivariate extension of ANOVA, MANOVA (for 628 

multivariate analysis of variance), simultaneously takes into account multiple response 629 

variables (Henson, 2015). Thus, MANOVA may be used to assess similarities/differences in 630 
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contaminant patterns among different fish species and location for instance (e.g. Faira et al., 631 

2019). 632 

Predictive SMAMs have also been recently applied to elucidate contaminant transport. For 633 

example, Gerig et al. (2015) applied a combination of Permutational multivariate analysis of 634 

variance (PERMANOVA) and non-metric multidimensional scaling (NMDS) to determine if 635 

the migratory Pacific salmon (Oncorhynchus tshawytscha, O. kisutch) could be a source of 636 

POP contaminants to stream-resident fish in Great Lakes tributaries. PERMANOVA is the 637 

non-parametric (based on permutation tests) version of MANOVA (based on sums of squared 638 

distances) that partitions variance in a distance matrix by calculating a distance based F-639 

statistic (Anderson, 2017, 2001). As with PCA, NMDS aims at projecting input data of a 640 

target system into a new space with a reduced number of dimensions (example from Gerig et 641 

al., 2015 in Figure 3E) in order to create a straightforward representation of relationships 642 

between objects and descriptors (Agarwal et al., 2007). However, unlike PCA, NMDS relies 643 

on rank orders (distances) for ordination and does not require normal distribution of data 644 

(often the case when studying ecological systems) (Agarwal et al., 2007). In Gerig et al. 645 

(2015), the joint use of these both methods, less stringent than parametric methods, allowed 646 

the verification of hypothesis that (1) salmon PCB and PBDE congener patterns differed 647 

among Great Lakes basins and (2) resident consumer fish species from reaches with salmon 648 

have more similar POP patterns with salmon than resident consumer fish species from reaches 649 

without salmon.   650 

Partial least square (PLS) regression is another approach to assess simultaneously the effects 651 

of various factors on fish contamination. PLS regression is an extension of the multiple linear 652 

regression model that assess relationship between response variable and a set of predictor 653 

variables. PLS is relatively less reported, but was successfully applied to assess the relative 654 

importance of the geographical, temperature and physiological variables (predictor variables) 655 
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affecting the accumulation of OCPs in different fish samples from European mountain and to 656 

find potential systematic patterns in these dependencies (Felipe-Sotelo et al., 2008). In this 657 

study, PLS was deemed complementary to PCA, because PLS is not affected by correlation 658 

among predictor variables. This can be useful when dataset including geographical and 659 

physical-chemical variables for example, may be correlated.  660 

 661 
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 662 

Figure 3: Examples of result representations from unsupervised and supervised data analysis 663 
methods: (A) dendogram from cluster analysis of Eurasian caviar samples according to 664 
organic (PCBs, OCPs, BFRs, OCs) and inorganic compounds (from Wang et al., 2008); (B) 665 
the Kohonen self-organizing maps (SOM) of OCP and PCB patterns in freshwater fish from 666 
Vransko Lake (from Romanić et al., 2018); (C) Principal Component Analysis (correlation 667 
loading on the left and sample representation on the right) of biometric parameters and 668 
contaminants in the European eel tissues from the Loire Estuary (from Couderc et al., 2015); 669 
(D) Decision Tree classification of the organochlorine compounds found in edible fish species 670 
from different zones of Croatian Adriatic, according to sampling year (DT1) and coastal 671 
(DT4) and off coast fisheries zone (DT5), fish species sampled in 2014 (DT2) and fisheries 672 
zones (DT3) (from Vuković et al., 2018); (E) non-metric multidimensional scaling (NMDS) 673 
plots of PCB pattern for salmon spawners and resident fish in stream reaches with and 674 
without salmon from lakes Michigan, Huron and Superior (from Gerig et al., 2015). 675 

4.4 Considerations when applying MAMs 676 

MAMs generally facilitate the interpretation of complex systems, such as contaminant 677 

mixtures in fish, and provide simplified visualization of the results. Interpretations of 678 

contamination profiles, relationships between environmental variables and occurrence of 679 

contaminants, based on MAMs often provide a strong rationale for the implementation of a 680 

customized management approach of the food or environmental system. However, based on 681 

the present review, the applications of MAMs are still limited, and were mostly applied to the 682 

levels of regulated contaminants (e.g. PCBs, dioxins, PBDEs) determined through targeted 683 

analysis. The limited number of MAM applications may be explained by the complexity of 684 

the data sets, and a lack of guidelines to select and apply appropriate MAM. But a deeper root 685 

for this issue remains the relatively poor understanding of the impact of data processing, data 686 

fusion and data filtering on the outcome of data analysis, particularly for NTA data.  687 

As introduced in section 2.2, data sets obtained using both TA and NTA approaches are often 688 

complex. First, unbalanced experimental design is common in food or environmental 689 

surveillance, as it is often difficult to obtain an equal number of samples for all tested groups 690 

(e.g. sites, species, age, etc.     ). The data may contain both quantitative and qualitative 691 

variables (e.g. metadata). Non-normal or multimodal data distributions are often encountered 692 
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among fish contamination levels, environmental parameters (e.g. temperature, pH, turbidity) 693 

or biological parameters (e.g., gender, age, lipid contents, biomarkers). Contaminant 694 

concentrations in fish can be extremely variable, even within the same study, because the fate 695 

of contaminants is multi-factor dependent. As an example, the sum of 25 PCBs in marine 696 

benthic fish from the Belgian North Sea and the Western Scheldt Estuary ranged 20-3200 ng 697 

g-1 ww (Voorspoels et al., 2004). Finally, missing values (e.g. non acquired data or non-698 

detected value) are very common, especially for emerging contaminants.  699 

The selection of an appropriate MAM starts with the clear formulation of the expected 700 

scientific outcome. Table 2 provides some clear examples of applications for each tool. Still, 701 

more systematic guidelines are needed for the selection and the parametrization of MAMs for 702 

specific food safety and environmental management applications. To achieve standardization 703 

in the field, software, scripts, and parameters should be first more systematically reported in 704 

the literature. The comparison of various tools should also be more frequently tested to 705 

explore the potential advantages and bias of different methods. In the end, and as noted by 706 

Gibert et al. (2018), statistical software could provide a greater intelligent assistance to 707 

support the selection or the parametrization of data analysis steps, which is currently 708 

uncommon. 709 

Finally, the impact of data processing, data fusion and filtering on the output of data analysis 710 

is still poorly understood. Hohrenk et al. (2020) recently compared the list of molecular 711 

features obtained from four data processing tools applied to the same initial raw data set (river 712 

water samples). Only about 10% overlap were observed among the features between all four 713 

programs, and between 40-55% of features for each software did not match with any other 714 

program. Tian et al. (2019) also described the influence of data processing on the detection 715 

and identification of model contaminants in pike muscle tissues using NTA, and parameters 716 

related to peak height showed a significant influence on the number of model compound 717 
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identified. As concluded by Fischer et al. (2021) in a recent review on data processing, poor 718 

or unreliable results can be obtained if data processing parameters are not optimized for the 719 

dataset/application. Similarly, different strategies have been developed for the fusion of data 720 

from different instruments. The type of data fusion is known to impact data analysis in the 721 

field of metabolomics (Hendriks et al., 2011). Finally, as described in section 4, data filtering 722 

influences the data input for analysis.  723 

Based on the above considerations, several but non-exhaustive recommendations can be made 724 

when selecting and applying MAM to study chemical mixtures: 725 

● Check the compatibility between the type of variables of the data set (categorical, 726 

discrete, continuous) and the statistical principles on which MAM are based.    727 

● Assess the normality of the data distribution. Skewed data distributions are common, 728 

and 100-base normalization or log-transformation may be applied where necessary 729 

(Morris et al., 2019). When data normality cannot be verified, non-parametric methods 730 

should be selected rather than parametric ones (Mas et al., 2010). 731 

● Check the comparability of data. The interpretation of MAM results has to consider 732 

possible bias obtained from heterogeneous datasets (i.e., including both single and 733 

average values).    734 

● Describe the approach for missing values. Multivariate methods rely on a sample 735 

covariance matrix of which estimators require complete data vectors on all subjects 736 

(Pesonen et al., 2015) and this requirement is often not met in context of contaminant 737 

monitoring as some chemicals may be present at too low levels in fish to be detected 738 

(< LOD). The question of non-detected data is key as it will also impact any reported 739 

means of the concentrations and standard deviations (Pesonen et al., 2015). While the 740 

general consensus is that statistical methods (e.g., maximum likelihood estimation 741 

(MLE), non-parametric Kaplan-Meier method, regression order statistics (ROS) 742 
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approaches (Helsel, 2012) cause less bias than common and/or recommended 743 

substitution methods (typically “zero”, LOD, half of LOD, upper, lower and middle 744 

bound) (EFSA, 2010; Arcella and Gómez Ruiz., 2018), none of them has been 745 

selected as the most suitable approach. Conclusions may vary according to the dataset, 746 

and the degree of censoring can have a large effect (EFSA, 2010; Helsel, 2010; Leith 747 

et al., 2010).  748 

● Similarly to what is commonly done for sample preparation and instrument analysis, 749 

assess the impact of data processing, data fusion and filtering steps and report 750 

experimental conditions (algorithms, scripts, parameters). Although standards are still 751 

lacking in the field, current best practices consist in testing the impact of data 752 

processing using procedural blanks, pooled samples and pooled QC samples, reference 753 

samples, replicates, or spiked samples (Gika et al., 2014). Tian et al. (2019) for 754 

example optimize the selection of the data processing parameters using spiked model 755 

contaminants in fish tissues. 756 

5 Conclusion 757 

Progresses in the analytical characterization of environmental contamination has resulted in 758 

the production of large datasets and consequently to the development of efficient data analysis 759 

strategies favored by machine learning advances. Chemical or statistical filtering of NTA 760 

datasets are effective, almost fundamental, strategies for identifying new chemicals in 761 

complex matrices, while keeping the number of false-positives and –negatives low.  762 

MAMs are an essential tool for describing and interpreting big data sets to extract unique 763 

insights on chemical mixtures in fish. These strategies can also be advantageously coupled 764 

with biological approaches, such as EDA, to characterize the effects associated with the 765 

exposure to chemical pollutants, in particular by considering the effects of mixtures 766 

(Houtman, 2004, Suzuki, 2011, Simon, 2015). Knowledge on sample or compound 767 
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discriminations, as well as the identification of factors that may influence the environmental 768 

behavior or the toxic potential of chemicals, are essential for risk assessment and the 769 

implementation of preventive or remedial measures. However, to date, the application of 770 

these tools is still limited, particularly for biological matrices. Addressing the knowledge gaps 771 

summarized in this paper may influence a more widespread implementation of data analysis 772 

strategies to interpret contaminant mixtures in food and environmental matrices.    773 

  774 
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